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Editor’s Preface

These books are a first version of Odifreddi’s collection of Kreisel’s expository

papers, which together constitute an extensive, scholarly account of the philo-

sophical and mathematical development of many of the most important figures

of modern logic; some of those papers are published here for the first time.

Odifreddi and Kreisel worked together on these books for several years, and

they are the product of long discussions. They finally decided that they would

collect those essays of a more expository nature, such as the biographical memoirs

of the fellows of the Royal Society (of which Kreisel himself was a member) and

other related works. Also included are lecture notes that Kreisel distributed in

his classes, such as the first essay printed here, which is on the philosophy of

mathematics and geometry.

Kreisel himself wrote all the texts, but Odifreddi has made some substantial

editorial interventions, rearranging some of the material, breaking the text into

sections and paragraphs, inserting titles, moving or removing some notes, and

eliminating some digressions. These interventions were made in order to give the

essays some of their original freshness and linearity, qualities that were lost in

later versions.

Some other minor modifications were made here and there, consisting basi-

cally in the correction of a small number of erroneous references in the original

manuscripts. Kreisel’s expository works are invaluable to logicians, and we hope

that the reader may find the present edition to his advantage, even if there is still

some editorial work to do.

Rodrigo Freire.

Braśılia, April 2019.
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Part I

ON BROUWER

1



Chapter 1

Brouwer’s Foundations

To understand Brouwer’s particular brand of so-called constructive foundations

one must compare its merits and defects with those of other better known ver-

sions (including, incidentally, the bulk of Brouwer’s early writings on constructive

foundations).

To put first things first: Brouwer’s final version is incomparably more imag-

inative. The commonplace versions are preoccupied with the business of ‘pure’

existence theorems ∃xA(x) and the search for ‘explicit’ realizations t such that

A(t). For the silent majority of mathematicians this business is hardly dramatic:

there is nothing to stop one from presenting such t even if one does not reject

pure existence theorems. What is more, mathematics has developed a whole

arsenal of notions for stating significant differences between such t (much more

pertinent than the crude idea of an ‘explicit’ t,1 or the crude distinction between

‘constructive’ and ‘nonconstructive’ definitions of t): for example, if ∃xA(x) ex-

presses the existence of a zero of a polynomial of odd degree, the continuity of t

in the coefficients. And once the attention of mathematicians is drawn to such

notions, their relevance is plain without any foundational preoccupation.

Secondly, commonplace constructive foundations constitute a restriction, and

thus form a proper part of ordinary mathematics (usually accompanied by grand,

0Originally published in Bulletin of the Americal Mathematical Society , 83 (1977) 86–93, as

‘Brouwer’s Collected Works, Volume I’.
1A happy coincidence shows the appreciation by the Mathematical Establishment of signif-

icant ‘explicit’ realizations. Without much exaggeration: a Fields Medal was awarded in 1958

(to Roth) for the ‘pure’ existence theorem

∀n∃q0∀p∀q(q > q0 → | 3
√

2− p

q
| > q−2−1/n),

and another one in 1970 (to Baker) for the ‘worse’ result

∃q0∀p∀q(q > q0 → | 3
√

2− p

q
| > q−3+0.05)

where, however, a (manageable) value for q0 was supplied. So much for blind prejudice against

an appropriate search for explicit realizations.

2
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but dubious foundations (cl)aims, to which we return later on). Brouwer’s version

of constructive foundations is instead incomparable with ordinary mathematics.

On the one hand it does not contain higher set theory with the (transfinite)

iteration of the power set operation applied to infinite sets. On the other it

includes as principal objects of mathematical study:

1. choice sequences of various kinds, for example, (the idealization of) the

random sequences of throws of a die

2. proofs which enter into a new meaning of the familiar logical operations,

the new meaning being used to state laws or ‘axioms’ concerning 1.

In contrast, ordinary mathematics which (of course) uses proofs as tools, does

not make them explicit objects of study, and paraphrases properties of random

sequences (for example, in measure-theoretic or set-theoretic terms).

Intuitionistic notions

Brouwer himself did not give full fledged axiomatic theories of choice sequences,

let alone of proofs. But it may fairly be said that modern axiomatic theories,

especially of the former, stand in much the same relation to Brouwer’s writings,

as modern axiomatic theories of sets stand to Cantor’s.2

While it would be quite inappropriate to go here into the details of such

axiomatic theories,3 it seems worthwhile (and easy!) to present the general idea.

Quite naively: freely chosen sequences s (say, of natural numbers) are thought

of as (necessarily) ‘incomplete’, only finite initial segments being ‘given’; so all

2The next remarks show that the parallel between (theories of) sets and choice sequences

goes further [∞] (the mark “[∞]” indicates that more precise references will be presented in

future editions of this work).

The (currently) most successful theories do not treat the most general notions involved, but

rather the cumulative hierarchy (of those sets which are generated from ∅ by iterating the power

set operation) on the one hand, and lawless sequences on the other. And there is no evidence

that, even if there are such things as ‘the most general’ notions, (of set or choice sequence),

they would lend themselves to a rewarding theory.

In fact, our knowledge of the cumulative hierarchy and of lawless sequences is (at the present

stage) most effective when applied to other notions defined in terms of those things: we know

more about the so-called constructible sets than about the full cumulative hierarchy (used to

define them), and have more applications of so-called projections of lawless sequences than of

the latter.

Incidentally, there is a little-known overlap in the interests of Cantor and Brouwer, the

founders of the theories of sets and choice sequences. Ever since 1877, Dedekind and Cantor

speculated that regions of different dimension are not in one-one bicontinuous correspondence

(only, Cantor’s attempted proof [1879] was defective). Brouwer thought of euclidean spaces

as including all points given by freely chosen sequences (considered immediately below), and

proved that regions of different dimensions are in one-one correspondence, bicontinuity now

being a consequence of the (new) conception of euclidean space.
3Readable accounts are in Troelstra [1977] and Troelstra and Van Dalen [1988].
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operations on such smust be continuous for the product topology. More generally,

if P is an arbitrary predicate of s we expect

P (s)→ ∃n∀s′[(∀m ≤ n)(s(m) = s′(m))→ P (s′)], (1.1)

inasmuch as P (s) can only ‘depend’ on a finite segment of s.

Evidently, in 1.1 the logical particles cannot have the usual truth functional

meaning, since the following instance of the law of the excluded middle

∃n[s(n) = 0] ∨ ¬∃n[s(n) = 0]

fails for any s such that, for all ‘given’ initial segment, s(n) 6= 0.4 There is nothing

dramatic about all this: in ordinary reasoning we relatively rarely use the truth

functional meaning (such as ‘q is true or p is false’ for ‘p implies q’). The latter

meaning happens to have a particularly simple theory. Brouwer indicated (and

Heyting developed) another meaning of the logical particles, well adapted for an

analysis of 1.1 but perhaps even further removed from most ordinary reasoning

than the truth functional meaning (and satisfying different formal laws, as shown

above).

The new meaning is well illustrated by the case of implication. First of all,

the data determining a proposition p are not simply truth values (this would

obviously be inappropriate for P (s) when s is ‘incomplete’): instead, we have a

condition Cp determining what are proofs of p (not: whether or not there is a

proof of p). Then Cp→q is built up from Cp and Cq as follows: by definition, we

require an operation I, and an argument π0 establishing

for any π, Cp(π)⇒ Cq(I(π)) (1.2)

where π consists, hereditarily, of operations and arguments.5 The reader can

guess the corresponding explanations for other particles.

Clearly, 1.2 must be expected to be quite sensitive to the domain Π of the π:

by restricting Π, one restricts the domain on which I must satisfy 1.2, and thus

increases the possibilities of proving p → q; but one also restricts the permitted

range of I, and thus decreases those possibilities. Because of that sensitivity, no

one set of formal logical laws can be expected to be ‘fundamental’ (in contrast to

4∃n[s(n) = 0] fails by choice of s. And ¬∃n[s(n) 6= 0] cannot hold otherwise, by 1.1, it would

also hold for all sequences s′ agreeing with a certain finite initial segment of s (while there are

such sequences s′ such that, for some n, s′(n) = 0).
5There is an obvious (though not necessarily vicious!) circularity here, unless ⇒ in 1.2 is

different in ‘kind’ from →. The usual idea is that the conditions Cp are decidable, and so ⇒
has simply its truth functional meaning. For coherence, this then requires that it be decidable,

for any pair (I, π0), whether or not π0 establishes 1.2 for variable π. All this would not only

be pretentious, but genuinely dubious if we were realistically thinking of arbitrary proofs and

operations. But it makes good sense when applied to a wide range of proofs and operations,

hereditarily formalizable in various ‘logic-free’ systems.
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ordinary first order logic).6 As a so-to-speak positive counterpart, the particular

formal laws first stated by Heyting for the intuitionistic meaning apply also to

situations only quite vaguely related to constructions in the literal sense (meant

by Brouwer); for example, they apply to particular ‘explicit’ definitions in ax-

iomatic set theory involved in (weak) forcing, or to certain ‘uniform’ definitions

in category theory applied to sheaves or Cartesian closed categories. It is fair

to say that at least the elementary exposition of such ‘constructions’ benefitted

from experience with formal intuitionistic logic.

So much then for the extension of ordinary mathematics by detailed system-

atic developments of specifically intuitionistic notions. In my opinion they have

substance and some mathematical wit. But it can hardly be claimed that they

(ought to) have a central place in the ‘mainstream’ of mathematics. As hinted at

the beginning, the vague general ideas which preceded those developments have

been ‘absorbed’ in ordinary mathematics (without any logic-chopping). Those

ideas certainly fired the imagination of mathematicians like Poincaré and the

young Brouwer.7 These two constructivists are associated with the switch to

algebraic topology operating on finite ‘pieces’ from set theoretic topology in the

style of Schoenflies.8 But also more modern developments in ordinary mathemat-

ics are related to vague, general preoccupations of constructivists, for example,

how objects are ‘given’ to us: elementary category theory points out the conse-

quences of ‘giving’ a function by its graph together with a bound on its range

(even though the exact range is determined by the graph, the passage involved

may require an operation not in the category considered). Bishop’s book [1967]

illustrates this state of affairs very well (in effect if not by intention): leaving aside

the introduction, the style is perfectly familiar to the modern mathematician.

Brouwer’s foundational critique

As everybody knows, Brouwer’s own case for his logical work had little to do with

extending our ordinary (view on our knowledge of) mathematics, but with cor-

recting it. There is widespread misunderstanding concerning his specific critique:

6The sensitivity of 1.2 to the choice of domain Π should be compared to the sensitivity of

(ordinary) second order logic to the class C of sets involved in the (set theoretically explained)

meaning of logical formulas. It was a discovery that the validity of first order formulas (which

is of course also defined set theoretically) is remarkably insensitive to C: once the set of natural

numbers and so-called ∆0
2 subsets are included in C, the validity of first order formulas is stable.

Without any evidence to the contrary, the patent sensitivity of validity in the case of intu-

itionistic logic suggests that the latter cannot be expected to be often useful (in intuitionistic

mathematics). Without going into the particular consideration above, Brouwer was certainly

skeptical of the role of logic (tacitly, in his kind of mathematics).
7Contrary to an almost universal misunderstanding, Brouwer’s work in topology was preceded

by his interests in constructivity (for example, in his dissertation [1907]), and followed by his

work in choice sequences.
8For an interesting account, see Newman [1969].
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1. He by no means confined himself to finite objects : in fact, he introduced

(in connection with his proposed notion of arbitrary operation on choice

sequences) the idea of ‘fully analyzed’, possibly infinite proofs.

2. He was not tempted by hackneyed generalized doubts about the legitimacy

of abstract notions : he studied proofs (that is, thoughts), which he dis-

tinguished emphatically from the linguistic objects used to represent them

(for example, but not necessarily, formal derivations of some specific formal

system).

3. Though he saw defects in the theory of sets (tacitly: as presented in the first

decade of this century), the antinomies were not particularly prominent in

his critique.9

What Brouwer did do in his foundational critique was really absolutely or-

thodox (at least since Kant, and particularly in the first quarter of this century).

According to Brouwer, our ordinary view neglects the role of the subject (called

‘observer’ in physical contexts10). A natural and, in the short run, effective reac-

tion to the neglect of anything is to make it the sole object of study. Brouwer’s

version of constructive foundations is an instance of this: as described at the end

9It is perhaps natural that the antinomies are often used (in effect if not by intention) to

introduce a bit of drama into foundations, a subject by and large devoted to the undramatic

business of ‘analyzing’ what (we believe) we know anyway. But it is simply historically false to

think that the antinomies provide evidence for any failure of the ‘logical intuitions’ of Cantor,

let alone of his contemporaries (who were oversuspicious of his notions). Here are the facts.

Back in [1885], in a review (of Frege’s Grundlagen) easily accessible in Cantor’s Collected

works, he objected to Frege’s:

∃x∀y[y ∈ x↔ P (y)] (1.3)

for the precise reason that precautions are needed to ensure that the predicate P has an ex-

tension which can be comprehended (as a ‘unity’). Frege himself, in the introduction to the

Gundgesetze, discussed the possibility that 1.3 might be (not only false for the intended mean-

ing, but) formally contradictory. His own malaise is apparent from the thoughtless ‘evidence’

proposed there for 1.3, namely its wonderful consequences (which, at best, provide a reason for

our interest in 1.3, certainly not for its validity or consistency).

As I read Brouwer’s diatribes against set theory, for example, in his dissertation, the main

source of his ‘gut reaction’ seems to have been less the topic of (infinite) sets than the extraor-

dinarily pretentious claim for set-theoretic foundations in Russell’s Principles of mathematics,

as providing the true analysis of all mathematical concepts (and that the formal deductions in

axiomatic set theory analyze all mathematical reasoning). Brouwer surely had a point. Though

even today, set theory is better known as a general framework for mathematics than as a branch

of mathematics, the value of this or any other ‘general framework’ is dubious: axioms are given

in the first chapter of a text, but hardly ever has one occasion to refer to them later (in any

detail).
10It goes without saying that this stress on the subject acquiring knowledge got a boost from

Einstein’s singularly successful use of the observer in his special theory of relativity, shortly

before Brouwer’s dissertation.
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of the previous subsection, he made proofs (that is, the activity of the subject,

also called creative subject by Brouwer and ideal mathematician by others, as in

‘ideal fluid’), part of the meaning of mathematical assertions.

Although similar ‘subjectivist’ analyses of scientific knowledge have been pro-

posed in the philosophical literature for all sorts of other sciences, nothing in that

literature seems as imaginative as the notions Brouwer introduced in his attempt

at a purely subjectivist analysis of mathematics. If the latter has not gone very

far, this is surely partly due to inherent weaknesses in the scheme itself; but prob-

ably even more because he was preoccupied with hackneyed traditional questions

such as:

Is mathematics about an external reality or about our own ‘free’

constructions?11

More specifically, Brouwer remained hung up on the validity of (principles of)

proofs, neglecting more ‘structural’ relations between proofs, and between proofs

and other things.

If the reference above to the business about external reality and our own

constructions (discovery and invention) appears irreverent, the reader should stop

to give second thoughts to the favorite implications attributed to this matter, for

example, concerning certainty (of mathematical knowledge): we are supposed to

be peculiarly certain of our own (mental, presumably not necessarily also of our

physical) productions. Is the idea of all possible proofs of any one theorem (or

all possible definitions of any one object, say the empty set) as clear, let alone

clearer than the idea of the collection of all subsets of say ω?

A second favorite is the would-be dramatic conflict between external reality

and our free constructions. Getting knowledge of any (external) reality requires

activity or constructions on the part of the subject; the bit about their being ‘free’

is particularly unconvincing since they are certainly not made by consciously

arbitrary choices, no more so than constructions of material tools (which are

limited by the properties of the material available, quite apart from the intended

purpose). Besides, why expect a conflict between our own possibilities and the

external reality in which we have evolved?12

11Those questions are so banal that we ask and understand them when (ontogenetically or

phylogenetically speaking) we know next to nothing (about mathematics); reflecting only, as

somebody said, wie sich der kleine Moritz die Dinge und das Denken vorstellt (on Simple

Simon’s ideas about things and thoughts). Of course, for this very reason these questions have

a perennial pedagogic interest (at least, for the untamed spirits among us).
12To avoid misunderstanding: all this pretentiousness does not discredit, by itself, all foun-

dational questions like those that excited Brouwer. Early speculations (which used to be con-

sidered philosophical) on the question:

What is matter (made of)?

were pretentious too, and spiced with such ‘conflicts’ as: ‘Matter is atomic’ versus ‘All is flux’.

Even using hindsight we would be hard put to find the ‘conflict’ in what Born called: the
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The famous dispute between Brouwer and Hilbert

To put first things first, Brouwer and Hilbert were in the same camp, accept-

ing only constructive principles as prima facie legitimate. The difference was

elsewhere. Brouwer’s principal concern was to develop constructive mathematics ,

without the distraction of studying metamathematically (by constructive means)

the principles of ordinary mathematics. Hilbert wanted to justify ordinary math-

ematics by:

1. using formalizations F of valid principles for then-current mathematical

concepts

2. proving the consistency of F (tacitly, constructively).

He was convinced that 2 did not need any development of constructive math-

ematics because he thought that so-called finitist methods (of which proofs in

‘elementary number theory’ are typical) would be enough.13

Brouwer was in any case dubious about the adequacy of any formalizations

(without, however, getting anywhere near the precise incompleteness results es-

tablished by Gödel). Why then all the fuss about a consistency proof for (a

restless universe of atoms.

Incidentally, it hardly seems an accident that the great interest in (set theoretic or construc-

tive) foundations in the first quarter of this century coincided with the huge success of the

atomic theory: if the physical world can be built up from a few basic elements, why not math-

ematical concepts (Whitehead and Russell) or proofs from a few basic intuitions (Brouwer)?

But mathematical foundational schemes lack some of the most obviously essential features of

modern atomic theory (not: of early generalities about atoms).

1. The basic foundational elements, such as sets, are really quite close to objects of ordinary

mathematical experience: do they even look fundamental enough for analyzing in any

depth the great diversity of mathematics?

2. Where are the analogues to geometric relations and binding forces between atoms so

essential for refining (crude chemical) atomic theory?

3. On the ‘phenomenological’ level, foundations lack the analogues to such prerequisites of

the atomic theory as the isolation of chemically pure substances, let alone the periodic

table.

One wonders whether our experience of mathematics is at a comparable stage to that of physics

and chemistry which was, patently, needed for progress on the structure of matter.
13It is to be stressed that the general conclusions are independent of any precise analysis of

the notion of finitist proof. Besides, there is no evidence for any particular reliability of finitist

methods, Hilbert’s principal claim for them (tacitly, at the present time; of course, 100 years ago

mathematicians had to treat nonfinitist, logically compound expressions quite gingerly, such as

the negation of uniform convergence!) On the contrary, inasmuch as nonfinitist proofs are often

simpler than finitist ones (of the same theorem), and the nonfinitist principles equally reliable,

the actual probability of error in a finitist proof is likely to be higher. This is borne out by the

literature on finitist consistency proofs, which contains remarkably many oversights. No other

compelling virtue of finitist methods has turned up either (except the fact that they were one

of the first that occurred to us).
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necessarily) incomplete F , if tomorrow we can think of stronger principles F+

which are also valid? More importantly, Brouwer objected strongly to consis-

tency as a sufficient condition on F , quite apart from the secondary matter of

the methods used in a consistency proof. And he surely had a point.

What does consistency of F insure (for F of the kind considered in Gödel’s

incompleteness theorem14)? Only the truth of (formally derived) purely universal

arithmetical theorems. Suppose A is a purely universal proposition: typically

(by Matyasevic [1970]) (∀~x)(p(~x) 6= 0), where p is a polynomial in the variables

~x with integral coefficients. If (the translation in F of) A is derivable in (or even

only formally independent of!) F then the diophantine equation p(~x) = 0 has no

solutions: if it had, a counterexample ~n to A could be computed, and so p(~n) = 0

and hence ¬A would be formally derivable in F . But this is all , in the following

precise sense. If such an A is not derivable in (a necessarily consistent) F15 then

F ∪ {¬A} is also consistent, though, as we have just seen, ¬A is false. Thus

consistency by itself does not even insure the truth of (formally derived) purely

existential arithmetic theorems.

Hilbert’s pious rhetoric, as saviour of classical analysis against Brouwer’s Bol-

shevic revolution, has a hollow ring. All that is ‘saved’ is (as Hilbert put it) a

formal game F (where F is one of the formalizations of analysis developed in

the first quarter of the century). Except for purely universal propositions, by no

means the whole content of (the ordinary interpretation of) ordinary analysis,

the latter is not ‘saved’ by the consistency of F .

Actually Brouwer’s attack, by way of ‘contradictions’ with ordinary math-

ematics, was hardly disturbed since he got them by changing the meaning of

the logical operations and the domain of variables (for example, by replacing se-

quences in the sense of ordinary mathematics by choice sequences). Naturally, all

supplemented by grand foundational doubts about our ordinary notions (doubts

which, by the end of the previous subsection, are generally more dubious than

the notions themselves).

Ironically, if (after recognizing the inadequacy of the consistency criterion)

one actually looks at consistency proofs one finds that, properly formulated, they

do ‘save’ a remarkable amount of ordinary mathematics (for use in constructive

mathematics). In fact, progress over the last 40 years allows a precise formulation

of the issue whether the methods developed in work on Hilbert’s consistency

program or those developed from Brouwer’s ideas on choice sequences are more

effective for this purpose.

14Conditions on such systems require, in particular, that numerical computations can be

mimicked in F . So if a diophantine equation p(~x) = 0 has a solution ~n, p(~n) = 0 can be verified

by computation.
15That this can happen is the content of Gödel’s incompleteness theorem
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Mysticism

Brouwer’s first publication [1905] was titled Life, art and mysticism.16 Curiously,

Brouwer never points out the relevance of some of the mystical business to the

‘main stream’ of foundations, which assumes that we must be capable of making

the grounds for our knowledge conscious to ourselves, and that this would be

rewarding to boot. In sober terms, the ‘mystical’ alternative would be that we

have a lot of knowledge, also in mathematics, which is simply more convincing

than any proposed analysis (of our actual grounds for this knowledge, let alone

of possible grounds).

16Excerpts from it have been translated in Brouwer [1975]. The editor of the latter volume

has given reasons for omitting others, for example (on p. 565): ‘In many places Brouwer runs

on inconsiderately, for instance, on the position of women in society.’ Some of the omissions are

translated in van Stigt’s dissertation: for example, one expressing Brouwer’s view that every

woman is more like a lioness than a twin is like his brother.



Chapter 2

Luitzen Brouwer

This chapter is divided into two parts. Section 1 describes Brouwer’s life and

that part of his work which develops a general philosophy of mathematics; since

the latter is regarded as obscure, but also as important, its broad outlines are

presented quite fully and without technicalities. Section 2 contains more precise

accounts of Brouwer’s contributions to logic.

2.1 General Development

Life, family, general interests

Brouwer was born on 27 February 1881 at Overschie, near Rotterdam. His father

Egbert was village schoolmaster and lived to be 90. His mother’s maiden name

was Hendrika Poutsma. Two of his brothers made reputable careers in educa-

tion, one as a teacher of French in a secondary school, the other as a university

professor of geology; both at Amsterdam. Brouwer himself wrote poems all his

life; incidentally, his first publication ([1905]) was partly an anthology of (other

people’s) poetry. On 31 August 1904 he married Elisabeth de Holl; the marriage

brought him a stepdaughter, Miss Pijper, who remained the only child, and the

income of some chemist shops. He died on 2 December 1966 in a car accident at

Blaricum near the house where he had lived for many years. His wife had died

about five years before him.

Even into his seventies Brouwer travelled a great deal, visiting universities

where he lectured frequently and sometimes several hours at a time, but not

persuasively. On his travels he often stayed with various mathematicians and

logicians. By general agreement he was an accomplished conversationalist in a

small circle, when he was sure of a sympathetic audience. He had several of

the (rewarding) qualities of a professional entertainer in society: a large fund of

0Originally published in the Biographical Memoirs of Fellows of the Royal Society , 15 (1969)

39–68, as part I and III of ‘Luitzen Egbertus Jan Brouwer’.

11



Luitzen Brouwer 12

anecdotes and miscellaneous information, a desire to perform well and, of course,

practice.

Education and academic career

Brouwer attended primary schools at Medemblik and Hoorn, and a secondary

school at Haarlem. He studied mathematics and science at the University of

Amsterdam, and was in close contact with the philosopher Mannoury, for whom

he retained a lifelong affection (see Brouwer [1947]). Brouwer’s dissertation was

accepted by the applied mathematician Korteweg, who worked on surface waves

and, in collaboration with van der Waals, on molecular forces. The dissertation

did not contain any results, but rather Brouwer’s views on what was important

in mathematics, and polemics against then current set theoretic foundations. In

short, the work was ‘immature’ for someone of his age, but full of drive. Hindsight

shows that, in Brouwer’s case, the style of the work could also be interpreted as the

outward sign of an exceptionally prolonged and vigorous intellectual development,

which was soon to bear fruit.

From 1909 to 1912 Brouwer was privaat-docent. In 1912 he was elected to

the Chair for set theory, function theory and axiomatics at the University of

Amsterdam, which he held till 1951. In view of Brouwer’s critical attitude to

set theory and axiomatics, the choice of name seems odd; but perhaps in those

days one thought of topology as an axiomatic theory and of point set topology

as part of set theory. Also in 1912 Brouwer was elected Member of the Dutch

Royal Academy of Science. He was knighted in 1932 (Ridder in de Nederlandse

Leeuw), and elected a Foreign Member of the Royal Society in 1948.

Constructivity

This was a lifelong interest dating from his thesis. A thorough understanding of

the matter requires the sort of experience in mathematics which will be assumed

in Section 2, but it is possible to get a satisfactory general idea without knowing

more than Aristotle: the issue goes back to the Greeks.

Is mathematics our own construction and about such constructions, or

does mathematics discover truths about an abstract reality external

to ourselves?

Much is made of certain obvious ambiguities in the issue. But the real dif-

ficulty, as would be expected of old rival alternatives, is that each of them is

consistent with familiar facts (at least as long as one does not look at them too

closely). Brouwer found a place where the issue becomes manageable, namely in

the analysis of the usual logical operations . The considerations are so simple that

they are not affected by the ambiguities mentioned. What, from a constructive

point of view, do we have to know to assert a proposition P? We must give a
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proof. And to assert the negation of P , we require a refutation of P : it is not

enough that, so to speak as a matter of historical accident, we have not so far

found a proof of P . Brouwer considered the law of the excluded middle, which

states that either P or non P , for all propositions P . Now for Brouwer’s inter-

pretation of the logical operations we should have reason to assert this law in full

generality only if, here and now, we either know how to prove any given P or how

to refute P . Brouwer had no difficulty in showing that there was no convincing

reason for this assertion. Though for a long time he had no refutation either, he

spoke of the ‘unreliability’ of this law already in [1908]. However, much later he

obtained a refutation (for his interpretation of the logical operations) after the

theory of constructivity was developed to include propositions about sufficiently

‘sophisticated’ concepts.

Brouwer himself did not stress the fact that a new interpretation of the logical

operations was involved. He rejected the more usual ‘truth functional’ interpre-

tation because he rejected the conception of mathematics which suggested the

latter. This is the critical, so to speak, ‘negative’ and best-known side of his

work. In this chapter the positive side will be stressed: the extent to which a co-

herent and sophisticated, if problematic, area of mathematics can be developed

from the notions of proof and rule (construction). Brouwer’s own doctrinaire

presentation was not only philosophically dubious but practically unsuccessful

because it did not really convey his views. It is, however, highly likely that, at an

early stage, his own work benefited greatly from two very usual consequences of

any doctrinaire position: he was able to develop his ideas vigorously, first because

he had put out of his mind all but the matter in hand; and, second, because weak-

nesses of a position are less ‘disturbing’ if (one thinks) there is no alternative. As

we shall see, things were different twenty years later.

Topology

Soon after his thesis, Brouwer published an outstanding series of papers in topol-

ogy, a subject which deals with the most basic properties of geometric figures or,

as the later Brouwer would have had to say, of visual perception. This work is not

described here,1 but it is pertinent to note a link with constructivity. Brouwer,

like most of his contemporaries, used as a tool approximations by geometric fig-

ures which are determined by a finite number of points: polygons in the plane,

polyhedra in space. But, unlike most of them (except for example Poincaré, an-

other constructivist), his use of those figures was very elementary (‘algebraic’, as

we should say now). In his style of work one never thinks of a line or surface as

made up of an infinite number of points, in contrast to point set topology.

Inevitably one wonders about the heuristic value of Brouwer’s (or Poincaré’s)

general logical ideas for his topology and, on a higher level, about the value of his

1See Newman [1969] (originally published as part II of the present chapter) for an account.
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general philosophical ideas for his logic.2 Now his logical ideas (which he pub-

lished several years before his topological work) were not only novel, but almost

detailed enough to deduce rigorously some of his topological innovations from

them, though he himself had not done so explicitly. In contrast his philosophical

views, though quite consistent with his logic,3 were undeveloped and, literally,

commonplace: the observer, language and linguistic conventions had a big role in

the epistemology of the time. Of course it can happen that general philosophical

views need only be formulated to be useful. But this is doubtful in the case of

the epistemological ideas above, when we compare Einstein’s fruitful use of them

in relativity theory with Poincaré’s sterile conventionalism in geometry.

Intuitionism and formalism

Brouwer’s intuitionistic mathematics (as he called it) treats propositions, rules

and proofs as objects of thought, more or less as they present themselves to us

näıvely. These objects are represented (for instance, for the purpose of commu-

nication) by finite concrete signs such as words or symbols.

The formalist conception of mathematics holds that all mathematically sig-

nificant relations involving proofs and propositions can be adequately analyzed

in terms of their representations; of course, the properties of signs to be used here

must be external or formal, they must refer only to mechanical manipulations of

signs, not to their meaning. In short, formalism is a particular mechanistic theory

of reasoning. Formalist reasoning about manipulations with finite strings of sym-

bols has the same elementary combinatorial character as that used in topological

manipulations of finite configurations of points.

Quite generally, most familiar mathematics which is constructive at all, turns

out to be combinatorial: it does not use constructions on abstract, typically

intuitionistic objects such as proofs or rules. For this reason it is practically easy

enough to recognize elementary arguments as such when we see them. But people

differ on what is essential to this elementary character: the words combinatorial

and finitist correspond to the two most important views on the matter.4

Development of constructive mathematics

Even during the period of his topological discoveries, Brouwer thought about

a constructive reworking of mathematics and reported some results in [1913].

In accordance with the last subsection, Brouwer’s specific logical ideas do not

2In a few philosophical papers on knowledge and its origins Brouwer elaborated on the

primacy of the will over the intellect.
3His stress on the will corresponds to his interest in constructions, in what we do ourselves.
4Of course, reasoning about manipulations with strings of symbols must be distinguished

from the manipulations themselves (which do not involve mathematical reasoning, properly

speaking, at all); at best such formal manipulations are concrete representations of reasoning.



Luitzen Brouwer 15

yet come into play and his results can be quite adequately stated in perfectly

straightforward terms: he decides alternatives which had been previously left

undecided, or gives additional conditions which allow a decision.

The publications of 1918–1928 changed all this. For currently popular ideas,

Brouwer’s most striking innovation was his conception of proofs as infinite ob-

jects. The idea is not far fetched, particularly if the statements proved are about

infinitely many instances, for instance in justifying the principle of induction

in arithmetic. On the contrary, the opposite (that is, the formalist conception

mentioned above) is ‘daring’, in that it assumes that the basic properties of our

(mathematical) thoughts can be intelligibly analyzed in terms of the signs we

use to represent these thoughts. But Brouwer went beyond mere plausibility and

discovered an area where his ideas of infinite proofs led (him) to striking formal

laws: the analysis of constructive operations on arbitrary sequences of natural

numbers. Of course, there are such operations, for instance the rule which asso-

ciates with any sequence a1, a2, a3 . . . its first element a1. Brouwer’s aim was to

analyze all possibilities of proving constructively that an operation is well-defined

on arbitrary sequences. He came up with his bar theorem, and a corollary which

he liked to formulate as a startling ‘theorem’: all functions of real numbers in the

unit interval are uniformly continuous. By use of propositions about arbitrary

sequences he was also able to refute the law of the excluded middle mentioned

earlier. More details, in particular a sober reformulation, will be found in Section

2.

Brouwer’s controversy with Hilbert

About the turn of the century Hilbert, Brouwer’s senior by twenty years, began (in

[1904]) his pursuit of formalist foundations. He formulated his famous programme

stating adequacy conditions on such a foundation (see Section 2). The well-

known controversy between Hilbert and Brouwer was, contrary to a widespread

misunderstanding, an internal schism among constructivists, since Hilbert too

adopted a constructive view of mathematical reasoning; in fact his was stricter

than Brouwer’s, since he wanted to reduce mathematics to principles that were

not only constructive but finitist .

One difference between Hilbert and Brouwer was that Brouwer certainly re-

garded the finitist restriction as unnecessary for constructive foundations and,

probably, as difficult to formulate in a precise and convincing fashion. But the

principal difference was in their attitude towards ordinary, nonconstructive math-

ematical practice. Brouwer proposed to ignore this practice except at best as an

heuristic guide. Hilbert, in his programme, proposed to establish its coherence

by means of his finitist methods and, generally, use it as a tool for getting finitist

results.

Hilbert’s ideas had great appeal for mathematicians and attracted the active

collaboration of several gifted people, especially in the twenties. One reason was
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the truly childlike simplicity of Hilbert’s programme, another was his straight-

forward and direct presentation. Brouwer, as we saw above, certainly succeeded

in startling the mathematical world, by alienation in the jargon of the theatre.

In this connexion he quoted often, and with evident approval, George Bernard

Shaw’s advice to the effect that one has to exaggerate to make an impression. (A

pedant might have pointed out that Shaw never promised a favorable impression).

But, objectively, it seems fair to say that Brouwer was right on almost every

major issue on which he disagreed with Hilbert.

The half-century mark

Just as Brouwer was turning fifty, Heyting [1930] and Gödel [1931] appeared

which, though they did not, objectively, create new problems for Brouwer’s work

in logic, must have been equally disturbing; one in an obvious, the other in a

subtler way.

Heyting [1930] is best known for an elegant set of formal laws which are valid

for Brouwer’s constructive interpretation of the logical operations. Outsiders were

excited by these simple laws which suggested algebraic and other mathematical

manipulations, without too much thought whether such work produced misun-

derstanding or understanding of Brouwer’s intentions.5 Heyting himself warned

against the possibilities of such misunderstandings in the clearest possible terms.

But he did much more: he formulated the intended interpretation in the natu-

ral way, in terms of the concepts of proof and rule. Now, the formal laws are

not immediately evident if one restricts oneself to some simple list of proofs and

rules such as those represented in familiar formal systems. What is needed are

the general abstract concepts of (constructive) proof and of rule, including, for

instance, rules which associate proofs to proofs or to rules. Brouwer himself had

never set out anything like Heyting’s analysis. Though one may have been un-

comfortable about some of Brouwer’s informal explanations, this malaise was,

psychologically, far less alarming than seeing in full detail what difficult abstract

notions are involved in the very meaning of the logical operations. Brouwer’s

doctrinaire polemics against alternative foundational schemes had a hollow ring.

Gödel’s famous work [1931] on the incompleteness of formal systems estab-

lished, roughly speaking, the inadequacy of Hilbert’s formalist foundations; or,

more precisely, it refuted some of Hilbert’s specific assumptions behind the pro-

gramme. Since Brouwer had denied these assumptions, one might simplemind-

edly expect him to have been gratified by Gödel’s results. But both the nature

of Gödel’s argument and Brouwer’s conduct during the decade following Gödel’s

paper give one reason to doubt this simpleminded interpretation.

5Heyting’s laws concerned only elementary logic, a small part of intuitionistic mathematics;

like any other severely limited set of facts these laws admit a great number of quite distinct

interpretations, some of which are totally removed from Brouwer’s ideas.
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Gödel’s immensely natural proofs did not need anything like the heavy dis-

tinctions which Brouwer thought essential to his development of constructive

mathematics (nor, incidentally, the ingenious constructions that Hilbert had in-

troduced into proof theory). What they did involve was a clear perception of

aims and principles, a philosophical, nondoctrinaire analysis, alien to the logical

activists of the time. Seeing the incomparable superiority of this kind of analysis

Brouwer had to face the question, consciously or unconsciously, to what extent

he had even begun to master his own logical ideas. Actually, the same question

may well have paralysed the formalist camp too, who did not draw the natural

consequence from Gödel’s work either: all they had to do was to reformulate

Hilbert’ programme more carefully in the light of Gödel’s result to open up new

lines of research.

Be that as it may, it is a fact that Brouwer himself devoted the ten years

after publication of the papers by Heyting and Gödel to nonscientific activities,

although, objectively, these papers concerned essential points of his life’s work,

and although he was only fifty and in good health. It does not seem unreasonable

to suppose that he had received an intellectual shock.

Perhaps a biographical study of this remarkable man will bring light on this

matter, when the details of his life in the thirties have been sorted out. The anec-

dotes about this period are fragmentary and even contradictory; but Brouwer’s

views on Life expressed in [1905] may help to interpret this scattered information.

Since, by general agreement, Brouwer was self-willed and impulsive, the views of

his youth are probably a valid guide to his later personality; just as the views in

his dissertation [1907], another ‘immature’ work, are certainly a good guide to

his later scientific interests.

Solipsism

In his sixties Brouwer took up a side of the constructive philosophy of mathemat-

ics which had not previously played any explicit role in his work: the thinking

subject as Brouwer put it (or the ideal mathematician, as he will be called in

Section 2). To emphasize this aspect, Brouwer began to call himself an introspec-

tive psychologist because, he thought, this term described the mathematician’s

proper task. Moreover, he dismissed the role of communication between mathe-

maticians, comparing other people to vacuum cleaners (a phrase which suggests

that Brouwer found contact with other people exhausting).

Applied to mathematical reasoning, the solipsist view is not farfetched. After

all, once our attention has been drawn to certain ideas or methods, understanding

them is very much a private matter; we follow proofs, and do not merely repeat

the words of other people. But does the view affect (constructive) mathematical

practice? Brouwer found a positive answer by considering a mathematician who

gives himself a rule referring to the stages of his own mathematical activity or, as

one says, who employs a private language. From a solipsist view of mathematics
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such a rule belongs to mathematics because it is as well determined (for him) as

any other rule. But from an intersubjective view it does not belong to mathemat-

ics because it cannot be communicated, and the possibility of communication is

required here (in contrast to the solipsist position). What is particularly interest-

ing is that Brouwer’s considerations lead to consequences that can be formulated

in the ordinary language of mathematics, which does not explicitly refer to the

mathematician’s activity. He found a property R and a ‘private’ rule which evi-

dently satisfies R, but one does not know any intersubjectively well-determined

rule which does (see p. 27 for details). So, once again, Brouwer had succeeded

in finding a way of making an old distinction (between a solipsist and an inter-

subjective view of mathematical knowledge) manageable or, at least, held out a

promise of doing so. We cannot yet judge the intrinsic interest of his idea; but if

it is positive at all, the value of Brouwer’s contribution is surely very high when

measured by the ratio of its interest to the probability of its discovery.

In his last years Brouwer felt that his contributions were not adequately ap-

preciated. He may have exaggerated a bit; but, by and large, he was probably

right. Without, of course, explaining cause and effect, Brouwer’s solipsism fits in

quite well with his failure to convey his ideas: while, as was said above, solipsism

seems an excellent first approximation for an analysis of mathematical reasoning,

it would not be expected to be equally sound in public relations.

2.2 Foundations of Mathematics

Because of his technical knowledge, the working mathematician generally has a

more concrete idea of foundational problems than the ‘educated outsider’. Just

because of this he almost inevitably asks too soon what foundations can do for

him, a typical reaction of the practical man vis-à-vis any fundamental theory in

his own field of study. Popular accounts, including those of Brouwer on his own

contributions, tend to overdramatize the role of fundamental theory, and only

add to the difficulty. Above all, the mathematician should remember that his

familiar experience is generally more reliable than fundamental (that is, in the

present case, logical) theory; except very occasionally, the latter does not correct

dramatic errors of ordinary ideas (in fact, being more precise than these ideas it

is more liable to be erroneous). More generally, a new fundamental theory rarely

changes the way we actually see the world; in particular, logic does not change

the way we think of the integers, ordered pairs and other familiar concepts. In

all sciences the bulk of day-to-day work requires the introduction of ideas which,

though generally consistent with fundamental theory, are independent of it; in

mathematics, these ideas are defined in terms of already current concepts and

therefore logically dependent on the latter. What the working mathematician

can expect to find is that some previously inaccessible area of experience becomes

manageable by means of the new theory; at least in an ‘abstract’ subject like
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mathematics the area will almost inevitably be marginal, because research tends

to neglect unmanageable areas. Above all, the new theory can be expected to give

a sensible analysis and solution to broad general questions, such as fundamental

physical theory gives to the question: What is matter? While such achievements

dominate the outsider’s impression of the subject, they are not uppermost in

the minds of working scientists. Once a theoretical idea has been introduced the

scientist uses it without going back to the considerations which led to its discovery,

particularly if these considerations had a recondite philosophical character. It will

be best if the reader follows the account of Brouwer’s work in a relaxed, detached

spirit.

Constructivity on an elementary level

It is easy to recognize the difference between the kind of mathematics of which

old-fashioned school mathematics is typical and, for instance, the ε-δ methods in

analysis. (A precise formulation of the difference is an object of research here,

not its starting point.) A striking feature of the former is the very limited use

of logic: one has variables, in the first place for integers or rational numbers,

symbols for computation rules (or ‘functions’ in the old-fashioned sense), and

considers equations built up from these symbols. The proofs are limited to two

kinds:

1. recognizing that the computation rules are ‘well-defined’ for the arguments

considered (for instance, addition or multiplication in the case of the inte-

gers);

2. the deduction process itself, which consists in mere substitution and, in the

case of arithmetic, in induction.

Thus (modulo 1) every proof is, in an obvious sense, a schema for computations.

A general proposition such as an identity containing variables is unambiguously

about computations of particular cases (obtained by substituting numerals for the

variables in the identity). The restriction to numerical variables is by no means

essential, as shown by the following example (also considered by Brouwer and de

Loot [1924]):

1. zeros of polynomials with complex coefficients

In modern terms: the zeros are continuous functions of the coefficients for

the usual topology of the complex plane.

Given zn + a1z
n−1 + · · · + an, approximations ξi,p (1 ≤ i ≤ n) to the set

of zeros (ξ1, . . . , ξn), with |ξi − ξi,p| < 2−p, can be computed from suitable

approximations to the coefficients. The coefficients need not be given by a

rule, and certainly need not be rational: the computation applies also if,
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for instance,

ai = qi +
∞∑
r=1

air2
−r

where qi is an integer and the air (r = 1, 2, . . .) are given by a random

sequence of 0 and 1.6 Given qi, Brouwer determines effectively r(p) such

that ξ1,p can be computed from {air}1≤i≤n,1≤r≤r(p).

2. real zeros of polynomials with real coefficients

In modern terms: the existence of a real zero does not depend continuously

on the coefficients.

We consider z2 + a in the neighborhood of a = 0. If a =
∑
ar2
−r (ar = 0

or ar = 1) there is a real zero just in case ∀r(ar = 0). Quite naively, given

a rule for computing the sequence of ar’s there is no reason why one should

be able to decide ∀r(ar = 0). In the case of random sequences the situation

is a little more delicate: by the nature of the case only a finite number of

elements a1, . . . , an of the sequence are available for any computation, so

both ∀r(ar = 0) and the existence of a real zero of z2 + a for the a above

could never be proved (naturally, one could not be sure that ar 6= 0 for

some r either).

To avoid this fine point (which will, however, be taken up immediately)

consider a =
∑
br2
−r where br = 1, 0, or −1. It cannot be excluded that

the random sequence b1, b2, . . . consists only of 0; if all the available values

b1, . . . , bn are 0, a can be > 0 (for instance, if bn+1 = 1 and bn+2 ≥ 0) or ≤ 0

(for instance, if bn+1 = −1): in the former case z2 + a has no real zero, in

the latter it does. This applies to all n (‘however large’, as one says). Thus,

even on a quite elementary understanding of the issue it is clear that there

is no general method for deciding whether a polynomial with coefficients of

the kind considered has real zeros.

Brouwer used a related, but slightly simpler, example to refute the law of

the excluded middle for his interpretation of the logical operations. Let s be a

variable for a random sequence (s1, s2, . . .) of 0’s and 1’s, write A for ∃n(sn = 0)

and consider A or not A, also written A ∨ ¬A , hence

∃n(sn = 0) ∨ ∀m(sm = 1)

and so

∃n∀m(sn = 0 ∨ sm = 1).

If this held for all s, we should have a general method, say f , to compute n

from s. But the value f(s) of f applied to s can depend only on a finite initial

6Brouwer called such sequences freely chosen; reasons for his terminology are considered at

the end of this chapter.
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segment s1, . . . , sp of the sequences, since this is all that is ever available for a

computation. But there can be no such f ; for if f(1) = n0 (where 1 is the sequence

consisting only of 1) and f(1) depends on the first p0 elements of 1, we get a

contradiction by taking the sequence s where sn = 1 for n ≤ max(n0, p0), and

sn = 0 otherwise. This is a refutation of the general law of the excluded middle,

since it is meaningful to ask for constructive operations on random sequences, as

shown by the example on complex zeros.

These matters are so simple that it is a little hard to remember why they cre-

ated excitement; even if one allows for exaggerations to make an impression (see

p. 16) and for people’s habit to attach great significance to their own oversights.

But, quite objectively, the example corrects a widely current misstatement . When

the ε-δ machinery was introduced into analysis, it was said to have reduced the

subject to operations on finite or rational approximations to real numbers. The

example on real zeros shows that, in the strict natural sense of the word, knowl-

edge of such approximations is not sufficient to follow up the operations actually

occurring in analysis. Put more technically, the reduction provided by the ε-δ

formalism does not eliminate the abstract functions involved in the familiar log-

ical operations (but absent from old-fashioned school mathematics). Whatever

one may think of these functions, their essential role in this reduction was not

emphasized.

Constructive logic

What, then, is one to think of these functions (logical operations)? Brouwer

himself rejected them and, in particular, the natural justification of the law of

the excluded middle. To justify the application of this law considered above, we

should simply add:

for any sequence s, ∃n(sn = 0) is well defined (true or false); this has

nothing to do with whether we know how to make the decision.

Brouwer criticized this justification, claiming that a (false) analogy with the finite

case is used; for instance, he would accept the argument if (∃n ≤ n0)(sn = 0)

were substituted for ∃n(sn = 0). Actually his criticism involves a petitio principii

because the essential point here is whether, when such an n0 is given, we apply

the law of the excluded middle because we imagine a process of listing the sn for

n ≤ n0 and deciding sn = 0 or sn = 1. Granted that such a process is possible in

principle, if we do not actually do what is possible, the actual evidence for our

conclusion is elsewhere, and the same evidence may justify the general law too.

If the justification above is accepted, one also accepts the fact that some

mathematics is about situations independent of ourselves. (Or, a little more cau-

tiously, some mathematics concerns concepts about situations which we conceive

as being independent of ourselves). But there still remains the legitimate problem

of developing that part of mathematics which is, so to speak hereditarily, about
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our own constructions and effective decisions; not as a series of ad hoc remarks

(pointing out that this or that proof is effective), but as a systematic theory (ex-

plaining, for instance, why certain prima facie nonconstructive proofs ‘happen’

to be effective).

The straightforward way would be to go back to the elementary kind of con-

structivity described above, and to avoid logical operations altogether which, as

we have just seen, are naturally interpreted in a nonconstructive manner. Brouwer

had the much more original idea of giving a constructive reinterpretation of the

logical operations. Actually, he himself never formulated the interpretation ex-

plicitly; this was done by Heyting (p. 16). But it may fairly be said that the

meaning given to the logical operations is uniquely determined by Brouwer’s in-

dications, if one wants to give such a meaning at all.

The cases of implication and negation are typical. Naturally, since our knowl-

edge is involved, we think of proofs . To prove A → B one needs two things: a

mapping π from proofs to proofs, and a proof (say p0) establishing that if any

p proves A then π(p) proves B; to prove ¬A, we need a proof (say p1) of the

assertion: for any p, p does not prove A (the variable p ranges over the objects

of constructive mathematics). Clearly, this explanation is noncircular only if ‘if

. . . then . . . ’ and ‘not ’ applied to statements of the special form ‘p proves A’ are

essentially simpler than when applied to arbitrary propositions.7 Quite early in

his work ([1924]), Brouwer noted the general validity of:

A→ ¬¬A, ¬A↔ ¬¬¬A, ¬¬(A ∨ ¬A).

Hence (taking A ∨ ¬A for B) ¬¬B → B cannot be generally valid.

Thus, for Brouwer’s interpretation we have to understand proofs and con-

structions involving proofs, while in ‘elementary’ constructivity we only have to

understand proofs of the special kind of proposition asserting that a given rule

terminates. Perhaps, on closer analysis, we shouldn’t be doing mathematics at all

if we really didn’t understand Brouwer’s interpretation. But in the present state

of knowledge it is easier to give an explicit theory for elementary constructivity.

Mathematical practice is full of examples of elementary constructivity, even

if nowadays they are not singled out systematically. In contrast, at least at first

sight, there seems to be nothing recondite to say about constructions on proofs

in general! Of course, Heyting’s formal laws (mentioned on p. 16) implicitly state

properties of proofs, since they are valid for Brouwer’s interpretation (which is

stated in terms of proofs). But so poor was people’s general judgement of the

situation that it came as a great surprise when Gödel [1933] showed that a rich

part of mathematics could be developed from these laws (incidentally, by essential

use of implication or negation).

7One condition is that, for any p and A, we can decide whether or not p proves A, while in

general we cannot decide A; this condition is reasonable because if we do not recognize p as a

proof, it isn’t one for us.
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Perhaps because of all this experience or for intrinsic reasons, nobody seems

ever to have been much tempted to put down false principles in elementary con-

structivity. In contrast, if one actually wants to formulate explicit properties of

proofs, one has to keep one’s wits about one to avoid errors which are (formally)

similar to Russell’s paradox in set theory. This is not surprising, inasmuch as

Russell’s paradox involves some kind of self application and, as seen from the

example of implication, proofs obviously are about themselves (specifically, the

proof p0 is involved in some values of the variable p).8

The last two paragraphs give an idea of the problems mentioned in Part

1 (p. 16). They are not solved. But what we know already in this area is

a substantial contribution to foundations. Also from a purely formal point of

view, Heyting’s systems (which were derived from Brouwer’s interpretation) are

remarkably interesting objects.

Infinite proofs

Naturally, further progress depends to a large extent on clearer knowledge of

possible proofs of a proposition A: the more we know about such proofs, the better

a chance we have to establish A→ B. Brouwer himself peppered his publications

with words that suggest interesting directions of research, such as fully analyzed

or canonical proofs and, at least implicitly, irredundant proofs. Though working

in the context of formal systems, Gentzen (who was familiar with Brouwer’s

ideas) may well have had these ideas in mind when he developed his important

analysis [1935] of derivations without detour or cuts , which dominate current

proof theory. But perhaps the most striking idea was Brouwer’s insistence that

proofs, that is the mental acts involved in establishing a general mathematical

proposition, should be analyzed as a transfinite sequence of steps. This is natural

enough, if we remember how each of us first convinced himself at school of the

validity of the principle of induction:

infer ∀nA(n) if A(0) and ∀n[A(n)→ A(n+ 1)] are proved

or, put differently (if we are accustomed to think of formal systems), if we re-

member how we convinced ourselves that the corresponding formal rule expresses

a valid principle of inference.

Brouwer himself published a proposed analysis of possible proofs only for

one kind of proposition; somewhat paradoxically, for a kind that also occurs in

elementary constructivity, namely for propositions asserting that a rule ρ is well

defined for random sequences. By the fundamental continuity requirement, ρ

must operate on finite initial segments sn = (s1, . . . , sn) of s. Thus ρ can be

8Incidentally, it is one of the peculiarities of constructive logic that, for some A, a natural

formal proof of A goes via proofs of A → B and of (A → B) → A: such a proof of A actually

contains a proof of A→ B.
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described by an operation r on finite sequences c as follows:

r(sn) =

{
0 if the values sn are not sufficient to decide ρ(s)

ρ(s) + 1 otherwise

(+1 for the case in which ρ(s) = 0). Such a rule r satisfies the following conditions:

1. ∀s∃n[r(sn) 6= 0]

2. if c ≺ c′ and r(c) 6= 0 then r(c′) = r(c)

(where c ≺ c′ means that c is a proper initial segment of c′). Conversely, any r

satisfying 1 and 2 determines an operation ρ.

The crucial condition is 1.9 Brouwer [1927] concluded that canonical proofs

of 1 are built up by means of a transfinite succession of particularly simple steps.

Two corollaries follow unquestionably from his conclusion:

3. uniform continuity

For sequences s taking a bounded number of values, ρ is uniformly contin-

uous (pointwise continuity was assumed from the start).

4. bar theorem

For elementary orderings R, two familiar definitions of well -ordering are

equivalent . Specifically:

• well-foundedness

For any countable domain D, if R ⊆ D2 then any descending random

sequence s of elements in D is finite, i.e.

∀s∃n[¬R(sn+1, sn) ∧ (∀m < n)R(sm+1, sm)]

• transfinite induction

For any property P ⊆ D, transfinite induction holds w.r.t. the order

R, i.e.

∀x[(∀y)(R(y, x)→ P (y))→ P (x)]→ ∀xP (x),

where x and y range over D.

Both conclusions are (formally) familiar enough from ordinary mathematics,

the first being an immediate consequence of compactness. Why did Brouwer have

to introduce sophisticated ideas? A glance at the usual proofs of these conclusions

shows that the methods are patently nonconstructive. It is a commonplace that

9By replacing r by r∗, where

r∗(c) =

{
r(c) if (∀c′ ≺ c)(r(c′) = 0)

r(c′′) if c′′ ≺ c ∧ (∀c′ ≺ c′′)(r(c′) = 0) ∧ r(c′′) 6= 0,

2 is automatically satisfied.
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a generalization of a theorem (that is the same formal statement interpreted for

a wider class of structures) may require a much more sophisticated proof; the

analogue applies if the theorem is to be constructively valid.

There may be doubt about Brouwer’s doctrine on the form of canonical proofs

of 1; at least a closer analysis should be possible. But even at the present stage

the doctrine has served a very real purpose in explaining why the operations

that happen to turn up in elementary constructivity are uniformly continuous

(without uniformity being explicitly required): for all constructive methods of

proof so far formulated, proofs of 1 can (demonstrably) be brought to Brouwer’s

normal form.

Hilbert’s formalist foundations

This subject is not only interesting for its important role in Brouwer’s scientific

life, but also for the objective issues involved. The two principal elements of

Hilbert’s scheme are the discovery of formalization, which had been established

by massive case studies, and Hilbert’s own formulation (in the language of com-

binatorial mathematics, which is a quite narrow part of elementary constructive

mathematics) of the autonomy of combinatorial mathematics . What he aimed

to show was that the abstract elements (in particular the logical operations of

nonconstructive mathematics, and the operations on proofs in Brouwer’s inter-

pretation) are not needed for establishing combinatorial theorems. Hilbert’s idea

was very much the same as the widely current idea that an arithmetic theorem

must have an arithmetic proof; or even that a ‘simple’ statement, if it can be

proved at all, must have a simple proof.10

A little more explicitly, Hilbert’s scheme may be described as follows. Ex-

amination of mathematical practice, in particular the reduction to set theory by

Whitehead and Russell, provided a formal system F in which ordinary mathe-

matical reasoning can be described compactly.11 To explain how usual elementary

combinatorial mathematics can be ‘developed’ in F , let PF(c, n) mean that the

sequence of formulae c is a formal derivation in F of n; the property PF , by

the very nature of formal systems, is quite elementary. Now to each elementary

assertion (identity) N , possibly containing variables, is associated a formula n of

F which, for the intended meaning of F , expresses that N is true. Then there is

a function α such that, for the N considered,

N → PF(α(n), n) (2.1)

holds (when N contains no variables, and a slightly more complicated form if it

10It should, however, be noted here that Hilbert, in contrast to Brouwer, believed that non-

constructive notions were needed to make mathematics intelligible.
11The formal rules of F are not, contrary to some passages in Hilbert’s writings, the essentials

of mathematical reasoning; it is not enough to manipulate the formal rules of F , but one must

recognize that they are valid for their intended meaning.
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does). This last statement no longer refers to the interpretation of F . Finally, to

show that the development is sound we must show that, for any c,

PF(c, n)→ N (2.2)

is valid (that is, even if n is formally derived using abstract arguments reflected

in c, N must be true). This last formula, too, is expressed in wholly elementary

terms and so there is at least the possibility of an elementary proof. (If one had

such a proof, and c is a derivation of n in F , one would also have an elementary

proof of N). Being sure that he would find one (for reasonable F ’s) Hilbert, of

course, did not expect to have to analyze the idea of elementary proof: he would

recognize one when he saw it.

Originally for purely technical reasons, Hilbert observed that 2.2 holds if we

can establish the formal consistency of F ; that is if we can show that, for any c,

not PF(c, n0), where n0 is the formula of F expressing 0 = 1. (Hilbert’s observa-

tion uses in an essential way that combinatorial arithmetic can be developed in

F in the sense explained above).

The Hilbert-Brouwer controversy can nowadays be put very simply. As time

went on Hilbert tried to give a much more central significance to consistency; as

if it were the only thing that mattered, and not merely that it was sufficient for

what was called above the autonomy of combinatorial mathematics . But suppose

F is such that, for some true identity N , the corresponding n is not derivable

in F ; then the system obtained from F by adding the formal negation of n is

consistent. Thus a patently false statement is derivable in the extended system,

namely the negation ofN . Brouwer’s main criticism of Hilbert concerned this kind

of inadequacy of the consistency criterion; he never attacked directly the principal

claim of the autonomy of combinatorial mathematics. But, in contrast to Hilbert,

his judgement on the matter was sound: he didn’t believe the autonomy.12

There is a natural modification of Hilbert’s project: to prove 2.2 not necessar-

ily by combinatorial methods, but by other suitable constructive methods. The

principles discovered and developed by Brouwer dominate in this work.

Ideal mathematician

In connection with a specific problem on random sequences, namely (in the no-

tation of p. 20) the proof of

¬∀s[¬¬∃n(sn = 0)→ ∃n(sn = 0)],

12Though Hilbert never explicitly said so, the only really convincing proof of his programme

would have been to show, independently of any particular system F , that any combinatorial

statement can either be proved by combinatorial methods or refuted. Even without closer

analysis of the notion of combinatorial proof, this last conjecture is very implausible in view of

Gödel’s incompleteness theorems.
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Brouwer [1948] considered the case of a thinking subject or ideal mathematician

Σ proving theorems in stages 1, 2, . . . in order ω. Much of this is dubious, as will

be seen below; besides we have nowadays better ways of dealing with his specific

problem. But a few, interesting points are quite clear. Let `n A mean that Σ

has proved A by stage n. Then:

1. (`n A)∨¬(`n A) (for each n, Σ knows if he has proved A or if he has not),

and hence Σ has a well-defined rule r with values 0 or 1 such that

∀n[r(n) = 0↔ ¬(`n A)].

2. (∃n)(`n A)→ A (whether ‘A’ means that Σ has already a proof of A, or will

have a proof, or that somebody has a proof!) and hence, by contrapositive,

¬A→ ¬(∃n)(`n A).

3. A→ ¬¬∃n(`n A) (if somebody has a proof there is no mathematical reason

why Σ should not have one; for the other meanings even A → ∃n(`n A)

can be asserted) and hence, by contrapositive and the triple negation law,

¬∃n(`n A)→ ¬A.

These conditions are clearly sufficient to conclude

∃r(∀n[r(n) = 0]↔ ¬A).

This last statement no longer contains the relation `n, and

∀n[r(n) = 0]↔ ¬A

is the property R (of r) mentioned on p. 18. The proposition A is quite arbitrary:

if propositions containing quantifiers over rules are included, the axiom above

implies quite a strong form of comprehension principle. Once again, as in the

case of the bar theorem, we find a familiar formal statement with a quite different

justification.

The whole idea has a certain air of unreality, of playing with words. This

impression is justified in so far as it is not clear what is meant by a stage, or

whether the mathematician is supposed to prove one or infinitely many theorems

at stage n; also, there is no clear reason to restrict oneself to ω stages when the

canonical proofs on p. 24 consist of a transfinite sequence. But probably the actual

reason behind the impression is that the argument is too ‘easy’; that to get ‘real’

knowledge of mathematical reasoning one should study (it would be said) the

physics and chemistry of the nervous system, instead of the ideal mathematician.

This is no more convincing than having the founders of hydrodynamics study

the atomic structure of matter before setting down equations of continuity and
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other properties of ideal fluids ; equations which give detailed quantitative results

derived from quite general qualitative assumptions about, that is from impressions

of, the world. Indeed, even after one knows atomic theory one rarely uses it

to understand the motion of fluids around us. Similarly, there is at present

no reason to reject the possibility of a useful mathematical theory of the ideal

mathematician.

Looking back

Certainly, if one wants to know at all about the constructive aspects of mathe-

matics, Brouwer’s work has been invaluable. Instead of bits and pieces of isolated

‘constructivizations’ one has a more or less coherent theory, made systematic by

a suitably abstract conception of constructive operations. Particularly in connec-

tion with the principles of proof and definition by transfinite induction, Brouwer’s

constructive logic explains why formally minor variants completely alter the con-

structive aspects. Not surprisingly, Heyting’s formal rules have interesting appli-

cations beyond the intended one. Roughly speaking, whenever mathematicians

loosely speak of constructions (for instance, if they mean no more than some

kind of explicit definition), there is a reason for their informal choice of words;

the ‘logic’ of their concepts, as one says, is the logic of constructions in the proper

sense of the word; they satisfy Heyting’s rules. This is consistent with the re-

mark on p. 16, that these rules use only very simple properties of the notion of

construction in its strict sense.

Is mathematics about our own constructions or is it about

an external reality?

It would have been idle to go into the ambiguities referred to on p. 12, before

analyzing and developing the part of mathematics which is about our own con-

structions. But since, largely through the work of Brouwer, substantial progress

has been made in this subject, it is now worth while to go into some distinctions.

First of all, some mathematics treats concepts which quite plainly are intended

to be about an external reality, about sets and random sequences given, for

example, by throwing dice. (Only if one thinks of them as sequences freely chosen

by a ‘thinking’ subject are they possibly our own constructions.) Inasmuch as we

understand these concepts and can reason about them, not all mathematics is

about concepts which refer, hereditarily, to our own constructions. It is not

relevant here whether an actual reality is involved or possibilities.

Second, since mathematics is constantly used in the description of nature, it

would be splitting hairs to deny that a good deal of mathematics is also about

actual external reality; not only finite mathematics used in stating results of

measurements, but the highly abstract concepts used in formulating theoretical

laws which connect such measurements.
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But a real issue remains:

Can the mathematics that presents itself to us as being about an

external reality be construed as being about our own constructions?

Or, as one says, can it be accounted for in terms of our own construc-

tions?

Here the answer is negative (at the present stage of the development of con-

structive mathematics) if one means all principles of nonconstructive mathematics

so far formulated . For example, we do not have a constructive consistency proof

for the formal principles of analysis, and this would be a minimum requirement

for a positive answer, since those principles are evidently valid for the (noncon-

structive) concepts of the set of natural numbers and of its power set .

On the other hand (at the present stage of the development of ordinary mathe-

matics) the bulk of mathematical practice can indeed be construed constructively,

if Brouwer’s bar theorem is included in the latter. Actual practice uses nothing

like all the principles of nonconstructive mathematics so far formulated. Nat-

urally the interpretation is not on a purely formal level, but the difference in

meaning between the constructive and nonconstructive logical operations must

be taken into account.



Chapter 3

Brouwer’s

‘Cambridge Lectures

on Intuitionism’

This sad little book recalls vividly the pathetic spectacle of the original lectures,

a couple of which I attended some 45 years ago. Even for a beginner in logic the

lack of movement in Brouwer’s thought, on the mathematics of the continuum in

terms of choice sequences, was depressing. The most obvious novelty, compared

to his publications in the mid-twenties, was a torrent of even more bizarre and

stilted terminology than in the original German papers. Most significantly, the

lectures do not benefit from the obviously relevant logical work in the thirties;

neither for improving Brouwer’s own ideas, nor by using them to enrich logic.1 For

a less parochial, not purely logical view of Brouwer’s topic, progress in algebraic

topology in the thirties would also be relevant. Brouwer’s neglect of the literature

was certainly in harmony with his idea that he was ‘revolutionizing’ the subject,

not simply commenting on a particular aspect.

Two of the would-be revolutionary tactics which are more prominent in the

lectures than in the twenties concern formal counter examples:

1. a more frequent use of socalled fleeing properties

2. references to the creative subject , so to speak, ‘the’ idealized mathematician.

The counter examples (to classical analysis) are purely formal, since the meaning

of the logical operations and the ranges of the quantifiers used by Brouwer are

different.

0Originally published in Canadian Philosophical Reviews, 2 (1982) 249–251.
1Even before the lectures Kleene had stressed relations to recursion theory in print. More

pertinent still is the notion of cut-free proof discovered by Gentzen in the early thirties: applied

to Σ0
1-theorems with parameters for choice sequences, it gives a very satisfactory formal version

of Brouwer’s idea of a ‘fully analyzed proof’ of well-foundedness, taking the mystery out of the

business about the socalled bar theorem.

30
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As to 1, the idea involved is familiar enough from (unquestionably relevant)

continuity requirements which ensure that small uncertainties in the data, defined

by fleeing properties, do not spoil the outcome of deductions or operations. (There

is a positive side to this matter which will be taken up below).

As to 2, it would indeed be a bad philosophical error to reject out of hand the

very mention of the creative subject (as a topic for mathematical theory, without

recourse to quantitative ‘empirical’ study). The error would be the failure to

see the place of idealizations in the arsenal of scientific methods; plausible, but

not very successful ones like ideal fluids, and spectacular ones like Einstein’s

observer viewing the world while traveling with the speed of light. In fact, Gödel’s

second incompleteness theorem tells us something not altogether trivial about

formalized in some system or are discovered to do so, perhaps unconsciously.

(There is still plenty of room for using creativity or ingenuity when selecting

sensible theorems and efficient proofs among all legitimate ones). But equally it

would be a scientific, if not philosophical, error to be paralyzed by awe before

such limited successes; not to ask oneself just how much we can expect from

(the mere concept of) the creative subject, without a realistic look at the actual

possibilities of the mathematical imagination.2

Experience has shown that just those people who have the kind of logical

sensibility needed to see and develop fruitful points of the lectures under con-

sideration, are simply put off by Brouwer’s own assessment of their place in the

scheme of things; for example, the pretentious (and hence simpleminded, not

merely simple!) inventory of inner experience on p. 90, beginning with ‘twoity,

giving rise [first] to invariable unity, and [then] to threeity.’ This sort of jargon

recalls the less convincing products of the Wisdom of the East. Brouwer tells us

here about as much about the processes of mathematical reasoning as does (say)

the Kamasutra, with its elephant women and rabbit men, about the processes of

evolution by sexual selection.

The pity of it all is that the theory of choice sequences answers a perfectly

good question, implicit already in Aristotle’s Metaphysica Γ 7, 1012a, 21–4:

Is there anything like ordinary logic which applies to propositions

about incompletely defined terms?

The theory gives an elegant positive answer. Of course, elegance is no guaran-

tee for relevance. It is a separate question whether, scientifically, we do better

by paraphrasing the incompletely defined terms (here: by means of continuity

requirements). But within the logical tradition Aristotle’s question has, rather

obviously, a permanent place.3

2Ignoring this principal limitation of the concept the editor complains on p. ix that Brouwer

uses it only for weak, not strong counter examples!
3Remark . In the broad sense of the word, it would be a philosophical error to overlook the

parallel between Aristotle’s question and such algebraic questions as:
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For the record, readers are warned that the editor’s historical interpretations

(on pp. vii-ix), with their air of judicious scholarship, are no more perceptive

than most of currently popular history of mathematics; in particular, not even

perceptive enough to see the exceptional degree of sensibility needed to comment

at all significantly on such exceptional talents as Brouwer. What can sometimes

be done seems to me very well illustrated by Newman ([1969], p. 53): he, who

incidentally knew this subject well, answered (without asking) the question why

Brouwer did not pursue n-dimensional topology after he had opened up that area.

Newman noted that the kind of tools objectively needed for further progress in

higher dimensions were consistently neglected in Brouwer’s own work even where

they were available. Knowing as little as we do about mathematical tempera-

ments, one can hardly be sure that Brouwer’s neglect was a basic element of his

temperament. It is just a simple historical fact which had struck Newman. And

he was able to use it to help us remember a significant mathematical fact about

the character of n-dimensional topology. The beauty of this literary device is, to

me, that allows us to think imaginatively about matters of temperament without

tempting us into ‘theories’ out of all proportion to the data. Of course, we want

to think about those matters. After all, they are of wider interest, than topology

or choice sequences.

For which dimensions do we have anything like ordinary algebra?

(with the famous answer involving the magic numbers 1,2,4,8). Here again, a paraphrase (of

vectors in terms of coordinates) is possible. The philosophical discovery is that, contrary to

first impressions, both questions admit natural and precise formulations at all (and convincing

answers).



Chapter 4

Some Corresponding High Spots

of Early Classical and

Intuitionistic Logic

The periods meant are roughly 1880-1930 for classical logic, and 1930-1960 for

intuitionistic logic. The ‘correspondence’ concerns:

• completeness (tacitly, for intended meanings)

• concocted (or, more reasonably, discovered) meanings

• relevance of intended and concocted meanings.

Readers are advised to regard the material as an exposition of the logical topics

above, leavened a little with names and dates for so-called human interest; and

not as history of logic. At the end there is a brief section on uses and abuses of

such material in the notorious history of ideas, in line with the reservations of

experienced historians about this subject.

Completeness with respect to intended meanings

The question of completeness is as old as the hills or, more precisely, as modern

logic. Those coming from the philosophical tradition immediately saw all sorts of

difficulties, and engaged in longwinded ‘analyses’ of the question (in contrast to

the scientific tradition, which is cavalier towards its question, but tests its answers

and their corollaries with a vengeance):

• How can we ask questions about the language in which we have our intel-

lectual being as it were?

0Originally published in Gödel remembered , Weingartner and Schmettered eds., Bibliopolis,

1987, pp. 132–142, as Appendix II to ‘Gödel’s excursions into intuitionistic logic’.
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• Do we have our intellectual being in elementary logical language?

Real completeness of a calculus would require that it ‘embraces’ (that is, formal-

izes) all valid methods of proof (cf. p. 91 of Chapter 6, with the reminder about

the mind-boggling totality of all proofs of 0 = 0). The conclusion is not to bother

since, if that’s ‘real’ completeness, it just does not lend itself to rewarding study.

Granted that the word ‘completeness’ is catchy, just where is the property

relevant? After all, if it is considered at all, one must understand both the meaning

intended and the calculus considered. In which situations is it appropriate to

combine the two?

For example, I happen to be familiar both with the model-theoretic (intended)

meaning of classical predicate logic and quite a number of its formalizations.

Around 1960 I asked myself: What are we left with it we forget about the latter

(for the time being)? My answer was the text Kreisel and Krivine [1966] (cf. the

long introduction to the second English or to the German translation).

Other people have since tried out expositions of intuitionistic logic using pri-

marily Kripke models, one of the concocted meanings of intuitionistic logic (in-

cidentally, not considered below). But since formal rules are mentioned (for

example, in Gabbay [1981]), it is not altogether clear what we are left with if we

forget them altogether in intuitionistic logic.

This matter is of course not settled by Kreisel and Krivine, since the relative

role of an intended meaning and one or other of its formalizations will not be the

same in all branches of logic at all stages of their development:

1. As long as the relevance of any (in particular, the intended) meaning is not

tested, it may be scientifically frivolous to consider the completeness of a

calculus for it.

But for the philosophical tradition it is perfectly proper to investigate the

‘nature’ of the matter; specifically, how much (or, rather, how little) need

be known of that intended meaning to settle completeness; cf. Chapter 11.

2. For classical logic, and also for intuitionistic logic (but particularly in the

case of propositions about lawless sequences), I have the impression that

the intended meanings have so far been almost indispensable sources of

conjectures and cross checks, even when the calculus was the primary object

of study.

But it should also be remembered that interpolation and other results were

first established proof-theoretically, and conjectured (by Craig) in connec-

tion with a so-called empiricist philosophy of science (which eliminates from

the theoretical premise abstract notions not occurring in the empirical con-

sequences).

Finally, it should also be remembered that in ordinary algebra formal con-

siderations preceded interpretations in such cases as the
√
−1 or quater-



High Spots of Early Classical and Intuitionistic Logic 35

nions, but presumably not with matrix multiplication (corresponding to

the product of coordinate transformations).

As to a ‘correspondence’ between completeness for classical and intuitionistic

logic, the proofs for the intended meanings came at the end of the periods con-

sidered (with incompleteness for predicate calculus of intuitionistic logic, modulo

Church’s Thesis, in the 60’s).

The most obvious difference was that the expositions for intuitionistic logic

benefitted generally from experience with the classical case, and from such notions

as ‘basis’ for a more concise formulations.

Another difference is that the properties of the propositional and first order

parts of intuitionistic logic are objectively more complex than in the classical

case.

Some early concocted meanings

By tradition, the requirement on the concocted meanings is that they should

satisfy the particular laws that happen to have been formulated for the (originally)

intended meanings.

This tradition is dominated by such ideals as rational reconstruction; for ex-

ample, on the ground that the original meaning is not intelligible. Those of us

not limited by this particular intellectual handicap find the ideal ‘unintelligible’ !

After all, to reword 2 above, if the intended meaning is in doubt so are the laws

in question, unless they have been tested in some other way. The standard claim

that they represent common usage is doubly suspect, since the latter:

• differs from all formal systems (for example, with respect to natural sense;

cf. p. 232 of Chapter 10)

• is rarely obviously optimal for reasoning well.

Be that as it may, here are some items produced by that tradition.

We consider first concocted meanings of classical logic in constructivist terms:

• Skolem’s second proof of Löwenheim’s theorem

Skolem’s work [1922] comes under the heading ‘constructivity’ in the sense

that attention is given to definability (in particular, arithmetic definability).

So the ‘concocted’ meaning is that of validity for arithmetically defined

structures (over ω).

Viewed this way, there is a point to the otherwise quite silly stress by Skolem

on ‘avoiding the axioms of choice’; by showing that a superstition about the

latter is involved. Specifically, the ‘essential’ aspect of the axiom of choice

was widely seen in the fact that the other (existential) axioms of set theory

implied uniqueness (and hence explicit definability) of the sets asserted to
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exist. This overlooks the fact that not even pure (classical) logic preserves

this property.1

• Herbrand’s théorème fondamental

Herbrand’s champs finis (which are suitable sequences of expanding finite

structures) are, almost as they stand, a paraphrase of logical validity; for

example, in terms of an infinite Herbrand disjunction.2

Herbrand mentioned in his thesis that he knew how to deduce the ordinary

completeness theorem from his analysis, and there is no reason to doubt

this. He also added that the ordinary notion of validity was not precise

enough. Here he made a philosophical mistake.

The question is not ‘why’ Herbrand failed to prove the completeness the-

orem, but which kind of mistake(s) he made. The feeble terminology

théorème fondamental fits the feeble uses he made of the theorem; by prov-

ing some eminently forgettable prefix classes of predicate logic to be decid-

able. Almost 50 years later Dreben and Goldfarb [1979], quite touchingly,

continued this line; though some really rewarding (and, of course, quite dif-

ferent) areas had been found, at least 30 years earlier, to which Herbrand’s

théorème is relevant.

If anything, the point above is enhanced by the occasional success of turning

the line through 180◦; for example, in undecidability results on certain prefix

classes (without any use of Herbrand’s Theorem); cf. Goldfarb [1984].

In the case of intuitionistic logic, concocted meanings (in model-theoretic

terms) appeared fairly soon after Heyting’s formalization, while in the classical

case they had come more slowly (as noted above, completeness for the intended

meaning came instead at the end of the period considered, as in the classical

case).

The pattern is general: different authors were struck by (one of the relatively

many) different elements of the (wild) rhetoric on intuitionistic logic (cf. p. 215

of Chapter 10). Here are some samples:

• There was the alleged issue between the truth and provability . This is

evidently reflected in Gödel’s modal meaning (cf. p. 223 of Chapter 10).

Much the same applies to Tarski’s calculus of systems , where provability

(or consequence) from single axioms in classical predicate logic is meant; cf.

also Gabbay’s update ([1976]) in terms of Post systems.

1For example, the application of the law of excluded middle to ∃x(x ∈ L): ∃x∀y(x ∈ L∨y 6∈
L). Cf. also the failure of ∃-theorems in some ‘intuitionistic’ set theories.

2Cf. the notion of interpretation in Kreisel [1951] and [1952a] and, in particular, of the

no-counterexample-interpretation for a more compact formulation by use of function variables

(avoided by Herbrand for the sake of - his particular version of - finitist ideology).

Incidentally, the meaning assigned is not suitable for formulas that are not valid, in the sense

that such formulas do not generally imply their own Herbrand disjunction; [∞].
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• Another catchy element of the rhetoric involved choice sequences , and such

hot news as: all functions on the reals, tacitly thought of as given by choice

sequences, are continuous. (Pity that Brouwer never thought of the variant:

all mappings between spaces are topological!)

Tarski’s topological interpretation certainly incorporates some features of

that element. More precisely, as we should say now, not so much of the

choice sequences Brouwer had in mind, but of lawless sequences (which

lend themselves to a smoother theory).

• Perhaps the best known concocted meaning is recursive realizability and its

variants; in the first place with stress on the constructivity of operations,

not of proofs.

Kleene was (consciously) most taken by a felicitous formulation of Hilbert

about implication involving partial information. As far as content is con-

cerned, this is barely distinguishable from formulations by Brouwer and

Heyting (and not even appropriate for the finitist case, Hilbert’s avowed

concern, where the formulas A, B are Π0
1 and A → B is realized by a to-

tal recursive functions). But Hilbert’s wording fits the need to use partial

recursive functions for realizing the logical laws.

Stretching matters just a shade perhaps, one might look at the enrichment of

realizations by formal derivability in Kleene’s q- realizability , and especially

by formal derivations in Beeson’s fp- realizability some 30 years later. Both

reflect the concern of (some of) the rhetoric with proofs over and above

definitions; specifically, proofs of the fact that the definitions do what they

are supposed to do.

In summary, here we have examples of exploiting an intended meaning without

unduly meticulous attention to it. This style is clearly appropriate, if one is

convinced that the details of the intended meaning do not serve the intended

purposes, or that the latter are misguided.

Philosophical assessment of intended and concocted mean-

ings

First of all, generalization (the most commonplace activity in mathematics) is a

discovery of a new meaning (among other things). For example,

a2 − b2 = (a+ b)(a− b)

may originally have been intended for a and b ranging over Z, but is discovered

to be valid for all commutative rings.

Secondly, the philosophical tradition of working up dramatic conflicts , or at

least puzzles (here, concerning the meanings mentioned), is quite misguided;
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• There is no general conflict, but there is a very real problem:

Where is which of these meanings, if any, relevant?

• There is no puzzle; for example, about different meanings being equivalent

(in the here usual sense of having the same set of valid sentences in the

languages considered), since those languages obviously do not exhaust the

possibilities of talking about those meanings.

The tradition is also misguided (unless it simply wants to preserve the status quo)

in a more practical sense, since those antics about conflicts and puzzles attract

philosophical cripples; for example, among (both gifted and other) logicians.

It is equally misguided to dub the choice between those equivalent mean-

ings a mere matter of convenience, compared to the allegedly primary matter

of adequacy-in-principle. This is generally simply not good enough for effective

knowledge; cf. 1–3 below, or consider the choice between walking and taking a

car to, say, the nearest source of food; if the latter is 1 km away the choice

may be a matter of convenience, if 100 it is a matter of survival. So much for

adequacy-in-principle.

The next items, though still general, concern the intended meanings of classi-

cal and intuitionistic logic. Quite simply, the usual logical languages express very

little about those meanings.

Thus nothing about the power set construction even enters into the explana-

tion of the (classical) meaning of first order formulas, although that construction

with its iteration may fairly be said to be the heart of the subject of sets, in

terms of which the set-theoretic (alias model-theoretic) meaning is defined. At

best, knowledge of that construction may be used in logically impure proofs of

logical validity.

In the case of intuitionistic logic, the intended meaning involves constructions ,

with their (decidable) properties and proofs of assertions that any (that is, an

arbitrary) construction has some given property. But, for logic, the principal

topic is the relation between a proof and the assertion proved. Realistically

speaking, this relation is just too meager to be rewarding (or even to save one

from oversights like paradoxes, because it just does not provide enough cross

checks.) Taken literally, it leaves no room at all for more delicate ideas about

proofs such as (those on p. 92 of Chapter 6, nor even for) Brouwer’s about ‘fully

analysed’ proofs (and their extension in Gentzen’s proofs ‘without detour’). If

these ideas are to be pursued in a purely logical context at all, some concocted

meaning is necessary (for example, so-called operational semantics). And then

at least the scientifically experienced will ask whether the most fruitful aspects

of those ideas are relevant to logical contexts at all. It would be pure ideology to

assume this just because the word ‘logic’ is glamorous.

To conclude, here are some specific examples (chosen at random) that are

related to the generalities above:
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1. Elements from the constructivist tradition (especially, the part concerned

with definability) are practically unavoidable even in classical logic, as soon

as the languages considered are restricted (for example, to finite formulas).

Herbrand’s pre-occupations described in 2 on p. 36 have turned out to be

useful even when applied to Σ1 formulas; admittedly, once stated, the form

of a Herbrand disjunction for ∃xA:

A[x/t1] ∨ · · · ∨ A[x/tn]

is memorable without (the no-counterexample) interpretation (let alone,

the more tortuous champs finis).

Recently [∞] applications of those ideas to Σ2 formulas have been found,

where already the wording of the Herbrand disjunctions benefits from func-

tional interpretations.3

2. It is a common place that many formal results about intuitionistic logic have

been obtained by use of concocted meanings (cf. the previous subsection).

But it is worth stressing that also the (first) completeness proofs for the

intended meaning used the topological interpretation concocted by Tarski

(for an exposition using a meaning concocted by Kripke, cf. Burgess [1981]).

The proof for the intended meaning required two further steps.

First, the observation that, instead of ‘associating’ an open subset Ap of

a certain topological space S with the propositional symbol p, the latter

can be literally interpreted (that is, replaced) by a proposition Ap with

parameter α over S.

Secondly, if S is chosen as a (topological) space of lawless sequences α, then

Tarski’s ‘association’ is proved to respect the laws of lawless sequences for

propositional operators ◦:

α ∈ Ap◦q ⇔ (α ∈ Ap) ◦ (α ∈ Aq).

In short, far from having a ‘conflict’ between the concocted and intended

meanings, one has a proof of equivalence in the relevant context.

3. This is a speculation on a possible use of the many concocted meanings for

formal intuitionistic logic (in accordance with the rhetoric about formal laws

not determining meaning, but at odds with the wailing about this truism).

3Once the wording is available, model theory is quite adequate to infer the validity of some

Herbrand disjunction from the validity of the formula in question. Herbrand himself aimed at,

but did not achieve himself, quantitative estimates for a suitable disjunction from richer data

(namely, the validity of the formula enriched by a suitable proof).
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It is addressed to those who wonder whether P = NP , and believe that the

question is ‘logical’.4

Now, with each concocted meaning of intuitionistic logic comes a whole

body of knowledge: of the concepts used to define that meaning. So there

is a chance of finding a problem about intuitionistic logic that can be proved

NP -complete from knowledge of one concocted meaning, and decided to be

polynomial (or not) from knowledge of another.

Not the similarities between different meanings, so dear to logicians’ hearts,

are useful here, but differences .

Warnings against uses for history or methodology

It would be unrealistic to rely on the disclaimer at the beginning of this chapter

as a safeguard against misinterpretations of the material above.

• On the one hand there are stories about individuals , often chronologically

ordered; the sort of thing associated with history .

• On the other hand there are subdivisions , and subdivisions within them,

associated with so-called scholarly history ; as opposed to, say, historical

novels or to pep talks using historical illustrations (practiced by politicians

in all spheres of life).

In the long run, any attempt to use the snippets in this Chapter as a con-

ventional kind of history would draw attention away from the more modest, but

surely worthwhile, uses actually made of them here. The reason is by no means

marginal. It will now be considered at leisure.

Without exaggeration, our ordinary view of men and their doings is extremely

primitive. Sure, all the world complains about lack of ‘progress’ in our under-

standing of human nature and human society, compared to progress in the natural

sciences.

• Some intrinsic obstacles are similar to those found in the uphill fight of

natural history (cf. p. 233 of Chapter 10).

• But the overwhelming obstacle is probably the obstinacy with which one

clings to those aspects that strike our untutored attention. In fact, literally

to the Wisdom of the Ancients ; here, to the Bible with its list of sins

(another word for: principal human motives).

If somebody comes along and selects one sin as the dominant force, this

is regarded as an intellectual revolution (one used to think of Marx and

4For example, as opposed to: belonging to transcendence theory; here one would look for

some familiar real number with, say, a decimal expansion shown to be both NP -complete and

in P or not (as the case may be).



High Spots of Early Classical and Intuitionistic Logic 41

Freud, but one might as well throw in the analogue to purity of method).5

Just imagine one had made a virtue of clinging to ideas of the same vintage

about the world around us! Surely, there is room for a dialogue in which

honest Simplicio tells us how he looks at human phenomena, even if he only

says what everybody (still) says.

Now, of course we live with this sort of thing, having intellectual and other

reflexes that operate independently of traditional commentaries. What the so-

called history of ideas adds to this mess is the pretense that painstaking scholarly

documentation (comparable to the most simpleminded painstaking classifications

in natural history, cf. p. 233 of Chapter 10) improves matters. On the contrary,

one adds to the simple-minded view a crass imbalance between the degree of

accuracy implicit in the claims and that of the data.

Superficially, all this applies to all history. Not so; gifted historians have

discovered (either, again, by exercise of sound intellectual reflexes or, occasion-

ally, by following a ‘philosophy’ of history) aspects that do lend themselves to

rewarding study. Most spectacularly perhaps in archaeology, obviously related to

history (even if separated, partly for ideological reasons); in particular, there are

uses of archaeology in connection with Babylonian mathematics

In accordance with common experience (so to speak, as a lesson of history),

a subject like the history of ideas will be populated by people who are prepared

to make little progress provided only few others make more; in particular, those

one-eyed who have such a good time in the kingdom of the blind. Besides, it is

a pleasant subject. Even if no new knowledge results, at least one is paid for

reading material by gifted people; comparable to natural historians who spend

their time looking at pretty butterflies or flowers, instead of bacteria looked at in

scientific genetics.

Far be it from me to claim that molecular biology is the sole key to all bio-

logical (including human) phenomena. But I at least am grateful to have lived

through a period when the conventional threadbare literature on human nature

in so-called social sciences was replaced by a fresh kind of speculation, even if the

latter is often only a jeu d’esprit.6

To conclude, it is salutary to remember one of the great successes of the

natural sciences in the area of historical research. Here I shall take the history

of the planets , since most readers will already have thought of the (origin and)

history of species on earth. Naturally, Simplicio’s future dialogue (mentioned

above) would tell us that planets are not conscious beings who intend to leave a

record of their doings (and he will feel that he has made a profound and, above

5Of course, genuine revolutions came about when this kind of rehash was presented with

uncommon conviction in uncommon circumstances and, perhaps above all, with uncommon

political (including literary) skill.
6Cf. p. 128 of Chapter 6 for a new twist on Genesis by Crick and Orgel. It concerns history,

but not the history of ideas.
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all, decisive point). It never occurs to him even to try and test how much help

this is.

There are two aspects to the history of the planets:

1. The history of their outward behaviour (in other words, their motion). This

admits, as one says, astronomical precision.7

2. The history of their inner life (in particular, their chemical evolution). This

not only can be, but has been asked and speculated about for a very long

time. But it is fair to say that without a rather advanced knowledge of

subatomic processes one had not even reached a threshold for informed

discussion.

The other great success, the history of species on earth, seems (as far as I am

competent to judge) more delicate.

• No doubt some evolutionary phenomena (the spread of epidemics, or devel-

opment of resistance to drugs in bacteria) lend themselves to a theoretical

study comparable to 1; that is, using little more than Mendel’s laws and

more or less sophisticated mathematics (as in particle or continuum me-

chanics).

• But knowledge comparable to 2 (on the modecular, if not subatomic, level)

is liable to be relevant to the evolution of outward forms, even if only quite

rough approximations are wanted.

For example, just how many one-step mutations are needed for some mor-

phological change? The answer would seem essential for giving an even

approximately sensible meaning to ‘missing link’.

Readers are asked to forgive the traces of ‘metaphysical anger’ that they

may find disturbing in this subsection. But what more do those glib would-be

historians (here, of logic) think they know of the relevant intellectual mechanisms

than about mutations?

7Actually, not their apparent motion (so to speak, what they say literally), but the motion

corrected for parallax (by Tycho Brahe), since only the latter lends itself to theoretical analysis.
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Chapter 5

Gödel’s Election to the Royal

Society

The following statement in support of Kurt Gödel for Foreign Membership of the

Royal Society was submitted November 22, 1966, and Gödel’s was elected April

25, 1968. His letter (originally in German) is of May 1, 1968.

Statement for the Royal Society

Far more successfully than anyone else, past or present, Gödel has been able

to draw sharp consequences from philosophical conceptions of mathematics, and

then to decide between rival views. Since these decisions involved detailed mathe-

matical analysis, his contribution is just the sort of things that the R.S. is enjoined

by its statute to promote.

The methods introduced by him for the purposes described above have turned

out to be of intrinsic mathematical interest, and have developed into flourishing

new branches of mathematical logic.

Formalism (in the sense of Hilbert), which holds that all mathematical rea-

soning can be ‘reduced’ to purely mathematical operations on symbols, was sup-

ported by the famous ‘formalization of mathematics’ in Principia Mathematica:

this empirical discovery provided a formal language in which known mathematics

could be expressed, and formal rules by which all theorems could be formally de-

rived. Gödel was the first to analyze this precisely. He established it theoretically

for a particular domain of mathematics, namely traditional ‘logical’ reasoning

(concerning truth functions and quantifiers), in his completeness theorem (1930).

In contrast, by his incompleteness theorem (1931), the view is false for reasoning

concerning specific mathematical notions such as the natural numbers; in partic-

ular, he constructed a true statement, built up logically from equations between

polynomials with variables for natural numbers, that cannot be derived by the

formal rules of Principia. He indicated that the same method applied generally

to formal systems (and this was proved as soon as the notion of formal system was

44
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analyzed precisely by Turing). This last result refutes the formalist conception

as originally understood, e.g., by Hilbert. The methods used in the two theorems

are essential for, respectively, model theory (i.e. the theory of general axiomatic

systems) and recursion theory (i.e. the theory of mechanical operations).

Predicative foundations of set theory (associated with Poincaré and Russell):

roughly speaking, on this conception one restricts oneself to sets that can be

defined from ‘previously introduced’ sets. Gödel made this somewhat elusive

idea precise by means of his notion of constructible set , and showed that the usual

formal axioms of set theory are satisfied by the constructible sets (although these

axioms were originally derived by Zermelo for another, namely Cantor’s ‘realist’,

conception of set). Gödel also verified that the constructible sets satisfy the

axiom of choice, the generalized continuum hypothesis, and many old conjectures

of descriptive set theory. As a corollary he obtained the (relative) consistency of

the latter statements with the usual axioms of set theory.

The recent work of Cohen for which he received one of the Fields Medals in

1966 is, as he himself emphasizes, a delicate mathematical refinement of Gödel’s

theory of constructible sets.

When looking for a crucial test between predicative and realist foundations of

set theory Gödel made two highly original suggestions, first in 1948.

1. The restriction to constructible sets may be inconsistent (with the usual

axioms), when one adds socalled strong axioms of infinity which are valid

for the more general notion of set (these are axioms asserting the existence

of very large cardinals).

2. These axioms of infinity may be needed to decide open questions in ordi-

nary analysis, and perhaps even in ordinary arithmetic. (The proof of the

incompleteness theorem above shows that such axioms can be needed to

decide some problems formulated in the language of arithmetic; but the

problem so obtained is not of ordinary number theoretic interest.)

These conjectures dominate current research; 1 is supported by work of Scott and

Rowbottom, 2 by results of Solovay on the definition of non-measurable sets of

real numbers (in the sense of Lebesgue).

Gödel’s researches on constructive foundations , though less conclusive, con-

stitute some of the principal sources in the subject. Earlier and more clearly then

anyone else, he realized the positive (non-restrictive) side of socalled intuition-

ism, which takes ‘constructivity’ in its most general sense. About 35 years ago

he showed how to reduce classical arithmetic and elementary analysis to intu-

itionistic principles by means of a suitable ‘translation’, and more recently (10

years ago) he published a new ‘functorial’ interpretation of intuitionistic logical

operations. The latter is widely used in recent work on constructive foundations

of classical analysis.
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A more isolated recent result of his is this: the existing rules for intuitionistic

logic are incomplete (in contrast to his completeness theorem above for non-

constructive logic).

Ever since Gödel’s first paper 35 years ago, his influence on all parts of math-

ematical logic has been, and continues to be, most powerful, and wholly fruitful.

Gödel’s reply

Dear Professor Kreisel,

Many thanks for sending me your statement for the Royal Society. In my

view it is an excellent presentation of essential points. What I like particularly

is that you emphasize the connection between philosophical opinions and precise

mathematical questions, a connection which comes out in my publications. There

are only a few places where I could suggest improvements in detail.

1. In connection with the refutation of formalism it could be mentioned (before

the last sentence) that, by my results, consistency proofs by elementary-

combinatorial means (in the sense of Hilbert) are demonstrably impossible.

2. As I showed later (cf. The Undecidable, ed. by M. Davis, N.Y., 1965, p.

73) the undecidable proposition is actually an extremely simple theorem

concerning one diophantine equation.

3. The identification of ‘predicative’ and ‘constructible’ seems to me justi-

fied only if one can prove some kind of accessibility (from below) of all

constructible sets (say, of natural numbers). Is this possible by means of

Rowbottom results? If not, the relation between these two concepts should

be formulated a little more cautiously; for example, as an expectation (by

talking of ‘predicative in its most general sense’; better still: ‘in a general-

ized sense’).

4. I should not say that Cohen’s work is merely a ‘refinement’ of the theory

of constructible sets (even if his work starts out from that theory). I believe

you are right that Cohen has said something of this kind (even though I

could not say this for certain); but this is in my view unfounded modesty.

5. I have not proved the incompleteness of intuitionistic logic. After all, I have

not published anything on it, and rather conjectured the opposite. At most

one could say that this result was achieved in pursuit of a suggestion on my

side.1

With best regards, also from my wife.

Yours

Kurt Gödel.
1This refers to the proof(s) of incompleteness I published in the ‘60s. (G.K.)
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Further developments

There is a detailed reply (by me) dated May 16, with the motto: Above all I

wanted to avoid unnecessary doubts; now one can concentrate on precision.

There is a reply (by Gödel) dated June 9, which goes on forever. The following

extracts may be of interest:

1. Finally, I should like to add that, on second reading I have found yet an-

other passage in your statement that does not correspond perfectly to the

historical facts. Originally I was not convinced that my results were valid

for all possible formal systems. The passage in question should therefore

run roughly as follows:

He showed that his method is applicable (with the same result) to any formal

system satisfying certain very general assumptions (and what he used in the

proof turned out to hold for any formal system as soon as . . . ).2

2. Of course I do not wish to say that it is necessary to mention the result

about consistency proofs by elementary combinatorial means. After all,

what Hilbert actually meant or expected, is not of great importance in

principle. But I wanted to let you know everything significant that crossed

my mind.

3. It just occurs to me that the general conditions for my undecidability proof

are formulated already on p. 190 of my original paper in the Monashefte.

That my result were valid for all possible formal systems began to be plau-

sible for me (that is, since 1935) only because of the Remark printed on p.

83 of The Undecidable, by Davis (cf. the footnote on p. 84 about its precise

meaning). But I was completely convinced only by Turing’s paper.

Warnings

It should not be forgotten that Gödel’s final illness had already started in 1968.

Consequently, the lack of concentration in his letter is not unexpected. Also, in

his depressed state honours (like the election to a Foreign Membership of the

Royal Society) were particularly significant for him. So he was unreasonably

pleased with me; to an extent I did not foresee in 1966 when I proposed him (an

extent that would have disturbed me).

Obviously, I stressed certain aspects of his results; without drawing attention

to others (which might have, let us say, confused the issue; even though at the

time - with high expectations of logic - his election was a foregone conclusion).

However, I myself was not so aware of those ‘other aspects’; for example, I had

not yet had the surprise of my U.C.L.A. lectures on proof theory in autumn 1968,

2This sentence is (of course) in Gödel’s English.
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where it turned out that the results, which occupied most of the lectures, simply

did not fit the general scheme (of Beweistheorie) announced at the start.



Chapter 6

Kurt Gödel

Kurt Gödel did not invent mathematical logic; his famous work in the thirties

settled questions which had been clearly formulated in the preceding quarter of

this century. Despite sensational presentations by crackpots, philosophers and

journalists (or even in poems1), Gödel’s results have not revolutionized the silent

majority’s conception of mathematics, let alone its practice; much less so than

the internal development of the subject since then.

Certainly, those results refuted most elegantly each of the grand foundational

‘theories’ current at the time, of which Hilbert’s (on the place of formal rules

in mathematical reasoning) and those associated with Frege and Russell (on its

reduction to universal systems like set theory) were most popular.2 For obvious

reasons, in his original publications Gödel made a point of formulating his work

in terms acceptable to these theories, and to stress its bearing on them. But

it is fair to say that they were suspect anyway and, less trivially, that they

can be refuted more convincingly by simple constatations rather than by (his)

mathematical theorems (as explained in more detail in Section 7). Further, as

so often with very grand schemes, the refutations put nothing comparable in

the place of the discredited foundational views which are, quite properly, simply

ignored in current practice.

The first principal aim of this chapter is to restate Gödel’s main results in

the light of present knowledge, and hence independently of those foundational

views. This is done in Sections 4, 6 and 9 by reference to two classes of axiomatic

definitions , first discovered about a century ago, and familiar to anybody with

an up-to-date elementary background in mathematics. Peano’s and Dedekind’s

set-theoretic axioms for the natural and real numbers are typical of the broad

0Originally published in the Bibliographical Memoirs of Fellows of the Royal Society , 26

(1980) 149–224.
1For example, by H. M. Enzenberger, set to music by H. W. Henze
2Gödel’s own and related results also deflate the particular ‘anti-formalist’ foundations of the

time, Poincaré’s and Brouwer’s constructivist and Zermelo’s infinitistic schemes being extreme

examples. They are taken up, respectively, in Sections 7, 9 and 11.
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class, elementary algebra and (for that matter) computer programs of the narrow

class. The relation to the foundational theories is simple: each of the latter wildly

overemphasizes the role of one of the two classes of definitions, and so completely

misjudges both classes. Gödel’s results establish the different potentialities of the

two classes of definitions much more dramatically than had been done before. He

did not go on to study just where those potentialities are actually useful. This was

done by many others who, over the last sixty years, developed and, occasionally,

applied the more successful branches of logic: model theory, recursion theory, and

set theory (the latter not as a foundational system, but as a specialized part of

mathematics).3

The second principal aim of this chapter is to substantiate Gödel’s own view

of the essential ingredient in his early successes, which solved problems directly

relevant to principal interests of some of the most eminent mathematicians of

this century, including Poincaré, Hilbert, Brouwer and Hermann Weyl. His view

differs sharply from the impressions of many mathematical logicians who, over

more than sixty years, have looked in Gödel’s work for the germs of some ex-

ceptionally novel mathematical constructions or for previously unheard-of subtle

distinctions, but not very convincingly. Without losing sight of the permanent

interest of his work, Gödel repeatedly stressed - at least, during the second half

of his life - how little novel mathematics was needed; only attention to some quite

commonplace (philosophical) distinctions; in the case of his most famous result:

between arithmetic truth on the one hand and derivability by (any given) formal

rules on the other. Far from being comfortable about so to speak getting some-

thing for nothing, he saw his early successes as special cases of a fruitful general,

but neglected scheme:

By attention to (or, equivalently, analysis of) suitable traditional

philosophical notions and issues, adding possibly a touch of precision,

one arrives painlessly at appropriate concepts, correct conjectures,

and generally easy proofs.4

In terms used by Kant:

philosophy analyses and mathematics builds up concepts

Gödel looked for a combination (where Kant saw only a distinction): for a given

problem one may have the choice between a solution by means of philosophical

analysis and easy mathematics and one by elaborate or otherwise subtle construc-

tions. The simplest example is a solution by new axioms, discovered and justified

3Readers interested in the reaction of the logical community in the thirties to Gödel’s results

can find a most faithful description in Kleene [1976], and some of Gödel’s comments on it in

Kleene [1978].
4To be compared to the use of physical reasoning for developing mathematics or, on a smaller

scale, to the use of geometry in algebra.
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by means of philosophical analysis.5 Evidently, Gödel’s scheme goes counter to

the wide-spread ideal of Methodenreinheit (purity of methods) in mathematics,

made famous by Hilbert’s successful use of it in geometry. With great determi-

nation and much imagination Gödel looked for other areas of knowledge where

this kind of analysis would be rewarding, including the natural sciences (where,

after all, Einstein had used such analysis so successfully that it remained a kind

of ideal of theoretical science for decades). Section 12 covers this material.

It is clearly beyond the scope of this chapter to assess the value of Gödel’s

scheme in the arsenal of scientific methods, or even to compare it with the opposite

(heuristic) view. But enough will be said of the singular state of foundations sixty

years ago, heated up by dramatic ‘controversies’ over almost half a century, and

of alternatives in the recent literature, to limit one’s expectations.

Sources

Readers are warned that it has not been possible to take full account of the many

papers, ranging from over 80 scientific notebooks to some exercise books from his

schooldays, which Gödel left to the Institute of Advanced Study at Princeton.

The latter, with the support of the N.S.F., made available microfilms of almost

5000 pages (partly in old-fashioned Gabelsberger shorthand), mainly from the

very productive years 1938-1945. As a result it was possible to document most

of the points I remembered from our conversations over more than 20 years.

But even the small part of his Nachlass that I have seen has altered completely

my picture of his extraordinarily methodical working habits, about which he had

been very reticent. For example, he has left a stack of envelopes full of library

chits for books he borrowed and, presumably, read. Another surprising discovery

was a bundle of drafts for lectures both on elementary and on advanced logic,

written with love and care and relaxed precision, in a style different not only from

his publications, but also from his letters and conversations.

Gödel himself was equally reticent about his personal history, but his wife

talked more freely about it, usually in his presence. Section 1, which covers such

matters, also uses material from a family history of Gödel’s mother, written in

1967 by Dr. Rudolf Gödel, his only sibling, a year after her death, and supple-

mented in 1978. Some points of detail were cleared up by letters from Gödel to

his mother (which his brother put at my disposal, and which are now at the Neue

Stadtbibliothek of Vienna), and by documents from the Archives of the Univer-

sity of Vienna (which are now available to the public). Evidently, the parts of

Section 1 which are based primarily on the memories of members of the family

or of myself, will have to be crosschecked; not so much because of exaggerated

discretion but because of ‘the influence of the observer on the observation’, close

observers tending to have a lopsided view.

5Section 10 describes a specific proposal under the slogan: axioms of infinity.
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6.1 Life and Career

Family background

Gödel was born on 28 April 1906 at Brünn in Moravia, then called the Manch-

ester of the Austro-Hungarian Empire, and now Brno (since it became part of

Czechoslovakia after World War I). Gödel’s father Rudolf, whose family had come

from Vienna, was an early ‘drop-out’, but practical and energetic. He became

managing director and part-owner of one of the leading textile firms. He was

almost six years older than his wife Marianne, whose father, Gustav Handschuh,

had come from the Rhineland, where he had been a poor weaver, to find success

at Brünn, also in textiles. The mother had a broad literary education, partly

in France. But she was also a competent and imaginative Hausfrau, to whom

both her children were very much attached. She was brought up as a Protestant,

her husband was only formally Catholic, and the children received no religious

training. Gödel’s older brother has remained unmoved by religion. Gödel himself

developed quite early unorthodox theological interests, had a life-long dislike of

the Catholic Church, and a soft spot for the new sects, in the New World, of which

he spoke often in conversation, and also wrote at some length to his mother, for

example in a letter dated 18 March 1961.

Gödel’s family cultivated its German national heritage; a bit self-consciously,

as was usual among German-speaking minorities of the multi-racial Austro-Hungarian

monarchy. Naturally, this continued after World War I, and is beautifully reflected

in one of Gödel’s essays (written during 1920–21 at the Staatsrealgymnasium in

Brünn mit deutscher Unterrichtssprache) on the superiority of the austere life

led by Teutonic warriors over the decadent habits of civilized Rome. Most of

the family friends were very enthusiastic about the successes of Germany under

Hitler. Gödel’s mother (who apparently had happy memories of her school days

at a French lycée at Brünn) is said to have been sceptical, almost alone among

her friends and neighbours.

Growing up in Brünn and Brno (1906–1923)

Gödel is remembered as a generally happy, but rather timid and touchy child,

unusually troubled when his mother left the house or when he lost a game. Around

1914, at the age of eight, concern for his health began to take up more and more

of his daily life; the next paragraph gives only a bare outline.

At the age of six Gödel had a painful bout of rheumatic fever, but resumed

a normal life after he got better. At eight (pretty evidently after reading about

possible complications of the disease, in some medical book or other) he became

convinced he had a weak heart. The conviction remained to the end of his life.

Occasionally he developed some of the appropriate symptoms; for example, at

the end of the sixties, more than 50 years later. He saw a well known heart spe-
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cialist in New York. When the electrocardiogram and other tests were normal,

Gödel felt frustrated - having overlooked that his particular symptoms were per-

fectly normal for anybody who worried about having a weak heart. This kind of

oversight was by no means exceptional in his medical history. Some of Gödel’s

exaggerated reactions in later life, though surely going back to a natural pre-

disposition, must have been reinforced by the peculiar difficulties of ill health

in childhood. Examples of those reactions, ranging from excessive caution both

in everyday life and in the presentation of his work, to distrust of the views of

others (especially in medical matters) are sprinkled throughout this chapter. The

caution and its frustrations go with the childhood coddling and the vicious circle

to which the latter leads. The distrust goes with the logical trauma of listening

to explanations by doctors and other healthy people (for example, of that vicious

circle), especially for a very inquisitive child like Gödel whom the family called

‘Mr. Why’ (der Herr Warum). Be that as it may, the distrust was there, and

delayed appropriate treatment of an ulcer in the forties when his life had to be

saved by several blood transfusions; in his final years it aggravated the prostate

trouble which he called ‘weakness of the bladder’, well known to be desperately

depressing at best.

But most of his life he managed well enough. If preoccupation with his health

limited his energies, he was also careful not to waste them, as his diaries show.

His powers of concentrated work and sustained interest were evident already at

school (as shown by his home work on geometry in one of the exercise books he

kept, or his reputation never to have made a mistake in Latin grammar), and

continued into the sixties when his wife still spoke of him, affectionately, as a

strammer Bursche.

Incidentally, he came upon his first romantic interest without much waste of

time: she was the daughter of family friends who were frequent visitors. She

was regarded as an eccentric beauty. Because she was ten years older his parents

objected strongly and successfully, apparently unimpressed by the neat balance

between her age and his valetudinarian habits.

Vienna, with two interludes at Princeton (1923–1938)

As Gödel mentioned in conversation, he was originally undecided between math-

ematics and theoretical physics. The elegance of the three-year lecture cycle by

the number theorist Furtwängler, a pupil of Hilbert and one of the founders of

class field theory, tipped the balance. Another singular aspect of those lectures

(which Gödel did not mention, possibly because of the medical history involved)

may have had equal weight. Furtwängler was paralysed from the neck down,

and lectured from his wheel chair without notes, while a scribe wrote the proofs

on the board. This virtuoso performance was all the more spectacular because

Furtwängler, like his cousin the famous conductor, had an exceptionally fine head.

But Gödel’s principal teacher was the analyst Hahn, who was actively inter-
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ested in foundations, and a member of the Wiener Kreis (Viennese Circle), a band

of positivist philosophers around Schlick, who was shot and killed during a lecture

in 1936. The meetings of the Kreis were held in a seminar room, off a corridor

that led to the department of mathematics, and mathematicians tended to drift

in and out of the meetings. Gödel attended more regularly. By a lucky chance

it is possible to document what he later remembered as his (negative) reaction;

by reference to the record [1931a] of a meeting on foundations organised by the

Kreis, a few months before he discovered the incompleteness theorem. In it he

gives a brilliantly succinct and precise analysis of the inadequacy of consistency

as a sufficient condition for sound mathematics, contrary to formalist positivist

doctrine. His analysis uses freely, almost ostentatiously just those concepts which

are anathema to the doctrine - without a word about the latter, as if it were not

worth mentioning. A year later, still only 25, he used similarly elegant tactics in

a letter to Zermelo,6 after the latter’s criticism of the incompleteness theorem at

the 1931 meeting of the German Mathematical Society (cf. Zermelo [1932]).7

In December 1932 Gödel’s paper on incompleteness was accepted as Habilita-

tionsschrift, as being well above the norm. In March 1933 he was made Privat-

dozent, unpaid lecturer, a title which was abolished in 1938 when Austria became

part of Germany. A candidate was required to have either independent means

(which was called reich) or a job, quaintly reminiscent of the rules for retiring

6Of 12 October 1931, reprinted in Grattan-Guinness [1979].
7Taussky [1987] contains her view of a meeting between Gödel and Zermelo at Bad Elster

in 1931. Whatever (illusion of an) understanding may have been reached at the time, it is

certainly no longer expressed in Zermelo’s letter of 7th October 1931 to Reinhard Baer (quoted

by Taussky). This letter does not, of course, settle the (perhaps more interesting) question of

whether Gödel’s brilliant exposition in his letter of 12th October 1931 (cf. note 14) was of more

help to Zermelo than the apparently cozy walk near Bad Elster.

I know too little of Zermelo’s personality, apart from the fact that it is very alien to me, to

make further speculations on the details above rewarding. However, there is another side to

the matter which can be viewed as an instance of an almost universal temptation.

As shown convincingly in his [1932], and elaborated in [1935], Zermelo had been (or, at least,

had become) convinced, quite independently of Gödel’s incompleteness theorem, that formal

systems were inadequate for understanding logical reasoning (formal systems have recursive

- that is, hereditarily finite - rules, and [1932] concerns the logic of the Infinite). Of course,

Zermelo’s view was shared by the silent majority. But, in contrast to the latter, he said

something about his view (in [1935]).

In terms of Walpole’s distinction, in Zermelo’s place a man of thought would have used Gödel’s

theorem to strengthen the case against formal systems. They are not merely inadequate in the

obvious sense already mentioned, of ‘embracing all valid methods of proof’, but even with

respect to provability (of true Π0
1 sentences). In contrast Zermelo, apparently a man of feeling,

reacted to Gödel’s theorem as if any contact with formal systems (even by way of negative

metatheorems about them) was bound to be pernicious, like witches and other creatures of the

devil.

Gödel himself is of course the perfect counterexample to such fears; cf. p. 118. But it should

not be assumed that the man of feeling is statistically all that wrong about his many fellowmen

(of feeling).
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officers of the Austro- Hungarian army (a genuinely rich wife would do). Gödel’s

father had left the family comfortably off when he died in 1929, at the age of

54, from a painful abscess on the prostate. The mother moved to Vienna, took a

large flat, and shared it with her two sons till 1937 when she returned to her villa

in provincial Brno. Rudolf, the elder son, was already an active and successful

radiologist without being wholly absorbed in his profession. The mother was en-

chanted by the theatre in Vienna where her long-standing literary interests were

brought to life, and the sons went with her. And if Gödel preferred musicals, as

he did all his life, he was very willing to form opinions on Art and Literature, and

to defend them energetically, especially when they were unorthodox. - Though

his work was quickly recognized in Austria and abroad, at home among his family

he always went out of his way to ‘hide his light under a bushel’, as his brother

put it.

After Gödel’s first visit to Princeton (1933–34) he had a nervous breakdown.

It began with severe anxiety when he got off the boat. (He telephoned his brother

from Paris, who almost went to meet him there.) Wagner-Jauregg was called in,

a Nobel Prize winner, and at the time perhaps even more famous than Freud,

at least in Austria. No indications of psychosis were found. But there were

two frustrations, each perhaps sufficient to trigger a breakdown in someone of

Gödel’s personality. More than twenty years later he still spoke of the frustrations

of (tacitly) his bachelor life in Princeton where he had just spent a year. The

second stress awaited him in Vienna. At 21, a couple of years before his father

died, he met Adele Porkert at a Viennese night spot, Der Nachfalter. She had

ben briefly married before, and was six years older than Gödel. Once again his

parents, especially the father, objected. In fact, Gödel did not marry Adele till

1938.

I visited them quite often in the fifties and sixties. It was a revelation to see

him relax in her company. She had little formal education, but a real flair for

the mot juste, which her somewhat critical mother-in-law eventually noticed too,

and a knack for amusing and apparently quite spontaneous twists on a familiar

ploy: to invent (at least, at the time) far-fetched grounds for jealousy. On one

occasion she painted the Institute for Advanced Studies, which she usually called

Altersversorgungsheim (home for old-age pensioners), as teeming with pretty girl

students who queued up at the office doors of permanent professors. Gödel was

very much at ease with her style. But this is not all: in a sense the principal

logical theme of this chapter goes back to her banter. She would make fun of his

reading matter, for example, on ghosts or demons (but never of pages of logical

formulas which have their funny side too, if she only knew). Quite often, the

topics she mentioned explicitly fitted perfectly what I had read between the lines

in his publications without paying attention; for example, to ghosts and universes

with cyclic time considered in [1949] and [1949a], and further discussed in Section

12 below. Since I had noticed the connection spontaneously, presumably showing
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the pleasure which goes with this kind of Aha-Erlebnis, he found it worthwhile

expanding on it; in a totally natural style, fully and freely - very much in contrast

to his almost staggering responses, logical slaps in the face as it were, when he felt

in duty bound to have an opinion on uncongenial matters. As already mentioned

on p. 51, his wife’s conversations also shed light on his personal life or, at least,

suggested how to find out more about it.

Breaking the Austrian connection (1938–39)

Gödel, by and large, had the political views which were standard in his youth, in

his immediate surroundings and in large parts of Central Europe. America was

the land of opportunity, Germany was efficient, Austria schlampig . But granted

all this, his aversion, after World War II, to Austrian academic institutions seems

out of all proportion, and remained a total puzzle to his family (as documented,

for example, by his mother’s letter of 28 January 1963 to her brother Karl). He

was offered, and refused, sometimes for mind-boggling reasons, membership and

later honorary membership of the Academy of Sciences in Vienna, and the highest

national medal for science and the arts. (He had no chance to refuse an honorary

doctorate of the University of Vienna, since it was awarded posthumously.) He

had accepted other honours, and was to accept more. For example, he was de-

lighted to be a Foreign Member of the Royal Society, although England remained

Perfidious Albion for him. And if the Academy of Sciences of Vienna is not of

quite the same level, neither is the American Academy of Arts and Sciences, and

he was a member.8

The story is not heroic, but it is beautifully coherent. Gödel was a most re-

markable logician, he never pretended to be a dashing hero; nor was he impressed

by heroes. (He admired General Eisenhower, while his wife was a great fan of

General McArthur.)

When Austria became part of Germany in March 1938, he was not made

Dozent neuer Ordnung , (paid) lecturer of the New Order, in contrast to most

university lecturers who had held the title of Privatdozent. He was thought to be

Jewish. (For the same reason he was once attacked in the street by some rowdies

whom his wife chased off with her handbag.) He was convinced that nowhere

except in Austria could there be such a Schlamperei, such a careless error. As

he told me, he left Austria for Princeton (crossing Russia on the Trans-Siberian

Railway) at the end of 1939 because he did not wish to be conscripted into the

German army. Of course he felt he was not physically fit for military service; but

given the evidence he had of Schlamperei, the risk was too great.

However, by and large, life went on smoothly for him in Austria during the

spring and the summer of 1938: according to his diaries, he worked actively,

8He was also made an Honorary Member of the London Mathematical Society in 1967, a

Corresponding Fellow of the British Academy in 1972, and was a corresponding member of the

Académie des Sciences Morales et Politiques.



Kurt Gödel 57

read widely, and travelled to Göttingen to lecture on his work in set theory. In

autumn, after the Munich agreement, he married. He spent the first term of 1938–

39 at the Institute at Princeton, the second at Notre Dame (where he prepared

some beautiful lectures). He returned to Austria in spring 1939. In short, his

misfortunes in 1938–39 were minor compared not only to what went on more or

less quietly around him, but also to the much publicized hardships during popular

uprisings (Volkserhebungen) of the past, like the French or Russian revolutions.

The fact is that he was bitterly frustrated. Once again, despite great care he

had not escaped trouble. Specifically, in the words of the Dozentenbundsführer

(in a letter of 30 September 1939 concerning Gödel’s application of 25 September

for a Dozentur neuer Ordnung), Gödel was not known ever to have uttered a single

word in favour or against the National Socialist movement, although he himself

moved in Jewish-liberal circles (and though the letter acknowledges mitigating

circumstances, it neither supports nor rejects Gödel’s application, which was

accepted on 28 June 1940). Incidentally, the Schlamperei may have added a

touch of insult to injury, if something was still left of the views in his essay on

Teutonic warriors mentioned on p. 52: certainly, most of the essays already reflect

perfectly the views he held all his life.

A bit more courage or highmindedness might have reduced Gödel’s bitterness

about his particular predicament. But, as the fate of his mother shows, even

those commodities were not enough to ensure a cool head at the time. Till

1944 she stayed in her villa in Brno, openly critical, losing most of her former

friends, and worrying her son, Rudolf, who was running the X-ray department

of a hospital in Vienna. By 1944 both expected the defeat of Germany. She had

had a good offer for her villa, toyed with it, but did nothing despite her almost

daily criticisms (of the National Socialist regime): in effect, she did not expect

reprisals by the Czechs after the war, not even confiscation of German property,

let alone the deportations. Fortunately, she herself moved to Vienna, but not

by calculation. She happened to be there with her son, there was a heavy raid,

and they simply wanted to stay together. After the war the Austrian government

negotiated with the Czechs, and according to the treaty the mother got the usual,

inadequate compensation for her villa, one tenth of its assessed value. The fact

that the same rate was almost universally applied to confiscation by the Germans

was quite irrelevant for Gödel (since, logically, two wrongs do not make a right),

and he never got over the injustice to his family. He himself was always most

punctilious, and incidentally helped his mother as soon as possible.

The New World: the first 30 years (1939–69)

Gödel was well prepared to like America, given his general views and his partic-

ular resentment against Austria and its bureaucracy (in particular, the academic

bureaucracy, which he knew well). Almost every letter to his mother between

1946 and 1963 which I have seen contains some variation on this theme. He be-
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came a U.S. citizen in 1948. He was especially attached to the Institute, of which

he was an ordinary member till 1946, and a permanent member till 1953 when

(at the age of 47) he was made professor. In a touching letter, of 25 March, he

tells his mother that he would not have any lecturing duties though the salary

was even higher than at universities. (He had the illusion that he was expected

to have opinions on all details of the Institute business.) He saw a good deal of

von Neumann, who is said to have astonished his first wife on their honeymoon

in Vienna, in the early thirties, by the long hours he spent with Gödel talking

about mathematical logic and foundations.

In the forties, except while weakened by an ulcer (and his own treatment of

it, as mentioned on p. 53), Gödel worked with great intensity. A turning point

was his wide-ranging essay [1944] on Russell’s mathematical logic. It collects

together a number of incisive points, most of which are formulated in a more

relaxed style in his unpublished notes from the thirties mentioned on p. 51 (and

used below). There are also some quite different, and much better known points

(reviewed in Section 11), for instance those that have led to the label: Gödel’s

platonism. He could use [1944] to take stock of his whole logical experience

without the slightest trace of self-indulgence: Russell’s writings touched on every

issue that could conceivably cross anybody’s mind. Having thus arrived at his

mature (heuristic) views sketched on p. 50, the time was ripe for Gödel to apply

them outside the narrow area of mathematical logic too.

The place, the Institute, was right for an excursion into the general theory of

relativity. Einstein was there and Gödel, perhaps more than most, was impressed

by Einstein’s singular success in using philosophical analysis for (presenting) his

special theory of relativity; with a bit of luck, ‘singular’ would allow for repeti-

tions. Einstein was enchanted by Gödel’s combination of elegance and precision,

and they saw each other constantly till the death of Einstein. It may be difficult

to decide how Gödel’s work on general relativity (described in Section 12) was in-

fluenced by their conversations (as so often when a decision has few consequences,

and so, practically speaking, does not matter). At any rate, one can be sure that

Gödel would not have brought up the subject before he had something new to

say. Gödel’s mother was overawed when she heard of the friendship, and began to

read about Einstein. In a letter of 8 January 1951, Gödel recommends her not to

be afraid of abstractions in Einstein’s expositions, and not to try to understand

everything at a first reading, but to go about it as she would read a novel.

In the early fifties Gödel’s achievements began to be formally recognized:

by honorary doctorates at Yale and Harvard, the Einstein Award (split with

Schwinger), the Gibbs Lectureship of the American Mathematical Society. In

1955 he was elected to the National Academy of Sciences.

As far as the next 15 years or so are concerned, it is doubtful (and certainly

impossible for me to decide) whether my picture is representative of his principal

interests; I met him in autumn 1955, and remained in close contact with him till
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his illness at the end of the sixties. But what I know is sufficient to correct two

widespread impressions, namely that:

1. though courteous, he lacked sensibility and warmth

2. his conduct of the Institute business was impenetrable.

In connection with 1, I myself witnessed a degree of understanding (whether

intuitive or as a result of reflection) which is exceptional by any standards. Before

I met Gödel I was of course impressed by the clarity of purpose shining through

every line of his, but not carried away, mainly because it seemed to me (and

to Gödel in 1930–31, as he told me later) that at the time it was a matter of

months before somebody would stumble on the completeness and incompleteness

theorems, his most famous results.9 Worse still, I was simply put off by his

general essays [1944] and [1947] (particulary by the most widely quoted passages,

mentioned on p. 58), and I made no secret of the fact. With patience and unerring

judgment Gödel led the conversation to points of common interest. In no time I

saw for myself the many civilized passages of [1944] and [1947], which are hardly

ever quoted. In due course I even went back to the offensive passages, and saw

them in a different light, particularly in connection with so-called intuitionistic

notions (described in more detail on p. 90).

Later, a different obstacle appeared, as so often when things are going too

well. Given common logical interests and (as readers may have guessed on p. 53)

a touch of hypochondria also on my part, there were exchanges on those minute

reactions, to bugs or drugs, to which doctors will not even pretend to listen. In the

after-glow, the conversation occasionally strayed to Gödel’s general views on men

and events and his all-pervading distrust. Another set of impatient questions:

Did he expect me to find, behind his actions, the kind of devious motives he saw

in others? Was he not frustrated to let others govern the world, since he knew

so well what was good for it? (and almost in the same breath) How well did he

know the world, since he was constantly surprised by what happened? Again he,

and he alone, helped: apparently without a trace of resentment or even irritation,

he avoided general topics (until his illness). At the same time he continued to

ask me about my own doings and preferences, with a convincing mix of curiosity

and personal sympathy. I remember only one occasion when I reciprocated, one

evening when both he and his wife were in particularly good form. Since they so

clearly liked being hospitable, why did they not have (other) guests more often?

Gödel had noticed that most people showed more excitement in company than

they felt, and he found this very tiring. Clearly, at times he needed very few data

to reach, painlessly, a very sound conclusion.

9In those days I was more impressed by the ‘broad sweep’ of Hilbert’s program, and especially

by Herbrand’s originality in logic (whose theorem was a much subtler business: it was not even

properly understood or used for many years).
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In connection with 2, especially in his selection of logicians for temporary

membership at the Institute, his practice followed quite simply from his general

heuristic principles explained at the beginning of the memoir: he gave preference

to applicants whose work used (at least implicitly) or was likely to use philo-

sophical analysis. He tried to judge this by reading their publications repeatedly,

but generally not carefully. He seems to have been pretty successful. Besides

this ‘long-shot’, of philosophical analysis, he also encouraged others; for example,

the filigree work classifying sets of natural numbers by so-called Turing degrees:

he thought it might suggest new ideas in cardinal arithmetic. In the fifties he

looked, in vain, for logicians interested in the partition calculus of Erdös and

Rado. (Given that the mathematical interest of logic, especially of its elabora-

tions, is marginal, his encouragement of a few long-shots was reasonable anyway,

and Gödel never pressed for having a horde of logicians at the Institute.)

Once he had made a selection, he avoided contact with people who were

not temperamentally congenial to him; particularly introverted, tongue-tied, and

generally affected personalities made him uncomfortable. He was fond of keep-

ing pests at a distance by means of ambiguous remarks reminiscent of de Gaulle

(Messieurs, je vous ai compris); for example: it would be interesting to see the

work in print. He never edited any journal. Presumably, he did not usually give

his simple reasons for his selections. After all, he always stressed the conflict be-

tween his views and the Zeitgeist to which (naturally, without empirical checks)

he supposed his colleagues at the Institute to be subject. He was more disap-

pointed than he let on by his occasional failures to persuade them; but not nearly

as much as he would have been had he realized that he was battling a Zeitgeist

from another time, the early thirties; and then not what it was, but what the

Wiener Kreis would have wanted it to be.

The final years (1969–1978)

The events during this period would have unsettled Gödel at his best. His wife

suffered two strokes and a major operation. There were (obviously interrelated)

changes for the worse in America and at the Institute, the country and the in-

stitution to which he was so much attached. For example, student radicals were

making headlines, and (admittedly, less charismatic) professors at the Institute

could hope to make, at least, the correspondence columns of the New York Times :

an issue was bound to present itself, and did. (This appeal to the Zeitgeist was not

congenial to Gödel.) More subtly, there was a general air of despondency among

the large number of able but jobless young mathematicians who were herded to-

gether at the Institute, constantly talking to each other, and so reinforcing each

other’s illusions about clever tactics for getting a job.

But the decisive factor was his own illness, mentioned already on several

occasions. This is not the place to give a detailed medical history which, however,

will be essential for a correct interpretation of what he said or wrote during
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those years. The particular character of the self-doubts which go with even mild

prostate trouble are well known: usually there is a grain of truth, but magnified

out of all proportion. This spoils completely the victim’s perspective of his work

over the years.10 Superficially, at least in the early seventies, the changes appeared

minor to those who had not known him well. After all, his mind remained nimble;

only his exquisite sense of discretion had obviously gone. Perhaps as a result he

was more gregarious than before; less formidable, as a perceptive secretary at

the Institute later said. Even if this brought him some solace, it did not seem to

me to go very deep, and accounts of his close family since his death have more

than confirmed this impression. Actually, several of us who knew him well were

alarmed already at the end of the sixties: his efforts not to show his depressions

were evident, and soon became too much for me to watch. There were some bright

spots: the U.S. National Medal of Science in 1974, after an honorary doctorate

in 1972 from Rockefeller University, which gave him pleasure. In 1967 he had

received one from Amherst College.

Gödel died, sitting in a chair in his hospital room at Princeton, in the after-

noon of 14 January 1978.

6.2 Gödel’s First Results in Focus

Gödel’s first two famous results, which appeared in [1930] and [1931] about sixty

years ago, concern formal rules or, as we should now say, computer programs.

Put simply, [1930] establishes the ‘positive’ result that Frege’s rules for elemen-

tary logic (of truth functions and quantifiers) proposed some fifty years earlier,

generate exactly the logical truths in the precise mathematical sense correspond-

ing to Leibniz’s truths in all possible worlds. [1931] shows that the rules of

Principia Mathematica, and in fact those of a large class of ‘related’ systems,

do not generate exactly the arithmetic truths (among the formulas of Principia

built up logically from polynomial equations with integral variables and coeffi-

cients). Even without going into refinements of the statements and proofs and

leaving more ethereal foundational schemes for later, readers will imagine easily

the striking implications of these simple, memorable results.

Historical perspective

100 years ago, [1930] would have had the glamour: simple mechanical rules can

be proved mathematically to replace logical reasoning (at least its results, not

necessarily the details of the process), and logic is about all possible worlds, so to

speak, the height of abstraction! At that time, [1931] would merely have ratified

the general impression that arithmetic is too difficult to be formalized (another

10Except for pp. 105 and 118, Gödel’s views in the seventies quoted below correspond to

earlier publications, notes or conversations.
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word for ‘mechanized’); after all, the diophantine equation x2 = y3 + k is hard

enough.

Today, Frege’s rules (even without [1930]) still stand out as the first convincing

example of non-numerical data processing by mechanical means. Examples of

simple mathematical proofs, as in [1930] and [1931], showing what can or cannot

be done ‘in principle’ by such means, are obviously essential for orientation and,

at least occasionally, useful in practice, provided they are used with discretion

and imagination. For realistic expectations this should be compared to the use

of whole numbers in place of formal rules and of elementary theorems about

them, where much skill is needed to find properties studied in higher number

theory which are really significant for the bulk of scientific or other uses of whole

numbers. It would not be hard to work up a parallel between [1931] and the

irrationality of
√

2 in the uses of formal rules and of whole numbers respectively

(cf. Chapter 7).

But in between, at the time of [1930] and [1931], the latter had all the glam-

our. For one thing, Principia had claimed to provide great weight of empiri-

cal evidence, in three heavy volumes, for the possibility of formalizing ‘all’ of

mathematics, and certainly arithmetic. What is more, the claim was widely ac-

cepted including even Russell’s contention that only empirical evidence, taken

from mathematical practice (as codified in texts, etc.), was relevant. [1931] was

shocking, especially if one glanced at the proof. Principia had left out an obvious

type of argument which reflects on its own rules (and implies in a simple way a

certain true arithmetic statement that cannot be derived in Principia at all):

Principia had proposed a mathematical model of a certain phenomenon (mathe-

matical practice) and had forgotten to look at the mathematical properties of the

model itself! A moment’s thought makes [1930] almost as disturbing as [1931] for

Russell’s doctrine of empirical evidence. What was the difference in the ‘degree

of confirmation’ of the claims of Principia as far as logic and arithmetic were con-

cerned? Anyhow, what was the claim? To describe (and perhaps to perpetuate)

the defects of current practice, or to find out something about the potentialities of

mathematics and the mathematical imagination? And was Principia any worse

than what, for example, is done in studies of non-mathematical reasoning, by

linguists and the like?11

Philosophical perspective

Returning to the aims of Principia, mathematicians had lapped up the idea of

beginning with a formalization of all of mathematics. For example, Bourbaki’s

treatise starts with a chapter on set theory: not exactly Principia, but [1931]

11Incidentally, in Section 12 several examples will be given how reflection on [1931] and on

its development in mathematics throws light on various arguments in the natural sciences too,

the kind of thing one expects from a useful philosophy of science.
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applies too. In their manifesto (Bourbaki [1948]) they get round to asking them-

selves about the point of this enterprise, and conclude that it is ‘the least interest-

ing side of the matter’, or that formal rules of inference serve for ‘logical hygiene’

(rarely applied, since the rules are barely quoted later: more like ritual ablutions).

If anything, [1930] serves as logical hygiene in giving a logical justification for the

choice of the formal rules! Obviously, the notion of set is here to stay; but there is

not a shred of evidence in Bourbaki [1948] that the ritual of giving formal axioms

and rules for sets is of effective use in the later development (more effective than

a description of the intended notion; for example, as in Sections 8–10 below).

To anticipate: since 1948, modest but sound answers have been supplied by

mathematical logic to the questions implicit in Bourbaki [1948]. The possibility of

defining many mathematical notions and problems in elementary terms has found

uses, forshadowed in [1930] by the so-called finiteness theorem; and derivations

built up by elementary rules are easy to unwind (cf. p. 86 for details). As to [1931],

incompleteness results explain quite well why certain questions (for example,

about groups) have not been settled yet, though more difficult arguments than

those of [1931] are needed. More positively, just because of incompleteness we

know more if a theorem can be formally derived by given rules than if it is merely

true and, perhaps less obviously, we know more if a (true) theorem can be derived

by given rules, but not by a subset of those rules. As always, the discovery of the

terms in which this additional knowledge is to be expressed in a principal part of

research; successful examples are to be found on p. 74. In short, slowly, the early

ritual is becoming a scientific tool.

But also, and this is much more striking, the tools found are pitiful compared

to the original expectations associated with mathematical logic. Specifically,

Boole [1854] looked for the laws of thought in propositional algebra, and Hilbert

[1930] thought that he had found the laws in his own favourite rules (a mind

boggling exaggeration since, as already mentioned, even the positive result in

Gödel [1930] concerned only results, not the details of reasoning, treating the

latter as a matter of black boxes). Then there was the retreat to logic as providing

a standard of rigour , an ‘ultimate’ criterion for checking proofs, the ‘hygiene’

which is not applied (in fact, one applies more often interpretations, clever cross

checks, to verify formal derivations).

The development of logic since Gödel [1930] and [1931] has moved away from

the aims mentioned; in particular, soon after [1931], the emphasis on formal rules

for the special purpose of building up derivations and representing proofs was

quietly dropped, as reflected in the terminological change from

formal undecidability of a particular problem PF ,

(depending on the formal system F under consideration) used in [1931], to

recursive undecidability of a class of problems (including PF).
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A readable account of this matter is in Davis, Matyasevic and Robinson [1976].

More about the whole matter of representing proofs is to be found later in this

chapter.

We leave this disturbing side of [1930] and [1931] with the few snippets above.

Of course the latter do not convey even approximately the bearing of [1930]

and [1931] on the ideas current at the time, let alone on the principal people

active in logic. Russell, Hilbert and Brouwer were not narrow specialists: they

were fascinated by the turmoil of ideas current during the first three decades

of this century, a very special period in the development of science. There was

an unbounded confidence in high theory, as already mentioned in Section 1 in

connection with Einstein. There was progress with understanding phenomena

where, previously, one just did not even know where to begin; and so Kant’s

odd question how this or that experience was possible at all (überhaupt möglich,

instead of the ordinary scientific question, what things are like) seemed appealing.

And, last but not least, there were extraordinary successes of building up the

physical world (or, at least, matter) from a few particles; so why not mathematics

and mathematical reasoning from a few primitives (set and membership) and a

few rules of inference? Nothing remotely like existing logic is even a candidate

for an analysis of mathematics or mathematical reasoning comparable in scope

to those successes in the natural sciences.

Accentuating the positive: purity of methods

Gödel’s results and even Hilbert’s conjectures (which were refuted so simply that

they have been described as ‘blind spots’) appear in a totally different light if we

go back to the last century, to what even now are Aha-Erlebnisse. Two of them

were already mentioned, namely set-theoretic (or: broad axiomatic) definitions of

familiar structures by Peano’s and Dedekind’s axioms, and Frege’s formal rules

for elementary logic (in the precise sense explained on p. 66). The third is the

exposition of geometry in Hilbert [1899], with striking examples of a mathematical

scheme for choosing a formalization (in contrast to the business about empirical

evidence in Principia).

Today the principle of choice is better illustrated by considering the ordered

field of the real numbers instead of geometry, passing from arbitrary Dedekind

cuts to those defined by elementary formulas (about ordered fields), and thus to

a natural (if not very well-known) axiomatization of so called maximal ordered

fields. In the context considered, the reference to arbitrary sets or cuts could

really be described (by Hilbert) without exaggeration as a mere façon de parler:

as far as results (and, at least at the time, also proofs) were concerned, Dedekind’s

arbitrary cuts gave no more than those defined by elementary means. Hilbert was

quite conscious of the obvious relation between this discovery and an age-old ideal

of Methodenreinheit, as he stressed inthe peroration to Hilbert [1899]; ‘age-old’

in that it goes back to the time of the Greeks, when Archimedes was criticized for
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using properties of space to prove theorems about the plane (cf. Knorr [1978]).

For elementary theorems, you use elementary cuts. Number theorists will

think of heated but inarticulate arguments about impure methods (analytic num-

ber theory at one time, l-adic cohomology now).12

From this point of view, Gödel’s paper [1930] establishes that logical purity

can be achieved in principle, and [1931] that arithmetic purity cannot be achieved;

in fact, the result in [1931] is so general that it is quite insensitive to any genuine

ambiguities in the notion of purity of method.

Legalistically, Gödel’s papers only settle questions about the possibility of

purity of method. But inspection of the arguments suggests quite strongly that

the whole ideal of purity of method is suspect, even when it can be achieved . (As

will be seen in Section 10, Gödel turned the ideal upside down, wanting to prove

finite combinatorial theorems by use of properties of very large infinite cardinals.)

In any case, today there are plenty of examples in ordinary mathematics

where impure methods are employed: the restriction to pure methods has to be

‘justified’ (when it is appropriate at all), at least as much as the use of impure

methods. The most familiar reason for restricting methods of proof is the greater

generality of the theorems proved, their validity for more cases (of interest).

Trivially, where purity can be achieved, the essential difference between pure and

impure proofs cannot be analysed in terms of validity. But

the validity of a theorem (in fact, the validity of a proof) is only a

small part of the significant knowledge contained in the proof: it just

happens to be the part which is most easily put into words.

And if that part is regarded as the specifically logical aspect of proofs, then

logic is marginal for understanding the actual phenomena of proofs. As already

anticipated on p. 63, in practice (if not in rhetoric) this conclusion has been

accepted, and new aims (mentioned there) are pursued.

6.3 Background to [1931]: Axiomatization and

Formalization

Although the axiomatic tradition goes back to Euclid, it was changed radically

about 100 years ago by two new methods (and aims).

12Incidentally, though this was not stressed by Hilbert himself, his later and much more

famous consistency program is also a particular case of this search for pure methods: so-

called finitist theorems should have finitist proofs (of which old-fashioned school mathematics

is typical).

A neat, but purely technical observation of Hilbert was that this aim is assured under suitable

conditions if the formal consistency of a system F is proved finitistically, the aim being now

restricted to finitist theorems derived in F itself (cf. p. 75 or, for a more pedantic exposition,

the section on Hilbert’s second problem.
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First, by use of the notion of set (which had just become prominent through

the work of Cantor) familiar objects together with (what are regarded as) their

principal features, could be defined axiomatically (as one says: up to isomor-

phism). The still most famous examples are Peano’s axioms for the natural

numbers with the successor relation as principal feature, and Dedekind’s for the

(ordered field of) real numbers; but cf. also Zermelo’s axioms in Section 8 for

segments of the so-called cumulative hierarchy of sets. This use of axioms (as

definitions) distinguishes them from Euclid’s, which were not intended to be, and

are not definitions unique up to isomorphism, since they are satisfied both by the

full (uncountable) plane and by the part consisting of points constructible from

two points by means of ruler and compass. In modern terms, the new axioms use a

richer, so-called non-elementary language; in contrast to Euclid, arbitrary subsets

of the sets (of numbers) involved are used to state induction and completeness

(for Dedekind cuts) in, respectively, Peano’s and Dedekind’s axioms.

The second new element was introduced by Frege, his famous formal rules (of

inference). They were intended as an analysis or ‘definition’ of logical deduction

from axioms (more precisely, as we realize now, from elementary axioms) built up

from relations (between the objects of some domain D) by means of the logical

operations ¬ (not), ∧ (and), ∨ (or), → (implies), ∀x (for all elements of D), ∃x
(for some elements of D). In particular, such elementary axioms do not use the

new non- elementary quantifier: for all subsets of D, needed for the definitions

in the last paragraph. Systems of elementary axioms together with Frege’s rules

are called formalizations .

Realistically speaking, neither the new definitions nor the new rules were

needed for mathematical practice at the time (nor before: the Disquisitiones of

Gauss would not be improved by starting with Peano’s axioms, or by writing the

proofs of the law of quadratic reciprocity in Frege’s formalism.) But clearly there

was a raw interest to the two enrichments of the axiomatic tradition. It fired

the imagination of mathematicians and philosophers. Readers can well imagine

how the surprisingly compact definitions (in the language of sets and logic) of

Peano and Dedekind made them into ideals for all definitions in mathematics,

and how Frege’s simple rules led to wild exaggerations about the laws of thought,

mentioned on p. 63. For all we know, these exaggerations served as a useful

body guard, protecting the new interesting methods until their significance was

discovered too.

One of the first convincing indications of significant uses is to be found in

Hilbert [1899]: the use of non-elementary axiomatizations for a systematic choice

of formalizations, already alluded to on p. 66. To be precise, the passage in-

volved was not explicitly formulated by Hilbert, but fits very well his work on

the foundations of geometry, where Dedekind cuts turn up as non-elementary

axioms of continuity, which explains the connection between Hilbert [1899] and

the exposition below.
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From non-elementary axiomatizations to formalizations

The passage is best illustrated by the step from Dedekind’s axioms to a very

natural formalization of elementary real algebra, known in the trade as the theory

of ordered real closed fields . The principle is to restrict cuts to those defined

by elementary formulas about ordered fields, instead of arbitrary cuts; this is

expressed by an infinite axiom schema corresponding to each formula. No other

change is made, since the rest of Dedekind’s axioms are elementary anyway.

Incidentally, real closed fields were not considered by Hilbert himself, but were

stumbled on ‘empirically’ in the twenties by Artin and Schreier.

Though there are many real closed fields (for example, of all the real numbers

and of the algebraic real numbers), every elementary proposition which is true in

one such field is true in all the others. This was established by several logicians

around 1930, including Tarski and Herbrand, but also Gödel who, as he mentioned

in conversation, did not publish the result when he learnt that Tarski had found

it independently. They showed that all elementary formulas F (without free

variable) about those fields are decided ; that is, either F or ¬F is derivable from

the axioms by means of Frege’s rules. In fact, for each F , a finite subset SF of the

infinitely many axioms is determined which is sufficient to decide F . Equivalently,

if F is true for the field of real numbers then F follows logically from SF : the

formalization is complete (in this sense).13

Peano’s axioms also illustrate the passage to formalizations, but with an added

twist on the choice of ‘principal features’ of the structure considered. Apart from

equality, Peano’s axioms mention only one relation (say S) for the successor . So,

taken literally, the passage leads to the successor axioms and induction restricted

to (elementary) properties defined from S alone. Again, this formalization decides

every elementary formula (about S); but precious little can be expressed about

the natural numbers in this way.

Substantially more is expressed by elementary formulas about addition (for ex-

ample, about congruences). Here the passage starts with Peano’s non-elementary

axioms together with the usual recursion equations for + (in terms of S and =),

which define addition implicitly. Again, the resulting formalization decides all its

13Remarks for specialists. First, logically less complicated cuts are sufficient, namely those

defined by (the least zero of) polynomials of odd degree and the (lesser) square root of positive

elements.

Secondly, the famous result in Milnor [1958] on division algebras over R conveys the flavour

of the implications of the facts above. Thus the result of Milnor [1958] is true for all real closed

fields. But nobody has developed K-theory in that context sufficiently, and the only known

proof of the general result uses the transfer principle mentioned above. Again, the fact that

there is no division algebra of dimension 16, is expressed by an elementary formula, say F16.

By the finiteness principle, for suitable N16, F16 holds automatically for all fields in which all

polynomials of odd degree ≤ N16 + 1 have a zero, and positive elements have square roots.

Incidentally, the least N16 is not known; a bound for N16 is part of any pure derivation of F16

from the formal axioms.
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formulas.

Unquestionably, Hilbert expected similar complete formalizations for addi-

tional number-theoretic functions defined by recursion equations (for example,

multiplication). Now the expressive power of the formalism is considerable: ev-

ery diophantine problem can be stated.

Methodenreinheit: how to test philosophical ideals

The three formalizations in the last subsection for ordered real closed fields and

for arithmetic of the successor relation and of addition, fit perfectly Hilbert’s ideal

of purity (on p. 51): to settle elementary problems, one does not need arbitrary

cuts or sets, but only cuts defined by elementary formulas, and only elementary

instances of induction, built up logically from the relations used to state the

problems.

The logical question is to settle to what extent purity of methods can be

achieved: in all of mathematics, parts of mathematics, in logic or metamathe-

matics itself. But this leaves open the philosophical question whether purity of

methods is at all basic (in the sense of fundamental) to mathematical knowledge,

the sort of thing one cannot know too much about.

If purity is not basic then work done with this ideal as principal aim will have

to be reexamined under the maxim: dégager les hypothèses utiles, appropriate

to the assessment of tools. The discovery of good uses (as in note 13) becomes a

major problem in contrast to the study of fundamental laws, which can be relied

upon to have applications.

Defects of ideals are generally seen most clearly in areas where they have

been realized, and so the results can be compared both with earlier expectations

and with alternatives (which violate the ideal in question). In the cases under

discussion (algebraic and number-theoretic purity), plenty of comparisons are

available since, with time, impure proofs have become more common in practice,

not less. Moreover, and this is often neglected:

1. their actual reliability or ‘security’ is obviously unaffected by the possibility

of pure proofs, if that possibility has not been realized

2. impure methods are not only used heuristically, for discovering conjectures

and proofs, but have turned out to be essential for checking proofs.

Far from being a mere aberration, the neglect of 1 and 2 is typical of what

happens in the kind of intellectual void left by the questions asked in Section

2. First of all, the unproblematic uses of formalization (or, generally, purity

of methods) have not become widely known; so there is a tendency to thrash

about for some uses, and the easiest thing is to cling to dubious doubt which

are to be removed by formalization, as in the business of logical hygiene. But

also, there is the void created by simply not saying out loud what (knowledge)
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is gained by impure proofs (for example, by analytic proofs in number theory:

knowledge of relations between the natural numbers and the complex plane or,

more fully, between arithmetic and geometric properties). It is precisely this

knowledge which provides effective new means of checking proofs: if this conflicts

with some ideal of rigour, so much the worse for the ideal (which is being tested).

In short, the whole matter of formalization and purity of method is just much

subtler than suggested by generalities about mathematical rigour (however per-

suasive the latter may be at first glance; cf. Section 13). A corollary to this

observation is, of course, that the significance of Gödel’s incompleteness theorem

is a subtle business too. For if we do not restrict ourselves to complete systems

even when they are available (as in the examples of algebraically or number-

theoretically pure methods in the previous subsection), then incompleteness has

lost its apparent philosophical sting: since its raw interest is clear, it is a problem

to analyse its interest(s), philosophical or otherwise.

6.4 The Incompleteness Theorems

Below, reversing the historical order, Gödel’s work in [1931] on incompleteness

will be presented first, because it requires less background on ‘abstract nonsense’

(about logical validity) needed for [1930].

Formalization and numerical computation: generalities

Ever since the introduction of Frege’s rules, it was evident that numerical com-

putation was a particular case, and (in some ways) even typical of all formal

deduction. Thus computations of polynomials with integral coefficients and ar-

guments (≥ 0) are formal deductions from the (elementary) axioms :

n+ 0 = n n+m′ = (n+m)′

n · 0 = 0 n · (m′) = (n ·m) + n

(where ′ means the successor) by the rules of substitution, equating equals to

equals. A computation evaluates an expression without variables as a numeral :

0, 0′, 0′′, . . .

Computations can be checked mechanically, and so the formalization above is

complete for equations between numerical expressions , say p1 and p2:

If p1 = p2 is true (for the usual interpretations of 0,′ ,+, ·) then p1 = p2
can be derived by the rules above.

If, further, the usual formal rule for existential quantifiers is added, then:

If a diophantine equation p1 = p2 in the variables x1, . . . , xn has in-

tegral solutions then ∃x1 · · · ∃xn(p1 = p2) can be formally derived by

the rules mentioned.
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Thus the rules are complete for solvability of diophantine equations .

More generally, one expects some sort of parallel between

formal derivability and solvability of diophantine equations.

This was stressed early in the century by Hilbert, who saw here a unity between

school boy arithmetic and all of (formalized) mathematics. Taken literally, the

parallel equates Hilbert’s tenth problem (to give a general method for deciding

whether any diophantine equation has a solution) with deciding whether any for-

mula F has a derivation by means of given formal rules F . This remained, in fact,

the source of Hilbert’s later conjectures: the pay-off for replacing the allegedly

difficult abstract notion of truth by the apparently wholly manageable notion of

formal derivability , was to have been the effective decidability of derivability in

properly formalized branches of mathematics (as in the case of real closed ordered

fields).

Today we know that the parallel above holds literally, in that there is one

diophantine equation (in just 9 variables!) with a parameter f and an effective

way of finding a value of f corresponding to any pair (F,F). Hilbert’s tenth

problem has a negative solution, and his conjectures about the decidability of

formal derivability were false.

But at the turn of the century (in fact, up to [1931]) weaker variants of

the parallel had not been excluded; for example, that no one formal system

‘coded’ all formal procedures (for each set of rules F , derivability in F is formally

decidable, but not by a method adequately represented in F). But the price for

this possibility would have been high, since the obviously elementary character

of (verifying) formal derivability in F would not be reflected in an adequate

definition for derivability by means of F . Part of the work in [1931] established

the definitional ‘adequacy’ (technically, completeness for formal derivability) of

a general class of formal systems, including (Hilbert’s) pure number theory (the

system derived by the passage, in the subsection on p. 67, from Peano’s axioms

together with the recursion equations for + and ·).
As a final preliminary, a curious blind spot has to be mentioned. In all the

discussions of decidability and completeness (of formalizations) in the first three

decades of this century, an obvious connexion was not noticed: completeness (for

example, of pure number theory) would yield a decision method in a ‘finite number

of steps’ for formal derivability (in particular, for Hilbert’s tenth problem), as

follows. Given a diophantine equation p1 = p2 in n variables, it is enough to

lay out the formal derivations in some ω order, try them out one by one, until

a derivation of either ∃x1 · · · ∃xn(p1 = p2) or of ∀x1 · · · ∀xn(p1 6= p2) is reached

(completeness ensures that this process terminates). This blind spot is a glaring

oversight if one means ‘finite number of steps’ literally, without consideration for

the practical value of such a method by trial and error.
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Incompleteness of formal systems for number theory and

beyond

To fix ideas, the reader may wish to think of pure number theory. In any case

no details of the system will be used in the simple sketch below, which supports

Gödel’s claim (on p. 50) that [1931] did not need new mathematics. In fact, the

sketch uses only:

1. The particularly elementary character of the set of formally derivable for-

mulas (compared above to the set of solvable diophantine equations); so to

speak, the raison d’être of formalization itself.

2. Cantor’s diagonal argument (the class of all sets of natural numbers is not

enumerable), here applied to sets and enumerations defined by restricted

means.14

Proposition 6.4.1 Let C be a class of (formulas defining) number-theoretic pred-

icates with one and two arguments, closed under identification of variables and

negation. Then there is no (binary) predicate in C which enumerates all (monadic)

predicates in C.

Proof. The hypothesis means that if F (n,m) is in C, so are F (m,m) and

¬F (n,m).

The conclusion means that no formula F (n,m) in C has the property that for

for each formula G(m) of C there is a number g such that

∀m[F (g,m)⇔ G(m)].

A counter example is obtained by taking ¬F (m,m) for G(m), and putting m = g.

�

In contrast to 6.4.1, there is in general no obstacle to enumerating all formulas

G (with one variable) by giving them numbers g in such a way that simple

syntactic operations are defined by formulas in C; for example, substitution σ:

14Concisely, the argument uses the Σ1 definability of formal derivability , and the Σ1 unde-

finability of Π1 truth (by means of straight diagonalization).

More efficient expositions are available in the literature (cf. Chapter D.1 of Barwise [1977]).

The interest of the proof below is that it follows Gödel’s presentation in his letter to Zermelo

(already mentioned on p. 54) rather than his publication [1931], where a relation to the so-called

liar paradox is prominent. (In conversation Gödel could not resist the temptation of paradoxical

formulations. In publications he dramatized the trauma of ever having been taken in himself

by a paradox).

Zermelo’s criticism, though clumsily worded, was closely related to 2 (the inadequacy of any

formal language for defining - all - sets of natural numbers), but failed to stress 1. So, in

particular, it fails to pin-point the difference between the formal systems (of number theory)

involved in the incompleteness theorem and those (in the subsection on p. 67) for the field of

real numbers or the additive semigroup of natural numbers, which do decide every formula.
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σ(g, n) is the number of the formula (without variables) G(n),15 where

G is the formula whose number is g.

More pedantically, since in formal systems F the number m is represented by the

m-th numeral m in some standard notation, e.g.

0, 1, 1 + 1, (1 + 1) + 1, . . . or 0, 0′, 0′′, 0′′′, . . .

(as on p. 69),

σ(g, n) is the numeral whose value is the number of the formula G(n),

where G is the formula whose number is the value of the numeral g.

Far from being subtle, the difference is so crude that in ordinary mathematics

it would hardly be mentioned. For example, in the case of polynomials xn + a

with numerical a, the defining expressions are numbered by an enumeration of the

pairs (n, a), which can certainly be done polynomially by: 1
2
(n+a+1)(n+1)+n.

But an enumeration of the functions xn + a defined by these expressions, which

is a function of triples (x, n, a), cannot be done polynomially. (In the case of

functions, we have =, where in the case of predicates above we had ⇔.)

Incidentally, contrary to a widespread misunderstanding, there was nothing

particularly novel in Gödel’s numbering of formulas or derivations, that is (finite

sequences of formulas): this was implicit in Cantor’s well-known enumeration of

finite sequences of elements taken from an enumerated set.

Theorem 6.4.2 Gödel’s First Incompleteness Theorem. Let F be a formal

system, given with a numbering of its formulas with one or no free variable,

where (the value of the numeral) n is the number of the formula N . Then F is

incomplete, provided:

1. some formula D of F defines derivability (in F)

2. F is sound; that is, for formulas N without free variables,

if N is derivable then N is true. (6.1)

Proof. If F were complete, D[σ(n,m)] would define an enumeration of the

monadic predicates of F . If g is the number of ¬D[σ(m,m)] with variable m,

then

neither D[σ(g, g)] nor ¬D[σ(g, g)] is derivable.

15G(n) is obtained by replacing the (only) free variable of G by n.
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The false one is not derivable by 2, the other (true) one is not derivable by 1 and

the choice of g.

Now, the value of σ(g, g) is the number of ¬D[σ(g, g)] and the latter is not

derivable, but D is assumed to define derivability. So ¬D[σ(g, g)] is true, but not

derivable. �

At the time there was great interest in weakening the conditions on F and D,

especially 6.1 (that is, to avoid the reference to truth of N in favour of derivabil-

ity). Inspection of the argument above leads to:

1. if D(n) is derivable, then so is N

2. if ¬D(n) is derivable, then N is not derivable

3. if g′ is the numerical value of σ(g, g), then either both ofD(g′) andD[σ(g, g)]

are derivable, or none of them is (and similarly for their negations) .

Then:

• Derivability of ¬D(g′) and so, by 3, of ¬D[σ(g, g)] contradicts 2 for n = g′,

since G′ is ¬D[σ(g, g)] itself.

• Derivability of D(g′) implies, by 1, that G′ be derivable, contrary to what

just proved.

On p. 77 the conditions above will be further weakened. In particular, in

accordance with the basic parallel (on p. 70) between (checking) computations

and derivations, the converse of 1 will be used (for relevant N : the completeness

of F for derivability in F expressed by D).

Gödel [1931] gave a detailed verification of 1 and 2 for a specific definition D,

his F being (an improved formulation of) the system of Principia, which claimed

to give a ‘complete’ formalization of mathematics. But [1931] gave also general

conditions on systems F to which the argument applies, and soon afterwards

the analysis of Turing showed that arbitrary formal systems containing a certain

minimum of number theory (or of the theory of finite sets) satisfied those general

conditions.

By p. 70, today D(g′) can be replaced by the assertion that a certain diophan-

tine equation has a solution. But technically it was certainly much easier to find

D(g′), an assertion about formal derivability in Principia which is undecided in

Principia (than one in familiar mathematical terms).

Gödel’s strategy for going into details, further elaborated in Kleene [1978],

avoided controversy.16 But even without those details, the proof given here, on

16Gödel said he felt the heavy formalization was pedagogically useful (at the time) to avoid

even superficial resemblance to Finsler’s [1926] earlier speculations on incompleteness (which,

in fact, gave no hint of sufficient conditions).
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the assumptions 1 and 2, establishes beyond a shadow of doubt the following

inadequacy of (any) formal systems F for elementary number theory:

Either such a simple notion as formal derivability cannot be defined

in F (in the sense of 1 and 2), or F is incomplete (in the sense that

a true formula, namely ¬D(g′), cannot be derived in F).17

Actually, Gödel’s own proof (in terms of definability) is so simple that it can

be applied to situations which have little in common with formal systems: to

sets of axioms which are not recursively enumerated or ‘listable’, to languages

with infinitely long formulas or so-called infinitary rules, and the like (cf. the

sections on such matters in Barwise [1977]). Some of these generalizations are in

fact needed in connection with the new questions, in the next subsection, which

involve a rethinking of the role of (necessarily incomplete) formal systems in

mathematics .

Some lessons from the first incompleteness theorem

The first and principal lesson is related to the questions on p. 63:

What more can we expect to know from a proof of a theorem by means

of (incomplete) rules (for, say, number theory or set theory) than if

we merely know that the theorem is true?

And, of course, as a corollary:

What do we know about a problem if it is not decided by given rules?

At least at the present time, it is not so much the general incompleteness theorem

for formal systems that has found uses, but incompleteness tied to specific objects ,

like (size of) ordinals in note 17 or (rate of growth of) number-theoretic functions

in the examples below.

The second, subsidiary lesson is that, in the cases mentioned, incompleteness

of suitable informal systems is needed for the most rewarding results (in other

words, the generalizations mentioned at the end of the previous subsection).

Incidentally, Part II of [1931] was (at least partly) intended to go into possible criticisms of

Part I. It was not (only) illness which stopped Gödel from writing Part II, but also the fact

that those expected objections never materialized.
17An even more general argument of the same type applies to the case of set theory for

any set A of axioms, not only for formal systems. Suppose A can be justified at all for the

intended meaning (set out in Zermelo [1930] and in the subsection on p. 94 below); that is, for

appropriate segments of the cumulative hierarchy, including the segment α. Then:

Either α cannot be defined in set-theoretic language, or if Dα is a definition then

∃xDα(x) is not decided by A.

Of course, ∃xDα(x) is about the ‘abstract nonsense’ of sets, while D(g′) above is about the

‘formal nonsense’ of derivability.
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The points above are illustrated by theorems of the form: some diophantine

equation D in, say, 9 variables (by p. 70, the typical case), has infinitely many

solutions, i.e.

∀n∃m1 · · · ∃m9[m
2
1 + · · ·+m2

9 > n ∧ D(m1, . . . ,m9) = 0]. (6.2)

If 6.2 is true then, for each n, such m1, . . . ,m9 can be computed by a programme

which tries out each 9-tuple; in short, recursively. But if 6.2 is proved by restricted

means (in F), bounds for m2
1 + · · · + m2

9 (in terms of n) can be specified. The

literature speaks of provably total recursive functions , defined by the class RF of

programmes which can be proved (in F) to terminate. A significant part of proof

theory describes the functions defined by RF in familiar mathematical terms.

An obvious conclusion is that even if 6.2 is true, but the least m2
1 + · · ·+m2

9

grows too rapidly with n, then 6.2 cannot be proved by means of F . The converse

is not true because, for some n,

∀m1 · · · ∀m9[m
2
1 + · · ·+m2

9 > n ⇒ D(m1, . . . ,m9) 6= 0] (6.3)

may be true, but not derivable in F . A very simple piece of logic shows that

the converse does hold if all true propositions of the form 6.3 are added to F .

If F+ is the new (not formal!) system, the class R+
F of programs is greater than

RF , but not the class of functions defined. Thus metamathematical knowledge

of underivability of 6.2 in F+ gives information about bounds for 6.2 of ordinary

mathematical interest. Though this connection has been publicized for more than

thirty years, the first convincing use was made only more recently (cf. Paris and

Harrington [1977] on a problem in combinatorial partition theory). For logically

more complex assertions than 6.2, a more sophisticated connection by means of

so-called functional interpretations is used.

Without exaggeration: the answers above totally reverse the unsophisticated

aims of using formal systems for an overview of mathematics; for example, for

arranging problems according to the means needed for their solution.

The new aim is to start with a problem P (one wants to know about),

and to look for a bunch FP of relevant systems (in the arsenal of

systems with manageable metamathematical properties).

The metamathematical study (proof-theoretic or model-theoretic) of particular

systems F is here only a preliminary; for example, to get some idea of the sort of

problems P ′ for which F ∈ FP ′ . A different strategy would apply if ever genuinely

fundamental systems turned up (for example, related to the laws of thought on

p. 63).

Consistency and consistency proofs

We now go into a reformulation of ¬D(g′) which attracted great attention in the

first decade after [1931].
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Consistency of F (for short: ConF) means that there is no formula F for

which both F and ¬F can be derived in F . Since ¬ is intended to mean ‘not’, F
had better be consistent. This is not at issue. Rather,

What use is (mere) consistency?

Once again, diophantine problems are typical. Let p be a polynomial with integral

coefficients and ~n = (n1, . . . , nk) a list of its variables. If (in the technical jargon

of p. 70) F is complete for solvability of diophantine equations, i.e.

if ∃~n(p = 0) is true then it is formally derivable in F

then the significance of ConF is that

if ∀~n(p 6= 0) is formally derivable in F then it is true.

For, by completeness for solvability, if ~n were a solution then p(~n) = 0 and hence

¬∀~n(p 6= 0) could be derived in F . So ∀~n(p 6= 0) would be a counterexample to

ConF .

This ‘significance’ of ConF is also relevant to the matter of number-theoretic

purity . Suppose ConF and the completeness of F for solvability are both proved

by ‘pure’ methods (for example, in Hilbert’s pure number theory). Then if ∀~n(p 6=
0) is derivable in F , it also has a pure proof (with an obvious extension to other

preferred methods of proof).

Warning . The consequences above of ConF obviously do not extend to for-

mulas ∃~n(p = 0) since, if ∀~n(p 6= 0) is formally undecided in F , the false formula

∃~n(p = 0) can be added consistently. (Thus, 1 on p. 73 is not assured by ConF .)

Gödel gave that warning in [1931a] in the clearest possible terms, actually before

the discovery of incompleteness. But [1931a] made much less of an impression

than such conneries as:

• In mathematics, consistency ensures existence (of what?).

• An inconsistent system would be dull because every formula G could be

derived in it, by use of ¬F ⇒ (F ⇒ G).

In later ‘popular’ writings, Gödel always treated such conneries respectfully.

Theorem 6.4.3 Gödel’s second incompleteness theorem.18 Let F be a

formal system demonstrably complete for derivability (defined by D), i.e.

if N is derivable then so is D(n) (provably in F).

Then ConF is not derivable in F .

18Described by him, in [1931], as merkwürdig : a curiosity.
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Proof. Inspection of the proof of the fact that G′ = ¬D[σ(g, g] is not derivable

(on p. 73) shows that

ConF ⇒ G′

is derivable in F , if the latter is demonstrably complete for derivability (defined

by D), since then 2 on p. 73 follows from ConF . But G′ is not derivable in F ,

and so neither is ConF . �

A looser formulation says: ConF cannot be proved (in F) if ConF can be

proved to be significant in the sense above.

To produce examples of formal systems which do prove their own consistency ,

given formal rules F and a numbering of their derivations we pass to new rules

F1, by adding the following requirement on derivations (with number d and end

formula Fd):

For all pairs of (the finitely many) preceding derivations in F (that is,

d1 ≤ d and d2 ≤ d), the end formula of one is not the formal negation

of the other (Fd1 is not the formula ¬Fd2).

Evidently, ConF1 is proved in the most elementary way: we stop before an in-

consistency turns up. But also: if F is consistent then F and F1 have not only

the same theorems, but the same derivations! Only, the procedure for checking

derivations is more elaborate in F1.

Also (and this is philosophically interesting), though logical texts rarely con-

sider systems like F1, the latter mirror quite well, albeit crudely, an essential

method used in practice for checking proofs: comparison with background knowl-

edge (here represented by d1 such that d1 < d).

Corollary 6.4.4 An improved version of Gödel’s First Incompleteness

Theorem. A formal system F is incomplete, provided:

1. F is consistent

2. F is complete for derivability, demonstrably in F and F1 (w.r.t. D and D1,

respectively).

Proof. In the notation used on p. 73, if g1 is the number of ¬D1[σ(m,m)],

neither D(g′1) nor ¬D(g′1) is derivable

(in F or, equivalently by 1, in F1).
19 As on p. 73:

• ¬D1(g
′
1), and hence ¬D(g′1) is not derivable because condition 2 on p. 73

is ensured by the hypotheses, as mentioned above.

19Note that there are F satisfying 1 and 2 in which D(g′) is derivable!
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• If g2 is the number of D1(g
′
1) (and hence G′1 is the formula ¬G2) then, by

ConF1 (which is derivable in F1),

D1(g2) ⇒ ¬D1(g
′
1)

is derivable in F1. If G2 were derivable, so would be D1(g2) by 2, and then

¬D1(g
′
1) would be derivable, contrary to the first part of the proof. �

For further information, cf. Kreisel and Takeuti [1974]. Specifically, there is

the matter of so-called canonical numberings of formulas and derivations (unique

up to formal equivalence), which are perfectly analogous to coding finite sequences

of sets by sets (unique up to appropriate equivalences). Also, and this is much

more interesting, novel questions arise concerning the second incompleteness theo-

rem for systems which were not known at the time of [1931], for example, so-called

cut-free rules .

Some lessons from the second incompleteness theorem

As Gödel himself stressed, back in [1931], his second theorem is irrelevant to any

sensible consistency problem. In any case, if ConF is in doubt, why should it be

proved in F (and not in an incomparable system)? Gödel’s practice followed his

theory:

• His last self-contained publication [1958], which goes back to [1933], was

presented as a consistency proof.

• Between 1931 and 1958, as his notebooks at Princeton show, he studied

other such proofs, especially Gentzen [1935a] (published posthumously).20

Very much in contrast to the break with traditional aims, advocated throughout

this chapter, Gödel continued to use traditional terminology. For example:

• the original title of Spector [1962], extending Gödel [1958], did not contain

the word ‘consistency’ (but rather stressed the aspect of provable totality

of function(al)s mentioned on p. 75); it was added for the posthumous

publication at Gödel’s insistence.21

He knew only too well the publicity value of this catchword, which (contrary to

his own view of the matter) had made his second incompleteness theorem more

spectacular than the first.

20Gentzen used functionals of lowest type, defined by unfamiliar equations, intended to op-

erate on so-called choice sequences; in other words, with special emphasis on continuity.

Gödel’s [1958] used functionals of all finite types, defined more elegantly, but intended to

operate on rules (except that the last sentence of [1958] does not fit the intention).
21Spector used so-called bar recursion, again for all finite types, for which continuity (in a

suitable sense) is again essential.



Kurt Gödel 79

As to uses of the second incompleteness theorem: above all, it provided the

first, much needed cross check on proposed consistency proofs . The early liter-

ature on the subject (supposed to ‘secure’ mathematics!) had a particular high

density of errors. The most famous are in Ackermann [1924]22 and Herbrand

[1930].23

Another good use of the second theorem, which however always requires some

imagination, can be seen as follows, by reference to the basic significance of ConF
(on p. 76):

if ∀~n(p 6= 0) is derivable in F from the false formula ¬ConF , then it

is derivable in F itself.

The reason is that ConF is not derivable, hence F together with ¬ConF is con-

sistent and ∀~n(p 6= 0) is true. An easy exercise then shows that ∀~n(p 6= 0) is also

derivable in F itself (but such a derivation may be more difficult to find).

An even better use relies on the details of consistency proofs which derive ConF
from some ‘mathematical’, manageable principle, say P . So the false formula ¬P
is consistent with F too. For suitably complex P ,

if F is derivable in F from ¬P , then it is derivable in F itself

even for certain F which are (logically) much more complicated than ∀~n(p 6= 0).

6.5 Background to [1930]: Elementary Logic in

the Twenties

Evidently, to document Gödel’s own view (p. 50) on his good use of traditional

philosophical notions in [1930], a word on the knowledge about elementary logic

which had accumulated before [1930] is needed. For balance, other interesting

consequences of that early knowledge, which its authors did not recognize, will be

used to illustrate negative effects of (ill digested) traditional philosophical aims.24

22Pointed out in von Neumann [1927].
23Corrected in Dreben, Andrews and Anderaa [1963]. Also discovered, but not quite cor-

rected, by Gödel in the early forties (cf. his Arbeitshefte IV and V at Princeton). Though

in the meantime others have also observed the points of detail made there by Gödel, his sure

touch remains exceptional.
24An at least comparable important obstacle to progress in the twenties was the emphasis

on the false conjecture that logical validity or formal derivability by means of Frege’s rules was

mechanically decidable. As a result, a fair number of partial (and certainly not very memorable)

results cluttered up the literature of the twenties.

As on p. 70, before [1931] it was not realized that a proof of the conjecture would have solved

Hilbert’s tenth problem (and more, as Gödel stressed in [1931] in his discussion of the matter);

for the diophantine equation p1 = p2 has a solution if and only if ∃x1 · · · ∃xn(p1 = p2) follows

purely logically from the usual axioms for successor, addition, and multiplication.
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Non-categoricity of elementary axioms

One of the best known results had been realized before 1920 (by Loewenheim),

and proved very simply (by Skolem): the existence of non- isomorphic models of

Euclid’s axioms (p. 66), or of real- closed ordered fields (p. 67), is typical of all

elementary axioms. In particular:

Theorem 6.5.1 If each of a countable collection of elementary axioms is true

for some structure S, there is a countable (or finite) part S0 of S they are all true

too.

Thus, if S is uncountable then the axioms are not categorical.25

Proof. The idea of the proof (which, incidentally, is the clue to Gödel’s work

in Section 9) is perfectly illustrated by means of the formula ∀x∃y∀zR(x, y, z),

where R does not contain quantifiers (∀,∃). For if ∀x∃y∀zR(x, y, z) holds in S,

so does ∀x∀zR(x, Y (x), z) for some function Y with arguments and values in S.

For any element a of S, the set S0 generated from a by Y 26 will do (where a ∈ S0,

and if b ∈ S0 also Y (b) ∈ S0); thus S0 = {a, Y (a), Y (Y (a)), . . .}. Evidently, S0 is

countable or finite. �

Readers probably know, and certainly can easily imagine, the thoughtless

conclusions which were drawn from the simple result above. At one extreme,

differences between infinite cardinalities were rejected as ‘meaningless’ because

such cardinalities cannot be distinguished by elementary properties. At the other

extreme, the elementary formalism or ‘language’ was rejected as hopelessly in-

adequate because it cannot be used to express even such brutal properties as

differences in cardinality.

What was overlooked for a remarkably long time, was the positive aspect of

the result above: from the validity of an elementary formula in all countable struc-

tures follows its validity in all uncountable structures too. Without exaggeration:

some result of this kind is needed to make the ‘abstract nonsense’ about validity

in arbitrary structures (called ‘truth in all possible worlds’ on p. 61) useful at all;

not because of any illegitimacy of the notions involved, but because a formula

might fail to be logically valid only because it is false in some odd structure that

nobody wants to know about.27

Bibliographical remark . Skolem [1922] went even further in reducing the ‘ab-

stract nonsense’. Suppose F is an elementary formula with relation symbols

R1, . . . , Rm. Then relations RF
1 , . . . , R

F
m can be (quite explicitly) defined in pure

25This is generalized in 6.6 on p. 84.
26If there are also operation, not only relation symbols in R, S0 is required to be closed for

the corresponding operations.
27Specialists can think of examples in so-called second order classical logic, and to some extent

in intuitionistic propositional logic (where propositions about so-called lawless sequences are

needed); cf. p. 90 below.
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number theory, with the property: if Fω is obtained from F by replacing the

symbols Ri by RF
i , and if the quantifiers in Fω range over the natural numbers

(+ and · in RF
i having their usual number-theoretic meaning) then:

if F is true in any structure at all (or, as one says, if F has a model)

then Fω is true (for the natural numbers).

In other words, logical validity is not only equivalent to validity in countable

structures, but to validity in structures defined in this restricted way.28

Two formulations of completeness (for logical validity)

One formulation occurs in Hilbert and Ackermann [1928], obviously written by

the second co-author. It says just what one would expect. A system of rules

L (for ‘logic’) formulated in terms of elementary logic is complete if, for every

elementary formula F ,

F is derivable in L provided F is logically valid

(that is, true in all structures in which the relation symbols of F are interpreted).29

Pedantically, one can also consider the converse (called soundness of L), which

is usually verified by inspection.

It will not have escaped the reader’s notice that the matter of completeness

is neatly by-passed in the formalizations in the subsection on p. 67, which were

Hilbert’s principal interest, since they decide every proposition: no set of sound

rules can do more! (in the sense of generating more theorems). Further (and

this certainly did not escape Hilbert’s notice!) the completeness in question is

formulated purely formally : for every elementary formula F (about the structure

considered) either F or ¬F is formally derivable. Sure, the reason for being

interested in this formal property is that it ensures that all true F are derivable

in the formalization. But the wording respects the ideal of Methodenreinheit (here

applied to formal derivability), and the formulation in Hilbert and Ackermann

[1928] violates it.

Soon afterwards, despite the handicap of a recent stroke, Hilbert [1930] tried

to correct this violation by a pure version of completeness of L modulo a formal

system Z for pure number theory : for every elementary formula F ,

(F is derivable in L) or (¬Fω is derivable in Z),

28Skolem himself did not state this result: he noticed only the very marginal improvement

that, in contrast to his earlier proof of theorem 6.5.1, the proof of the refined result did not use

the axiom of choice.
29There is an obvious analogous notion of completeness for logical consequence (of F from

a set F of formulas); in the case of a finite set F = {F∞, . . . ,F\} this reduces to validity of

F1 ∧ · · · ∧ Fn ⇒ F .
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where Fω is obtained from F when the relation symbols Ri of F are replaced by

suitable expressions of Z (for example, the relations RF
i mentioned at the end of

the previous subsection.

Once again the blindspot of p. 70 intervened: Hilbert and others overlooked

the fact that completeness in his pure sense would prove the (false) conjecture

in note 24, providing a method for deciding in a finite number of steps whether

F is derivable in L (provided of course that Z is sound). One lays out the

formal derivations of the systems L and Z in linear order, and tries them out

alternately. After a finite number of steps one arrives either at a derivation in L
of F , or at one in Z of a formula of the form ¬Fω. Since the conjecture is false,

so is Hilbert’s pure version of completeness: for any (sound) rules L′ for logic and

Z ′ for (extensions of) number theory.

Herbrand’s Theorem

Before [1930] a good deal of formally pure work, concerning transformations of

formal derivations, had been done; particularly, the very original work of Her-

brand [1930] (already mentioned in note 9). Without exaggeration: as we see

things now, part of the interest of this kind of work comes from the fact that

it does not presuppose completeness of the formal rules (since, for example, a

transformation may be particularly efficient if applied to derivations that happen

to be built up by an incomplete subset of given, possibly complete rules). But it

was hard to see this highly positive side of the matter:

• For one thing, there was no hint of it in Herbrand [1930].

• In addition, there were formal errors (cf. note 23).

• Last but not least, there was the terribly complicated (though correct)

formulation of his Théorème fondamental, again without a hint of possible

uses in ordinary mathematics.30 Instead, Herbrand used the Théorème

to get some not at all memorable, partial results on the ill-fated decision

problem for elementary logic (cf. note 24).

Concerning completeness: Herbrand [1930] refers to (the possibility of) a proof,

but rejects the matter out of hand because the abstract so-called semantic notion

of logical validity was not precise enough for Herbrand (to deserve attention).

6.6 The Completeness Theorem

By Section 5, though the completeness problem solved in [1930] had been stated

in the twenties, there were mixed feelings about it: it certainly did not fit in with

30The irony of the matter is that even the simplest case of the Théorème, applied to purely

existential formulas, has turned out to be at least as useful as the completeness theorem,

especially if one is interested in explicit bounds.



Kurt Gödel 83

the ideal of purity of method, and at least one formal counterpart to completeness,

in Herbrand [1930], simply had more mathematical content.

What Herbrand overlooked was that another step was needed before the av-

erage logician or mathematician had enough confidence in the subject to want to

look at a monster like his Théorème Fondamental. In contrast, almost anybody

could understand completeness (or misunderstand it, thinking of it as a confirma-

tion of Hilbert’s aim). Being simple and memorable, it helped to put elementary

logic ‘on the map’.

Enter Gödel

In [1930] Gödel established the impure version of the completeness of Frege’s

rules in the sense explained above. Translated into the notation used in Section

5, [1930] shows that, for every elementary formula F ,

(either F is derivable by Frege’s rules) or (¬Fω is true). (6.4)

A comparison with Skolem [1922] documents beyond a shadow of a doubt (for

anybody prepared to look at the proof of Skolem’s dull result) Gödel’s view that

all ingredients needed for the proof of the completeness theorem were available in

the twenties. But Skolem did not see the relevance of those ingredients (cf. note

28), and Gödel did. Given that those mathematical ingredients were standard

anyway, it is a minor matter whether Gödel happened to have seen Skolem’s paper

(for example, in the mathematics library at Vienna, where Gödel was a voracious

reader as a student, sometimes making marginal remarks in shorthand).

At this point it is worth recalling Hilbert’s pure version of completeness which

was seen to be false above. It differs from 6.4 only in one place:

derivable in Z in place of true.

Yet, the difference is quite essential: derivability of ¬Fω can be mechanically

verified whenever it holds, truth of ¬Fω in general cannot (in contrast to Hilbert’s

expectations, cf. p. 70).31

The Finiteness Theorem

To return to [1930], Gödel noted in Satz X , more or less, another fact which is

much more often used (in the sense of being directly appealed to) in applica-

tions of elementary logic, the so-called Finiteness Theorem (for infinite sets F of

formulas):

31Warning . Inspection of [1930] shows that the assertion

either F is derivable by Frege’s rules or ¬Fω
is not only true, but derivable in Z. But this replacement of ‘true’ by ‘derivable in Z’ is of

no obvious consequence. If anything, it hides the essential differences between the pure and

impure versions. A moment’s thought shows that it is typical of the ritual of formalization.
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If each finite subset of F has a model, so does F itself.

As a corollary, the non-categoricity result on p. 80 extends to all sets F with

infinite models, as follows:

For an arbitrary set I (of new constants), F∪{i 6= j : for distinct i, j ∈ I}
has a model of cardinality ≥ card I.

Actually, Gödel stated the theorem only for countable F although it holds

for arbitrary F , and although he himself formulated corresponding results for

uncountable sets of propositional formulas in [1932]. But applications in math-

ematics where the unrestricted formulation is actually required were discovered

only later, as the subject of model theory (of elementary logic) developed.32

Incidentally, Gödel stated the finiteness theorem in impure terms first, in Satz

IX of [1930], mixing in formal derivability:

F has a model, or else some finite subset {F1, . . . , Fn} is formally

inconsistent (that is, ¬(F1 ∧ · · · ∧ Fn) can be formally derived).33

In retrospect the finiteness theorem is seen to fit in well with the only obvious

sense of a formal derivation from an infinite set F , namely, that only a finite

subset of F be used. When asked whether this aspect had led him to the finiteness

theorem, Gödel could not remember having been conscious of it at the time; and

about [1932] he remembered stating the result first for countable sets, and noting

afterwards that the proof nowhere used countability. Realistically speaking, it is

of little interest what one is not conscious of; in any case, Gödel never claimed to

have followed consciously his heuristic principles (on p. 50) at the time of [1930]

and [1931], but to have discovered later that they apply.34

Be that as it may, there is no doubt that Gödel’s views fit the later develop-

ment of logic, in particular the latter’s need for non-elementary notions (discussed

in the next subsection).

Some lessons from the completeness theorem

The completeness theorem establishes that logically valid elementary formulas

can be proved by logically pure derivations. There is an obvious potential conflict

here, in restricting both definitions of objects and methods of proof (as is done in

so- called doctrinaire constructivism): a given problem may have a very simple

solution, which may be impossible to establish by the restricted methods of proof.

All this is plain horse sense.

32Malcev was the first to state (in [1936]) the finiteness theorem for uncountable sets of

formulas, and to use it (in [1941]) for interesting results (in group theory).
33To use this form in model theory, the completeness theorem is needed.
34In contrast, his ideas in Sections 9 and 10 were developed after that discovery.
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Before knowledge of elementary logic (either of elementary definitions or of

formal rules) can become an effective part of our intellectual reflexes, one needs

some general orientation on the kind of questions where this knowledge is likely

to be relevant; this is easiest by contrast (with non-elementary notions).

a) Elementary formulas

Obviously, one needs to know results which hold for elementary, but not for all

axioms. Samples :

• The finiteness theorem above certainly does not apply to Peano’s non-elem-

entary axioms together with the infinite set of formulas {a 6= n : n ∈ ω}
(every finite subset of the latter is satisfied by some a in models of Peano’s

axioms).

• Non-categoricity (on p. 80) puts a premium on non-isomorphic structures

which share the same elementary properties, but one of them is more man-

ageable. For then, with some imagination, one may find an elementary

problem which is difficult for one but not for another, as in the transfer

results on real closed fields (p. 67).

• A more delicate strategy, discovered in the last 35 years, involves general

operations on structures which preserve elementary properties. With a bit

of luck such operations, suitably applied to S and S ′, may produce isomor-

phic structures, thereby showing that S and S ′ have the same elementary

properties.

The (still) best-known application establishes relations between the p-adic

fields and the fields of formal power series with integral coefficients mod-

ulo p. As long as only very simple questions about p-adics were treated,

mathematicians got by with a vague perception of some relation between

such fields (and exploited their knowledge of formal power series; for exam-

ple, Chevalley [1936] in the thirties). For more difficult problems, some 30

years later, the precise relation of elementary equivalence was needed (for

example, by Ax and Kochen [1965]35 and Ershov [1965]).

35Ax and Kochen make use of ultraproduct constructions, which preserve elementary prop-

erties. This fact was first exploited, albeit inadvertently, in Skolem [1933a] to establish the

existence of a non-standard model of (all true statements about + and · over) the natural

numbers.

Gödel’s review [1934] dismissed this result, actually an immediate consequence of his finiteness

theorem, but for formally incorrect reasons. Precisely, he proposed to use a combination of his

completeness and incompleteness results. He did this immediately after mentioning that Skolem

considered models of all true sentences of arithmetic, where there is no place for incompleteness

at all. It is not, as is sometimes thought näıvely, that the ‘spirit of the times’ in the thirties

prevented one from considering the set of all true sentences at all: one just did not handle them

very well.
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Secondly, it must be easy to recognize notions which have elementary defi-

nitions. This is a delicate matter, especially for the logically perceptive math-

ematician who has been sold on the idea that all of mathematics is formalized

in some universal system (say, of set theory). Though, of course, elementary

formulas can be formally separated from the others in the universal system, the

separation seems artificial, and is less easy to remember than if (following Gödel)

non-elementary definitions are understood too, and so can serve for contrast.

At the other extreme, less perceptive mathematicians or logicians are led to

apply their knowledge of elementary logic indiscriminately, for example to the

universal system itself, generally with disappointing results (according to the

principle already quoted on several occasions about what is true in general).

Specialists will easily think of such results for those non-standard models which

are defined by mere use of the finiteness theorem; others can guess the kind of

disappointment involved from the ritual formalization of the impure completeness

theorem (in note 31).

In short, as a general rule elementary logic is most rewarding mathematically

when applied to structures defined by (sets of) formulas which are elementary as

they stand, not merely because they are thought of as expressions in a universal

formal system. This includes of course non-elementary notions which are demon-

strably equivalent to elementary ones (for example, the notions of orderable and

formally real fields). Up-to-date texts on model theory given general conditions

for such equivalences (covering the standard example above). One of the rare

exceptions to the general rule is elaborated on p. 107, where it is useful to go

back to the definition of a non-elementary notion (free basis of a group) in the

universal system, and to apply formal incompleteness properties of that system.

b) Logical inference

On the banal side (and contrary to the false impression mentioned repeatedly),

the advantage of a logically pure proof hardly ever lies in greater certainty, the

usually shorter impure proof being used for checking.36 But there is an advantage

in additional information (for example, bounds as in note 13), which can be read

off more easily from pure proofs; in contrast, unwinding of impure proofs, even if it

is theoretically possible, tends to pass the point of diminishing returns. Against

another widespread misunderstanding, though bounds are more easily read off

from pure proofs, better bounds are liable to be established by means of impure

proofs.

The place of pure logical inference within impure proofs is more delicate. The

issue is general, but most dramatic in the case of purely logical theorems. Modern

mathematics provides many examples. Thus the notion of ordered field has an

elementary definition, say O, and so an elementary theorem T about such fields

36To be pedantic, a logically impure proof of an elementary formula F proves the validity

Val (F ) of F , not F itself.
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is a logical truth: O ⇒ T . But the latter, or rather Val (O ⇒ T ), is often estab-

lished by impure proofs, involving the embedding of ordered fields in particular

real closed fields, and applying set-theoretic and topological operations to the

latter. The heart of the proof is to spot relevant (set-theoretic or topological)

properties P of the structures so obtained; only the implication

P ⇒ Val (O ⇒ T ) (6.5)

is derived purely logically, and often this part of the argument is not mentioned at

all (in the phrase of Bourbaki [1948], the derivation of 6.5 is the least interesting

side of the matter). Seeing those properties P makes many mathematical proofs,

as has often been said, more like perception (with all its problems) than a sequence

of formal steps.

Reminders (on the use of scientific experience). Though the examples just

given of logically impure proofs are commonplace today, they were not known

100 years ago, and still are not known to many authors of logical texts, in whose

own experience logically pure proofs have a much greater relative significance

(frequency). Thus, except for those with uncommon philosophical talent, their

limited experience is not sufficient for a correct sense of proportion on pure and

impure proofs in possible mathematical reasoning.

At the other extreme, some of the reservations by philosophers and mathe-

maticians about logic depend equally on defective knowledge of this subject, but

with a difference: impure proofs have not been widely advertised, while the best

(and, often, only) known claims for the interest of logic are the pretensions about

laws of thought or formal rigour mentioned on p. 63. They are considered next,

in a partial review which sharpens the general picture painted in Section 2.

6.7 Foundational Bearing of Gödel’s First Re-

sults

In each case, the logical properties of the schemes themselves will be recalled

first, and then they are tested by inspection of scientific experience (in the style

of Section 3). The famous foundational schemes of Russell and Hilbert are re-

viewed briefly, and Brouwer’s less famous ‘anti-formalist’ views are explained and

examined. The schemes of the ‘anti-formalists’ Poincaré and Zermelo are more

conveniently discussed in Sections 9 and 11.

Russell’s scheme

Russell’s aim of a universal system for all of mathematics has a clear logical or

mathematical sense, and a less obvious empirical sense.
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The logical aim cannot be achieved by the first incompleteness theorem, and

its philosophical significance is problematic, for reasons given already in the dis-

cussion (at the beginning of Section 4) of Hilbert’s ‘universal’ (complete) systems

for branches of mathematics, which he favoured for the sake of Methodenreinheit.

Russell’s empirical aim has been achieved, at least for existing mathematical

practice (by use of current set theory in place of Principia); partly by the sim-

ple device of restricting practice to a given system. The second incompleteness

theorem37 shows up a defect, a kind of blind spot, of this practice. As mentioned

repeatedly, formal independence from such a universal system explains (empiri-

cally) why certain well-defined problems have not yet been settled (for example,

in odd corners of group theory). But, and these are empirical facts too:

1. such problems are relatively rare

2. (in contrast to formal definitions of, say, Bourbaki’s basic structures) the

specifically formal axioms and rules of the universal system are barely men-

tioned in the later development

3. (last but not least) those structures can be applied perfectly well to familiar

objects like the natural numbers, which are normally not thought of as

defined set-theoretically at all.

By 2 and 2, the two properties characterizing Russell’s ideal (of a system which

is both formal and universal) are hardly used in practice.

It seems plain (in accordance with p. 87 on the use of scientific experience for

refuting foundational schemes) that the conclusions above would be less convinc-

ing without our experience with universal systems.

Hilbert’s scheme

Hilbert’s scheme is a kind of opposite extreme to Russell’s empirical aim and,

especially, to the doctrine (mentioned on p. 62) that only empirical case studies

can support universal systems.38

The difference is very well expressed by Hilbert’s favourite slogan, in Hilbert

[1931], which eventually replaced the modest business of purity of method: his

aim was a final solution39 of all foundational problems by purely mathematical

means . Actually, his aim is more modest than it sounds, because of the tacit

assumption (which alone makes the aim even remotely plausible) that only those

foundational problems which concern proofs of finitist theorems are ‘real’. (By

37In particular, footnote 48a of [1931] on the restriction to finite types (in Principia).
38As a matter of historical curiosity, neither Hilbert nor Russell ever stressed that particular

difference between them.
39Outside mathematics Hilbert liked big words like ‘final solution’ (or ‘world formula’ in

relativity theory), rather than little things (like the perihelion of Mercury).
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p. 70, the latter are of the same general character as theorems asserting that

some diophantine equation is insoluble.) The ‘final solution’ was to establish the

autonomy ‘in principle’ of the subject (exactly in the same sense as the subsection

on p. 67 establishes the autonomy of real algebra).

Despite Hilbert’s severe restriction, eloquently criticized in Gödel’s [1931a],

the first incompleteness theorem is enough to exclude a final solution. To be

final, it would have to provide a method which decides every finitist problem, so to

speak: here and now (and certainly every diophantine inequality; equivalently by

p. 76, its consistency with some formal system which is complete for solvability of

diophantine equations). Otherwise, if that system leaves the problem undecided,

tomorrow we might think of another system which settles it. The new system

would have to be justified, and so on ad nauseum.

The second incompleteness theorem is also relevant to Hilbert’s scheme, but

(by p. 78, and contrary to an almost universal misunderstanding) in a much more

subtle way, involving the following fact of experience:

1. For any formal rules or axioms actually used in mathematical practice (in

contrast to those experimented with in foundational studies), somebody

has an abstract interpretation in mind which establishes their consistency

instantaneously.

The second incompleteness theorem refutes an additional conviction (apart from

the business of a ‘final solution’), formulated by Hilbert, but widely current at

the turn of the century:

2. Set-theoretic and other abstract notions constitute a mere façon de parler,

and thus can be eliminated straightforwardly.

The second theorem pinpoints a particular class of counter examples to 2, since

the specific use of abstract notions in the instantaneous consistency proofs of 1

cannot be so eliminated.40

Though the use above of the second incompleteness theorem has unquestion-

able elegance and charm, detailed inspection of scientific experience establishes

more. As to 1, abstract notions are essential not only for consistency proofs

(which constitute a kind of singularity in mathematical reasoning) but, generally,

in algebra and number theory. Moreover, and this is a philosophical defect of the

aim of eliminating abstract notions from proofs: when this can be done, essential

knowledge contained in the proof is liable to be lost.

As to 2, by the turn of the century there had hardly been time to learn to use

set-theoretic methods efficiently: Hilbert’s conviction was quite consistent with

the ‘empirical evidence’, which is not the same thing as being supported by the

evidence! In fact, those methods were used particularly cautiously, even though

40For systems which prove their own consistency, the corresponding abstract notions cannot

be eliminated from the proof of the equivalence between F and F1 on p. 77.)
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(including theparadoxes) less mistakes had been made with sets than in finitist

consistency proofs in the twenties (cf. p. 79 and [∞]).

Finally, at least as a matter of common sense, the foundational problems

(about the ‘certainty’ or ‘security’ of mathematical knowledge) which Hilbert

had in mind do not seem at all promising. After all, though surely not the

only reliable means of knowledge, mathematical proofs have long stood out by

their certainty. Further analysis of that certainty, in terms of anything remotely

resembling existing ideas, is therefore at best a calculated risk, and the more

specific aim of increasing that certainty still further assumes that the certainty

already achieved is not 100%. Here it should be recalled from p. 86 that the

unwinding of impure proofs into pure ones, originally presented as eliminating

dubious abstract principles, simply yields other information. More generally,

preoccupation with certainty is liable to draw attention away from other possibly

genuinely problematic and therefore less sterile aspects of proofs.41

Brouwer’s scheme

Brouwer’s intuitionistic doctrine is best known for its polemical side, about defects

of set-theoretic definitions, and of (Hilbert’s problems about) formal rules. The

corresponding positive side is Brouwer’s aim of doing what Russell and Hilbert

neglected: to make the mental activity of proofs, not only formal derivations,

into the principal subject of foundational studies. An essential (though by no

means well known) element of that positive side is a new interpretation of the

logical operations, as maps from proofs to proofs.42 Naturally, for this different

interpretation, some of the familiar formal laws of logic fail; what is less well

known is that new ones hold.

This positive side was not much stressed by Brouwer himself, whose polemics

insisted on a reform of mathematics (or at least of its exposition). Moreover, he

41This paragraph obviously conflicts with several old ideas. For example:

1. Contrary to the tradition going back to Descartes, doubts and assertions (including

restrictions and extensions of principles of proof) are here treated symmetrically.

2. Contrary to the opening paragraph of Gödel [1944], here logic is not expected to set

general norms prior to all science (not even to all mathematics).

Of course, having survived, these old ideas sound plausible enough in the abstract. But they

evidently conflict with scientific experience, and inspection of the latter shows up their obvious

oversights; for example (in the case of 1) doubts can be dubious too, and (in the case of 2) norms

valid for literally all imaginable experience are liable to be useless for any particular domain.

(This last point is illustrated in the subsection on Russell’s schema too, by the weakness of

universal systems).

The price for dropping the simple-minded ideas 1 and 2, about the nature of knowledge as

one says, is high (cf. the subsection below on the problems involved in a useful representation

of proofs).
42Readers familiar with the intellectual climate of the first quarter of this century, mentioned

already on p. 64, will recognise here the then-privileged place of mind in nature.



Kurt Gödel 91

never presented so charmingly simple a scheme as those of Russell and Hilbert

(or, for that matter, as 1 and 2 in note 41). Nevertheless, what he said is clear

enough to be examined in the style of the previous subsections. Once again,

results by Gödel and by others profiting from his work, correct wide-spread first

impressions (both of intuitionistic doctrinaires and their critics) about the logical

properties of Brouwer’s scheme.

1. Since Brouwer’s doctrine stressed inadequacies of formal systems, the doc-

trinaires could be expected to err in the opposite direction: not seeing what

formal systems could do.

For example, Heyting [1956] says that no such system can embrace all valid

methods of proof. This is true, and in fact made quite specific by Gödel’s

second theorem: no system ‘embraces’ methods which use its own validity.

(Actually, the idea of ‘embracing’ the totality of proofs is mind-boggling

even when specialized to proofs of the one ‘theorem’: 0 = 0).

But this leaves the question whether a formal system ‘embraces’ all its

valid theorems; in other words, its completeness (naturally, for the intended

intuitionistic interpretation). In the fifties and sixties such matters where

taken up, and several positive results were obtained; as on p. 80, with special

care to reduce the (intuitionistic) ‘abstract nonsense’ (not, however, down

to arithmetic, but to the subject of so-called lawless sequences; cf. Troelstra

[1977] for an exposition).

Again, though Brouwer repeatedly objected to formal consistency as a suf-

ficient criterion of soundness, he neither saw its significance (on p. 76) nor

pin-pointed its limitations as exactly as Gödel did in [1931a].

2. On the other side of the fence, the critics, perhaps encouraged by Brouwer’s

dramatic ‘contradictions’ with ordinary logic (‘contradictions’ with a differ-

ent interpretation of the logical operations!) objected to (his) supposedly

paralysing restrictions on mathematical practice.

Gödel was one of the first to expose (in [1933]) the triviality of these par-

ticular, still widely believed objections. Since then we have learnt, slowly,

to set out the bulk of mathematics quite elegantly by efficient use of intu-

itionistic methods (to be compared to p. 89, and especially Section 10, on

the slow exploitation of specifically set-theoretic methods).

3. Gödel was also one of the first to recognize genuine defects. Specifically, in

his early notes on [1958] preserved at Princeton, he pin-pointed a principal

defect of Brouwer’s logic (which is also not yet widely known). In terms of

this chapter: provided the comparison applies, the unwinding of derivations

built up by intuitionistic formal rules is of about the same order of com-

plexity as for the corresponding ‘usual’ systems. For example, in the case



Kurt Gödel 92

of theorems (6.2 on p. 75) which show that some diophantine equation has

infinitely many solutions, the ‘unwinding’ consists in computing the n-th

solution of the equation (in some given ordering).

In short, by 1–3, the original impressions (of all concerned) about the logical

properties of Brouwer’s scheme were about as wrong as those of Russell and

Hilbert about their schemes. (Naturally, the corrections of the more famous

errors have also become more famous.) But given [1930] and [1931], which show

how easy it is to correct that kind of error, it was a foregone conclusion that the

logical properties of Brouwer’s scheme would be straightened out sooner or later.

In contrast, a philosophical assessment of Brouwer’s scheme is more delicate.

Since he proposed a reform (not analysis) of ordinary mathematics, experience of

the latter is not enough. Instead it is necessary to apply a basic lesson from gen-

eral scientific experience, on the choice of data needed to represent relevant fea-

tures of the principal objects of study. As already mentioned, Brouwer’s scheme

was to study the mental activity of proofs. His polemics certainly show up the

superficial character of known representations (not only in formal systems, but in

ordinary texts with diagrams and all the rest). But he has no satisfactory answer

to the question:

What better scheme is there than the known representations of proofs?

According to Brouwer [1948a], he proposed to explore (his) deepest consciousness,

presumably to arrive at ultimate reasons, as others have chased final causes. This

sort of pretentiousness is of course suspect, because it generally goes with simple-

mindedness. But here it is possible to be more precise.

The proposal errs by ignoring the basic lesson alluded to above, as follows. Re-

ports from (his) deepest consciousness may be quite enough for us to recognize the

(mental) object involved, but useless for its theoretical study . Perhaps to be com-

pared to reports on the shape and colour of minerals or plants in natural history;

going into ‘deepest’ consciousness then corresponds to a meticulous description

of nuances in shape, and shades of colour. True, such data are amply sufficient

for recognizing the (mental or physical) object meant; but they are not adequate

for a theory. Thus, in the case of minerals, rough knowledge of the molecular

structure tells us much more about their physically significant properties than do

very precise superficial data. In the case of proofs, a similar improvement would

be expected from even a crude idea(lization) of the memory structures involved.

As matters stand today, Brouwer’s aim was shortsighted; for though the others

neglected the potentially interesting topic of (actual) proofs altogether, what he

had to add to the subject added too little, and stopped him from looking for

results which are independent of our ignorance (about proofs).

Evidently, this ignorance concerns a theoretical analysis since, practically

speaking, we know a great deal about proofs, using them constantly as tools. It is

precisely in such circumstances that only a really substantial theoretical advance
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has a chance of competing with unanalysed practical knowledge or perceptive

aperçus; as a corollary, simple-minded schemes are then intellectually especially

unsatisfactory. But though unsatisfactory (and this has been a general lesson of

this chapter) a study of such schemes can be fruitful; the (mathematical) uses of

incompleteness properties, or of elementary formulas and their model theory (in

the subsections on pp. 74, 78 and 84) developed form Gödels’ studies of Russell’s

and Hilbert’s simple-minded schemes. A price paid for the philosophical weakness

of these schemes was the imagination needed to find the reinterpretations which

lead to applications of Gödel’s results.

From foundations to technology

The need for such reinterpretations is not particularly unusual in the sciences,

especially if the work in question was originally used to refute a theory. But the

frequency can be expected to be particularly high in the case of those founda-

tional schemes or theories which, in line with Kant’s view mentioned on p. 64,

make ‘possibilities in principle’ their primary object. For, given that preoccu-

pation, they will be satisfied with answers that simulate striking properties of

the (mathematical) phenomena under study. This cannot be expected to tell us

much about the phenomena themselves. But it will lead to technological progress,

provided (as is natural) the answers are formulated in familiar (say, mechanical)

terms. For then there is a chance that the effects which originally struck us can

be achieved by those familiar means too, perhaps even more economically than

by the things originally considered. Achieving a given effect, rather than under-

standing a given (natural) phenomenon, distinguishes technology from science.

Evidently, the word ‘technology’ is suggested by the relation (on p. 62) between

Frege’s rules for logic which had the ethereal purpose of analysing deduction, and

the application of computers to non-numerical data. But the word also applies

quite well to the mathematical uses of Gödel’s results.

The parallel with technology applies also to the relative difficulty of discov-

ering foundational results (which usually correspond to first impressions) and

effective uses which, by above, require imagination. In contrast, in the case of

(what are normally called) fundamental sciences the applications look after them-

selves. Incidentally, the relative difficulty of those two kinds of discoveries is badly

obscured by the slogan of ‘pre-established harmony’, so popular among logicians

from Leibniz to Hilbert.

6.8 Background to [1938]: Zermelo’s Set The-

ory

The material in Sections 8, 9 and 10 will appeal most to either mathematicians

or historians of mathematics. The reason was given already on p. 50: modern set
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theory has turned out to be of some interest when regarded as a specialized branch

of mathematics. Its original appeal as a foundational system has turned out to

be deceptive, as argued in Bourbaki [1948], with a few exceptions (in corners of

advanced mathematics) discussed above and illustrated on p. 107 below.

Sets before the twenties

Older readers may still remember the embarrassing level of traditional ‘debates’

about sets and their properties.

• At one extreme there was the fixation on the paradoxes; despite the fact

that, for example, the most famous version, due to Russell, has a perfect

parallel in arithmetic if one assumes that there is a greatest integer.

• Even more thoughtless were the sweeping generalities stirred up by those

paradoxes.

The most innocent connerie was the idea that, somehow, axiomatization

would be a safeguard, as if there were no inconsistent formal systems (like

Frege’s).

The most pretentious was the appeal to a general theory of knowledge

(along the general lines familiar from Section 2 and, especially, p. 92 on the

matter of proofs). In the particular case of sets, the stress was on definitions

(rather than proofs) from which sets were supposed to be ‘constructed’, to

be compared to the then-current business of sense data from which physical

objects are ‘constructed’; all this despite the fact that (corresponding to p.

91 on proofs of 0 = 0) any one set has a truly mind-boggling ‘totality’ of

definitions, and that sense data tend to fall to pieces on a closer look while

(most) objects do not.

By the end of the twenties, at least some mathematicians had become suf-

ficiently familiar with the vague mixture of things called ‘sets’ to decide which

objects they wanted to talk about, instead of relying on accepted usage or on

its (premature) codification in formal axioms. Some basic distinctions had been

made, to be compared to distinctions between natural, rational, real or complex

numbers: without such distinctions, properties of + and ×, which are common

to all of those numbers, are trivial for any one kind (and ‘paradoxes’ result if one

puts together properties which are of interest for different kinds).

Fat hierarchies of sets

In particular, in Zermelo [1930] there is a lucid description of what is nowadays

called the cumulative hierarchy of sets ; that is, sets generated by iterating the

power set operation P :
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P(x) is the collection of all subsets of x

(more precisely, iterating P transfinitely up to some stage α).

The simplest particular cases of the hierarchies of sets described in Zermelo

[1930] are Vω and Vω+ω where

V0 = ∅ (the empty set)

Vα+1 = P(Vα)

Vω =
⋃
n∈ω Vn

Vω+ω =
⋃
n∈ω Vω+n.

More simply, also for α beyond ω + ω, and without distinguishing between suc-

cessor and limit ordinals α:

Vα =
⋃
β<α

P(Vβ).

Vω or, more pedantically, the structure (Vω,∈ω) satisfies the familiar axioms

of set theory without the axiom of infinity; Vω+ω satisfies those of Zermelo [1908],

from which the formal system called ‘Zermelo’s axioms’ in the current literature

is derived.43

Zermelo [1930] introduced an additional parameter, an arbitrary collection

U (for Urelemente) of distinct atoms without any elements, and a corresponding

hierarchy Vα(U) with V0(U) = U . This is useful, and used in practice; for example,

in number theory the natural numbers are thought of as atoms. But the Vα(∅),
called Vα above, are good enough for the present purpose.

Non-elementary axiomatizations

Zermelo [1930] contains also the non-elementary axiomatization (mentioned on

p. 66) for all segments of that hierarchy up to so-called Grenzzahlen α, also

called inaccessible cardinals . Thus, in contrast to Peano’s or Dedekind’s axioms,

Zermelo’s are not categorical, but determine a family. A trivial modification

yields categorical axioms for such specific segments as the first (where α = ω) or

the next (the first uncountable inaccessible).

In terms of p. 66 the ‘principal feature’ of the hierarchies in Zermelo [1930]

is the (binary) membership relation ∈. There are three non-elementary axioms

(the remaining ones being elementary):

1. Well-foundedness of ∈ for arbitrary predicates P :44

∃uP (u) ⇒ ∃x[P (x) ∧ (∀y ∈ x)¬P (y)].

43Interested readers are advised to stop a moment, and actually verify a couple of axioms.

Remember that Vω is the collection of hereditarily finite sets and that, for n ≥ 1, Vω+ω is the

closure of Vω+n under power set and subset formation.
44Its contrapositive is called ∈-induction.
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This holds for all Vα, since they are ‘built up from below’: if u ∈ Cα, there

is a least β ≤ α for which some x ∈ Vβ and P (x).

2. Comprehension, again for arbitrary predicates P :

∀x∃y∀z(z ∈ y ⇔ [z ∈ x ∧ P (z)]).

This too holds for all Vα: if x ∈ Vα, x ⊆ Vβ for some β < α and hence also

y ⊆ Vβ; but since Vα ⊇ P(Vβ), y ∈ Vα too.

3. Replacement for arbitrary functional relations R (or, equivalently, predi-

cates of ordered pairs):

If the domain of R is restricted to a set ∈ Vα, so is the range.

This holds for α = ω and, if one wishes to be pedantic, also for α = 2. It

does not hold for α = ω + ω, etc.

A principal result of Zermelo [1930] is this: granted the rest of the ax-

ioms, replacement holds only for Vα where α is strongly inaccessible, that

is card Vα = card α.45

Moreover, and this is the non-elementary axiomatization of the family of Vα
where α is strongly inaccessible:

if any structure (D,E) with domain D and the binary relation E on

D satisfies the axioms of Zermelo [1930], then (D,E) is isomorphic to

some (Vα,∈) where Vα is in that family.

Digression on the passage to formalizations of set theory

In contrast to those derived from Peano’s or Dedekind’s axioms (by the passage

on p. 67), Zermelo’s axioms are better known than the non-elementary axioma-

tizations, and are familiar from current texts on logic or from introductions to

mathematical texts. As always, the three (infinite) schemata46 of formal axioms

arise form the three non-elementary axioms. But there are some curiosities.

45Equivalently, in terms of Cantor’s cardinal arithmetic: for β, γ, βδ (all < α),

βγ < α and (
∑
δ<γ

βδ) < α.

46Such schemata can be finitely generated by introducing a second type of variable, for

predicates (usually denoted by capitals X), a new binary relation symbol η (xηX: X applies

to x), and axioms for the X corresponding to the (finitely many) syntactic rules for building

up formulas. In the particular case of set theory, those X are called ‘classes’ and, as Gödel

observed in [1940], ∈ can be conflated with η in a natural way.
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For example, non-elementary comprehension implies not only the schema for

formulas F with a single free variable z, but also

∀u1 · · · ∀un∀x∃y∀z(z ∈ y ⇔ [z ∈ x ∧ F (u1, . . . , un)]).

This schema (with ‘parameters’ u1, . . . , un) is not formally derivable from the

other one. (This has a parallel in the case of Dedekind’s axioms but not, as an

easy exercise shows, in the case of Peano’s).

More interestingly, the formalizations are satisfied by Vα for suitable accessible

α too. The proof is similar to the one of 6.5.1, but the results is incomparable:

1. the structures Vα involved are not countable, since already Vω+1 has the

cardinal of the continuum

2. not only the (elementary) logical symbols retain their standard meaning;

for example, P does too.

Typically, these simple facts were mentioned relatively late, in Montague and

Vaught [1959], and are still not prominent in the literature.

Gödel was the first to find really striking differences between the non-elementary

axiomatizations and their formalization. With one proviso, those differences are

very well illustrated by the differences between the full Euclidean plane (or, more

simply, our geometric imagination) and its ‘thinned’ part constructible by use

of ruler and compass (already mentioned on p. 66); both the full and the thin

plane satisfy Euclid’s elementary axioms, but only the former satisfies the non-

elementary continuity axiom. By and large, the geometrically most obvious prop-

erties are easier to verify for the Euclidean plane, even when they hold for the thin

part too (for example, the existence of a regular polygon of 17 sides). Also, Eu-

clid’s axioms do not decide every elementary formula: already the Greeks asked

questions which have a different answer for the full plane and its thin part.

The proviso is connected with the logical form of questions common in geom-

etry and in set theory. The former are often purely existential, and so a solution

for the thin plane is automatically a (refined) solution for the full plane, as in

the case of a regular polygon of 17 sides. In set theory the logical form is more

complicated, and so solutions to formally the same problem will be incomparable;

in the case of the plane, the set {(x, 0) : (x3 − 2)x = 0} consists of one point in

the thin part (x = 0), but of two points in the full plane.

The much more heavily publicized comparison with the parallel axiom is

wholly irrelevant to Gödel’s contribution, since it has nothing to do with the

difference between elementary and non-elementary axioms (the parallel axiom is

undecided by the remaining axioms of Euclid together with full continuity).47

We now return to the principal topic.

47The business of the parallel axiom corresponds quite well to relatively easy analyses of the

non-elementary axioms in Zermelo [1930], sufficiently illustrated by the easy incompleteness

argument for set theory in note 17.
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Consequences of the non-elementary axioms

As an immediate pay-off, the familiar axioms are seen to be valid by inspection;

and the more ‘elementary’ the axiom, the more segments α satisfy it.

Secondly, a point which Gödel like to stress (for example, in [1947]), Frege’s

formulation

∃x∀y[y ∈ x ⇔ P (y)]

is obviously false for all α when P (y) is y = y; for example, for the segment up

to ω (of hereditarily finite sets), all the infinitely many objects y in that segment

satisfy P (y), but every set x in the segment is finite.

One of the easiest consequences is the axiom of choice; for example, in the

form:

for any set x of disjoint (unordered) pairs {u, v}, there is a set y

intersecting each pair of x in exactly one element.

Theorem 6.8.1 The axiom of choice is true for each Vα.

Proof. If x ∈ Vα, all the {u, v}, and hence u and v, are in Vβ for some β < α.

So y ⊆ Vβ, and hence y ∈ Vα. �

In other words, for the fat (or ‘full’) hierarchy, the axiom of choice is quite

evident. The fact that this axiom was used tacitly till Zermelo [1904] should be

compared to similar uses in geometry of axioms for order which were not listed

by Euclid: such tacit uses do not cast doubt on the soundness of the axioms (for

the intended meaning), though possibly on the competence of the axiomatizers.

Cantor’s continuum hypothesis CH asserts, in effect:

any subset of Vω+1 (which is in one-one correspondence with the real

numbers) is either in one-one correspondence with Vω+1 itself or with

a member of Vω+1 (equivalently, countable or finite).

Theorem 6.8.2 The continuum hypothesis is decided by the non-elementary ax-

ioms.

Proof. CH concerns only elements of Vω+4. Now, for the natural definition

(say, Cω+4) of Vω+4, the non-elementary axioms are obviously categorical (even

without replacement). That is, if the formula Cω+4 holds in any model (D,E) of

the axioms for an object c in D, then (c, Ec) is isomorphic to (Vω+4,∈ω+4), where

Ec = E is the restriction of E to c× c. �
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Thus CH is decided just as, say, the prime pair conjecture48 is decided by

Peano’s axioms; only we don’t know which way.

The so-called generalized continuum hypothesis GCH is obtained from CH

when ω is replaced by arbitrary infinite α.49 A moment’s reflection on GCH

conveys a feeling for the content of non-elementary decidability, because GCH

is not obviously decided by the non-elementary axioms. It is not if, for example,

GCH is true for all infinite α less than the first uncountable strongly inaccessible

cardinal, but not for all. Then GCH is true in the smallest segment Vα which

satisfies those axioms, but not in all such segments.

Bibliographical remarks

Zermelo [1930] has made little impression. For one thing, though the non- ele-

mentary character of the axioms is prominent enough, there is no hint of such

easy but memorable consequences as those listed in the last paragraph. Perhaps

more significantly, two basic points were slurred over.

First of all, the reader was not prepared for the striking effect of adding

the replacement axiom (on the ordinals α for which the axioms are satisfied by

Vα). As early as 1931 Gödel alluded to some reservations, evidently on this

score, in his correspondence with Zermelo; the latter did not take them up, and

Gödel repeated them throughout the thirties in his notes for lectures and courses.

Those reservations go well with the fact that the axiom was a late-comer, having

been introduced in the twenties by Fraenkel (in a restricted form, for definition

by transfinite recursion) and in Skolem [1922] (for formal reasons), but was first

properly used only by von Neumann [1928]. There it replaces the power set axiom

for developing a good part of then-current set theory; but, above all, it is used

for a canonical well ordering (by ∈) of what are now the standard (set theoretic)

‘numerals’ for ordinal numbers, in which all well orderings can be embedded. As

we see things now, von Neumann’s work suggests a thinning of the hierarchy Vα.

For any so-called regular cardinal ρ (for example ℵ1, in Cantor’s notation for the

first uncountable), let

V ρ
α =

⋃
β<α

Pρ(V ρ
β ),

where Pρ(x) is the set of all those subsets of x which have cardinal < ρ. Then,

for α ≥ ρ, V ρ
α = V ρ

ρ and V ρ
ρ satisfies the non-elementary axiom of replacement

48Being purely universal, Fermat’s conjecture is a less suitable analogue because (by the

discussion on p. 79) if the conjecture were proved consistent with number theory, the same

methods would prove the conjecture itself. Basically: if ∀~x(p 6= 0) is consistent, then its

negation ∃~x(p = 0) is not derivable, and hence (being existential) is false. Then ∀~x(p 6= 0) is

true.
49The restriction to infinite α is needed, since α = 0 and α = 1 are the only finite α which

would satisfy the unrestricted version.
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(but generally not the power set axiom). Familiarity with such V ρ
ρ is a useful

preliminary for really effective use of replacement.

In this way one also comes to see the principal open problem presented by

the hierarchy Vα: not the innocuous power set operation, but the number of

its iterations50 (in fact, the problem remains open and is a principal subject of

Section 10). But for the majority of potential readers of Zermelo [1930] at the

time, the operation P was problematic, the key words being ‘vicious circle princi-

ple’ or ‘impredicativity’. Consequently, quantification over arbitrary predicates,

so essential to non-elementary axioms, seemed to be an evasion of the problem

on the part of Zermelo. Perhaps it was; in any case, all he did was to repeat

his would-be telling terminology of definite Eigenschaften (predicates) which had

been ineffective since Zermelo [1908] (where it was first introduced). The irony

is that he never seems to have spotted the crucial ambiguity between:

1. definite in the sense of well-defined, perhaps even: decidable (as in Gödel

[1931]: entscheidungsdefinit)

2. having a definite extension (as is implicit in Cantor’s explanation of sets

as: varieties which can be grasped as a unity, varieties being defined by

predicates).

As to 2, this is ensured by the restriction of the comprehension axiom to: z ∈ x
(in Gödel’s terms in [1947], sets y are sets-of-something : of x’s). But for the

majority of readers hung up on the business of definitions (or on predicativity , in

the jargon of the day), only sense 1 was natural. Certainly, Zermelo himself had

made great progress in the twenty five odd years before Zermelo [1930] appeared,

but not enough to find the mot juste sufficient to remove that hang-up.

A much easier method towards this end would have been to look at the al-

ternatives which predicativist critics had offered; specifically, what have come to

be known as ramified hierarchies . (Of course, they were originally intended as

hierarchies of definitions, while nowadays we look at the sets so defined). The

literature ranged from Poincaré’s reflections on the matter to hoary details in

Principia, and to particular examples in Weyl [1918]. Zermelo himself may have

had too little confidence in Poincaré’s predicativist philosophy to look at those

alternatives; for one thing, he had had bad experience of Poincaré’s reflections on

the mechanical theory of heat, which are criticized in Zermelo [1896].51

50This is quite parallel to the ‘problem’ presented by Vω if one ‘believes’ only in finite sets x:

for each such x, P(x) is not problematic, but the notion of ‘arbitrary’ (finite) iteration is.
51Incidentally, that paper has also made little impression on mathematicians, although it

contains the first really elegant proof of the recurrence theorem for dynamical systems.
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6.9 Constructible Sets

Gödel introduced a formal variant of the predicativist ramifications at the end of

Section 8. Earlier attempts were much clumsier; as so often, but perhaps excep-

tionally so here (or, on p. 90, in Brouwer’s logic) since (by p. 94) it goes against

the grain to think of definitions instead of the objects defined (or of proofs instead

of the theorems proved). Even so, in retrospect the complications appear pretty

marginal, mainly because of pointless restrictions: to sets of integers (instead of

abstract sets), or to so-called simple (instead of cumulative) types.

First step: a restricted power set

In any case, if the original intentions of ramified definitions were to be formal-

ized after Zermelo [1930], the natural scheme was to use as definitions: formulas

of the elementary language of set theory with (the usual meaning of) its one

principal symbol ∈, and to let quantifiers range over a given (in applications:

‘previously’ defined) set x. Then a formula F (z, u1, . . . , un) defines the subset

{z : F (z, u1, . . . , un)} of x (where u1, . . . , un are elements of x), and one writes

P−(x) for the collection of all sets defined in this way.52

The ramified hierarchy is defined (by ordinal recursion) as:

Lα =
⋃
β<α

P−(Lβ).

Then:

• For α ≤ ω, Lα = Vα.

• For α > ω, in sharp contrast, Lα+1 has the same cardinal as Lα (and if the

‘parameters’ u1, . . . , un were omitted, P−(x) would even be countable for

any x).

The hierarchy is ramified in the sense that (at each stage new definitions of

any one set are introduced, but also) new subsets of Lα appear beyond α + 1,

in contrast to Vα. For example, when α = ω, new sets of integers appear in

Lω+n+1 − Lω+n for each n < ω. An immediate consequence is that, in general,

the comprehension schema is not satisfied by the sets ∈ Lα (certainly not for

ω < α ≤ ω + ω).

By the turn of the century it was not unusual to begin analysis with the

principle of the least upper bound: in logical terms, the comprehension schema

was used at the very start. This seemed desperate if, like Russell in Principia,

52By note 46, it is clear how to replace P− by a finite number of operations with a more

algebraic look, at the price of slowing up the growth of the hierarchy below. This was done by

Gödel in [1940], using seven operations. Below, following his original exposition in [1938], P−
itself will be used.
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one wanted a (theory of some) ramified hierarchy to provide a ‘universal’ system

for mathematics. He introduced the so-called reducibility axiom which says, in

effect, in the case of subsets of Lω, that no new ones appear in Lα for α > ω+ 1.

These tactics seemed equally desperate, especially coming from a philosopher who

had compared the advantages of the axiomatic method to those of stealing over

honest toil; more so than Zermelo’s mildly evasive business of ‘definite predicates’

on p. 100.

Second step: the number of iterations

Already back in 1931, Gödel concentrated on another weakness of the ramified

hierarchy in Principia: it stopped at ω+ω, for no good reason. More specifically,

footnote 48a of [1931] points out that the consistency of (the appropriate formal

theory of) Lω+ω can be proved in Lω+ω+1.

It might be added that, by 1930, transfinite definitions (for example, of the

real closure of an arbitrary ordered field) were common in mathematics. And

usually there was a very good reason for stopping at some stage α: either when

no now objects are introduced after α, or when the objects accumulated by that

stage satisfy some clearly stated (closure) condition.

Footnote 48a was essentially negative, containing no hint, even remotely sat-

isfactory for predicativist aims, where to stop (beyond ω + ω). Gödel’s decision

was not to stop the hierarchy Lα at all. More formally (with Zermelo [1930] as

background) he did not stop before κ, the first uncountable inaccessible ordinal

(defined on p. 96).

Gödel then discovered a problem for which the decision of where to stop the

hierarchy was irrelevant.

Constructible sets: reculer pour mieux sauter

To answer the broad question:

What does one want to know about Lκ?

a good start is:

Which of the usual axioms of set theory are satisfied by Lκ?

Several are verified immediately. For example, extensionality or pairing . But also

the non-elementary axiom of well foundedness of ∈, simply because (Lκ,∈κ) is

the restriction of (Vκ,∈κ) to Lκ × Lκ. There are also pleasant surprises, the first

one being:

Theorem 6.9.1 Lκ is closed under the power set operation.
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Proof . For example, let x = Lω. There are 2ℵ0 subsets of Lω, so ≤ 2ℵ0 such

subsets in Lκ. Suppose they appear in

Aκ = {α : α < κ and Lα+1 − Lα 6= ∅}.

Since κ is regular and > 2ℵ0 , Aκ has an upper bound ακ < κ. Then the set y

defined (in Lακ) by the formula ‘z ⊆ Lω’ is in Lακ+1.
53 �

The proof above is certainly not difficult, once one has understood that y is to

be the set of subsets of Lω that occur in Lκ, and not P(Lω) itself. Of course, the

proof by inspection that, for limit numbers α, Vα satisfies the power set axiom,

is even simpler (cf. note 43).

The replacement property, which implies comprehension (by taking charac-

teristic functions), presents the new aspect. There is no evidence at all that the

non-elementary version is satisfied in Lκ, but:

Theorem 6.9.2 The formal schema of replacement is satisfied in Lκ.

Proof. By induction on the logical complexity of the (elementary) formulas

defining the functional relation involved, and use of familiar closure properties of

sets of ordinals.54 �

The axiom of choice also holds, and again the proof is a little more involved

than mere inspection (in 6.8.1). But it also gives more:

Theorem 6.9.3 There is an explicit definition of a well ordering of Lκ.

Proof. By recursion on α < κ. Suppose the elements u of Lα are well ordered by

<α, which induces a well ordering of finite sequences ~u of Lα (also written <α).

As usual, elementary formulas F are numbered. For x ∈ Lα+1 − Lα, let Fx be

the first formula which defines x (in Lα):

x = {z : Fx(z, ~u} for suitable ~u in Lα.

Let ~ux be the first such ~u. Then the elements of Lα+1 − Lα are ordered lexico-

graphically according to (Fx, ~ux). It turns out that the (natural) definition of <κ

uses only quantification over elements of Lκ.
55 �

Using the parallel on p. 97, we can fairly say that the definition of the well

ordering <κ of Lκ is easier than Gauss’s construction of a regular polygon with

17 sides.
53Clearly, the argument applies not only to κ, but to any cardinal β which is regular and

> 2ℵ0 . As it stands, the argument leaves open whether, for such β, new subsets of Lω appear

in Lκ − Lβ (cf. p. 106).
54Cf. the few lines on p. 456 of Barwise [1977] needed for a full proof.
55Incidentally, similar care is needed in checking that the (natural) definition L of con-

structibility is invariant (that is, it defines Lκ both when its quantifiers range over Lκ and over

Vκ), and that ∀xL(x) holds in Lκ (that is often written: V = L).
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Bibliographical remarks

In keeping with his reservations (mentioned on p. 99), Gödel first tried to do

without the replacement property, and to describe the constructible hierarchy Lα
only for α < card Vω+ω; in particular, without using von Neumann’s canonical

well ordering (p. 99). Instead, well orderings had to be defined (painfully) in

Vω+ω.56 The simplification achieved by using von Neumann’s notations (for which

higher types are needed) provided the second memorable lesson (after footnote

48a of [1931]) in Gödel’s education on the virtues of transfinite iteration.

The titles of [1938], [1939] and [1940] about consistency properties of formal

set theories do not even mention the notion of constructible set, although he con-

sidered the use of that notion as his most significant contribution in the area.57

Actually, his choice of titles involved him in painful details: it had to be verified

that the properties of Vκ used to establish facts about Lκ were formally derivable

from the axioms listed in the theories considered. Gödel’s strategy of going into

details avoided controversy at the time, as in note 16. But it also left the (false)

impression that the most urgent (if not the only fruitful) problem was to comple-

ment his work by establishing the consistency of the negations of the propositions

he had established for the constructible sets; in other words, to show their formal

independence. This turned out to be of a different order of difficulty (cf. p. 108).

Gödel himself paid a price for his cautious tactics. For example, in footnote

2 of [1947], he recognized the absurdity of stressing the consistency of the axiom

of choice since (by 6.8.1) it is as easily seen to be true for the hierarchy Vα as the

other axioms.

A more startling oversight (corrected in [1964]) occurs in [1947]. There he

assumed the formal independence of the continuum hypothesis, and played with

the idea that CH should be judged by its arithmetic ‘fruits’ (that is, its arithmetic

consequences). Certainly, mere consistency leaves open the possibility that CH

has new (even false) arithmetic consequences; but a glance at his own definition

of L (in particular, at Vω = Lω) shows that CH (and even V = L) has none at

all. Gödel’s oversight is natural enough if consistency is regarded as an end in

itself.58

56According to conversations in the fifties and sixties, Gödel originally tried to define L as an

inner model for (arbitrary models of) Zermelo’s set theory, where nothing like the ‘standard’

well-orderings of von Neumann’s ordinals by ∈ are available. Suitable well-orderings have to be

defined as, for example, in modern expositions of the constructible analytical hierarchy (of sets

of natural numbers), and Gödel had no taste for such exercises. His notes for various lectures

at Notre Dame in the thirties (left to the Institute of Advanced Study at Princeton) confirm

these conversations.
57This was not a late afterthought (for example, in his comments reported in Kleene [1978]),

but is already stressed in his notes for lectures in the thirties.
58The opposite view was publicized for nearly a decade, before convincing though temporary

use was made of it by Ax and Kochen [1965] in their proof of the decidability of the theory of

p-adic fields (by means of the CH).
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For a realistic view of Gödel’s heuristic ideas on p. 150, two more points are

relevant:

• He himself missed several interesting results by giving attention only to the

theorem stated, not to the details of its proof.

This concerns less formal errors (for example, at the end of [1933a]), but

certainly his review of Skolem [1933a] (mentioned in note 35).

Returning to L: according to Gödel’s notes, not he, but Ulam, steeped in

the Polish tradition of descriptive set theory, noticed that the definition of

the well-ordering (6.9.3) of subsets of ω was so simple that it supplied a

non-measurable PCA set of real numbers (when all objects involved are

taken from L).

• Conversely as it were, Gödel tended to be uncritical of logically exciting

claims; for example, regarding non-standard models (in [1974], admittedly

written in the seventies; cf. p. 61). He attributed the scepticism of num-

ber theorists to broad prejudice, mysteriously connected with the recursive

undecidability of Hilbert’s tenth problem. In fact, later developments more

than justify the suspicions of the majority.59

GCH: a variant of the axiom of reducibility

We now come to Gödel’s principal discovery about the (thin) hierarchy Lα. To

understand the issue, it is necessary to recall p. 98 on the continuum hypothesis

(in its intended sense, that is, for the fat hierarchy Vα), and the objects involved:

elements of P(ω), subsets X of P(ω), mappings of X onto P(ω) or ω. These

objects are in Vω+4. In contrast, when the continuum hypothesis is meant for the

thin hierarchy Lα, the corresponding objects can occur at levels far beyond ω+ 4

(by note 53). Also, inasmuch as there are liable to be more of all these objects

in Lα than Lβ for β < α (and more in Vω+4 than in Lκ), the truth or falsity of

the continuum hypothesis may well be sensitive to the length of the segments Lα
(and to the kind of hierarchy) considered.

A corresponding sensitivity is found in a more familiar formulation of the CH

in terms of cardinal arithmetic: card P(ω) is the first cardinal > ω. This is the

least ordinal which is not in one-one correspondence with the set ω by a map in

the stock of sets considered. The ordinal is denoted by ω1 if all maps (of ω onto

initial segments of the ordinals) are considered, and by ωLα1 if only all such maps

in Lα are considered. Evidently, ωLα1 is liable to be < ω1 even though Lα and Vα

59The best-known claim for non- standard models is in Robinson and Roquette [1975] (where

incidentally arbitrary ones are used, in no way tailored to their problem). But the only novelty

is their use of a (known) generalization of Roth’s theorem to arbitrary number fields, which has

nothing to do with non-standard models.
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have the same ordinals.60 In fancy language, already used in note 55: while the

property of being an ordinal is invariant or absolute, the property (of ordinals)

of being a cardinal > ω is not.

This point is often overlooked in the (popular) ‘debate’ on the CH, where the

orderliness of the ordinals (in Vκ or Lκ) is contrasted with the mess of P(ω) (in

Vκ): a similar mess is involved in the collection of maps (in Vκ) of ω onto initial

segments of the ordinals. It does not seem at all surprising that we have not (yet)

decided whether the two ‘messes’ match. This fact is perfectly consistent with

the non-elementary decidability of CH 6.8.2; after all, we don’t even know how to

match up the surely less ‘messy’ set of prime pairs with the ordinals < ω, though

the matter is certainly decided by Peano’s non-elementary axioms (as mentioned

on p. 99).

Returning to the GCH: by a quite simple use of 6.5.1 (cf. also p. 97) Gödel

established the GCH for Lκ, and by careful formalization in [1938] even a little

more:

for any model (D,E) of formal set theory, the ‘inner model’ defined

by the condition L (in note 55) always satisfies the GCH.

This result is a consequence of the following more delicate property of the

constructible hierarchy (where ‘cardinal’ refers to constructible maps):

Reducibility for cardinals . If α+ is the first cardinal > α, then all

subsets of Lα which occur in the hierarchy at all are already in Lα.61

A proof, in less than a page, can be found on pp. 465–466 of Barwise [1977]. It is

remarkably similar to some early expositions by Gödel, especially in his notes for

general lectures (for example, to the American Mathematical Society in December

1938). As he mentioned in conversation, the idea of the sort of argument involved

occurred to him when he learnt Skolem’s proof (6.5.1) as a student.

Other properties of L

Few other memorable properties of L were discovered in the 30 years after [1938],

until the so-called Souslin hypothesis was shown to be false for L in Jensen [1972]:

there is a dense ordering in L without end points, which is complete (for cuts

in L) and any set (in L) of non-overlapping intervals is countable in L; but the

ordering is not order isomorphic to the real numbers (of L).62 As is clear from

60Cf. the example on p. 97, where the least integer n which satisfies (∀x > n)[(x3 − 2)x 6= 0]

for all x constructible by ruler and compass, is less than the least integer with that property

for all real numbers x.
61This is a sharpening of 6.9.1 (closure under the power set operation).
62Incidentally, Gödel’s notes (for example, in Arbeitsheft XI , 47-54) contain material on

Souslin’s hypothesis and the related matter of Aronszajn trees but, apparently, nothing in

relation to L.
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its title, Jensen [1972] concerns the details of Lα also for ordinals α which are

not cardinals. Such concern would have appeared marginal (Kleinarbeit63) even

only ten years earlier, since the significance of such Lα was first established in

the sixties in so-called generalized recursion theory (cf. Chapter C.5 of Barwise

[1977]).

The discoveries in Jensen [1972] about L were used by Shelah to solve a purely

algebraic-sounding problem about certain (abelian) groups satisfying a condition

W (for ‘Whitehead’). Provided G is countable, the only case that arises in the

(topological) context where the condition W was first introduced, they have a

free basis. The problem, explained in detail in the very readable exposition Eklof

[1976], was whether

all groups satisfying W have a free basis. (6.6)

Though the word ‘set’ is not mentioned in 6.6, the stock of sets considered is

clearly liable to be relevant (as in problems on cardinals on p. 105). The more

sets, the more groups (satisfying W ): the (universal) proposition 6.6 is more

difficult to satisfy. But for any given group G: the more sets, the more subsets of

G, and so the better the chance of there being a basis (in the stock considered).

Shelah established 6.6 for constructible groups (and bases), by essential use of

Jensen [1972]. The example illustrates two points of general interest.

First, in terms of current mathematical jargon: how easy is it to guess whether

some phenomenon in group theory is set-theoretical (as one speaks of, say, grav-

itational phenomena)? That is, whether knowledge of set theory is relevant or

even decisive. Flash judgment does not seem reliable. For example, in the super-

ficially similar case of the (particular, but also uncountable) abelian group G0 of

bounded sequences of integers with pointwise addition, the constructible part of

G0 has a (constructible) free basis, simply by use of the continuum hypothesis,

as observed in Specker [1950]; but a quite different, much more informative proof

in Nobeling [1968] establishes the result (and more) for G0 itself.

Secondly: how useful is it to eliminate (some particular) specifically set-

theoretical restrictions? (in the case above, of uncountable groups satisfying W :

to constructible sets). As in similar cases, the answer will have to wait till group

theorists are familiar enough with such groups or their constructible parts to have

a chance of spotting whatever uses such objects may have; in other words, until

St. Thomas’s adaequatio rei intellectu applies (to those group theorists).

Fundamentalists in set theory follow the simple rule that all ‘hypotheses’

not known to be satisfied by (suitable) segments of the full hierarchy should be

eliminated. But, at least in terms of the guiding parallel on p. 97, this simplicity

is spurious. For example: in number theory, the full Euclidean plane or the field

63Gödel’s Arbeitshefte contain some attractive Kleinarbeit too. For example, XV , 11-13 or

XVI , 38-40 on the axiom of extensionality; but this is superseded by the much more thorough

analysis in Scott [1962].
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of all complex numbers is not always most relevant; in fancy language, it may be

more rewarding to embed the numbers in some subfield with suitable properties

(which we happen to know). So, if set theory is ever to become significant for

number theory (if ω or Vω is to be embedded in some variant of the full hierarchy,

with the axioms of formal set theory - or of a subsystem! - playing the role of the

axioms for fields above) a prerequisite is that we should know something about

that variant. As matters stand today, the constructible hierarchy has at least as

good a chance of being useful as the full hierarchy from which it is extracted:

after all, we know literally more about the Lα than the Vα.

Formal independence results

We now return to a topic, already broached on p. 104, which has led to a sophisti-

cated arsenal of ‘subhierarchies’. We already provided general orientation on the

topic, in particular (on p. 93), on the imagination needed to discover uses. As so

often in such cases (cf. p. 66), as it were to protect the results in question, a body

guard of exaggerations has developed. For example, the connerie that problems

about a specific structure like Vω+ω are ‘meaningless’ when they do not happen

to be decided by the sort of properties so far codified in axioms. (This connerie

is involved in regarding the CH as ‘settled’ by its formal independence.)

In view of the last subsection, the body guard is now superfluous. Since

Cohen [1963] a great number of subhierarchies have been introduced to establish

the (formal) independence of most propositions mentioned in the last few pages,

including Souslin’s hypothesis and 6.6.64 For the purposes of this chapter, there

is no need to enter into details. But a general outline of this successful work

is relevant in relation to both Gödel’s heuristic views on p. 50, and to his own

(early) results contained in his notes at Princeton.

For one thing he observed some simple conditional independence results , re-

discovered (in one way or another) in the fifties; cf. Hajnal [1956], Lévy [1957],

and Shoenfield [1959]. Specifically: suppose that V = L (in note 55) is inde-

pendent of the remaining axioms (without the axiom of choice) and some set A

whose members are constructible, is not constructible. Then a new hierarchy

Lα[A] defined by putting L0[A] = {A} (in place of: L0 = ∅), satisfies (for suitable

α) the usual axioms including the axiom of choice, but not V = L. Thus V = L

is also independent of the axiom of choice.65 In view of the rediscoveries of such

extensions it is fair to say that not the general principle, but the discovery of

particular sets A needed for specific (absolute) independence results presented

the principal difficulty.

Around March 1942 (in Arbeitshefte XIV-XVI) Gödel made extensive notes

for proving the formal independence of the axiom of choice (for sets of pairs of

64Readers may wish to verify that the former is decided by the non-elementary axioms, while

6.6 is not (at least: not obviously; cf. the discussion of CH and GCH after 6.8.2).
65As in note 53, there are obvious possibilities of refinement.
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integers), and hence of V = L. The general idea goes back to [1933b], on so-

called modal logic and its topological models. With present experience it is not

too difficult to complete the proof. But something essential (in Gödel’s words, in

conversation: a method) had been missing; cf. also his letter of 1st May 1968 on

p. 46 of Chapter 5, where he corrected the description of Cohen [1963] as being a

‘refinement’ of his work. Gödel had just as much admiration for the later refor-

mulation of Cohen [1963] in terms of so-called Boolean-valued models (which are

more obviously related to his ideas in 1942). Again, not the ‘broad principles’ in-

volved in that later work, but their appropriate use, constituted the progress. For

example, Church [1953] explicitly considered Boolean-valued models for proposi-

tional logic and, as explained in some detail in Scott’s introduction to Bell [1977],

the notion of forcing (though not the catchy name) had so to speak forced itself

on several people who toyed with set-theoretic models of intuitionistic logic in

the late fifties.

Some logical and foundational lessons

The development of set theory followed a pattern which seems to be often suc-

cessful at the beginning of research. After some experimentation in the general

area of experience under investigation, one selects objects in the area which seem

to lend themselves to theory; this presupposes of course that some non-trivial

facts are known about those objects.

In the general area of sets (and definitions), the most successful selections

were those of the full cumulative hierarchy (generated by the power set operation)

and, at the other extreme, of the ordinals (generated by iterating the operation:

x 7→ x ∪ {x}). In the latter case, some functions have to be added since not

much can be expressed by (elementary formulas built up from the order relation)

∈ alone; cf. p. 67 concerning the successor or, for that matter, the order relation

on the finite ordinals.

The non-trivial facts known at the start are the familiar axioms. Later the

classes of objects selected are restricted or enriched to realize structures with

additional properties; in the case of sets, the full hierarchy is restricted, ordinals

(or constructibles) are enriched (cf. Lα[A] above).

Gödel took a lively interest when, in the fifties and sixties, the area of expe-

rience adumbrated by Brouwer in his writings on choice sequences began to be

studied according to the pattern above. A particular kind of such sequences, men-

tioned already on p. 91, turned out to have a simple theory: lawless sequences .

The term is due to Gödel who objected to their original name: absolutely free,

their principal property being that no restriction may be imposed on them beyond

a finite number of values (a restriction on restrictions reminiscent of anti-trust

laws which are intended to ensure a free market, but nevertheless are felt to be a

shade short of absolute freedom). Compounds of lawless sequences, later called

‘projections’, have played much the same role as compounds of L and A to form
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L[A]. Parts of the story are to be found in Troelstra [1977].

Gödel’s interest is significant for a correct estimate of what has come to be

known as his platonism. He never questioned the possibility of a part of mathe-

matics which is intended to be about our own ‘constructions’ or choices. Thus,

once objects of this sort (in particular, lawless sequences) had been described,

the search for non- trivial facts about them was, for him, just as well-determined

a project as his own search for axioms of set theory (and of course easier, since

the pioneers in set theory had already discovered the more obvious interesting

properties). But he did not regard that part as at all useful for mathematics

itself, let alone as the whole of legitimate mathematics.

Gödel himself was less interested in the general pattern above than in the

use of (his) more specific experience in set theory for other parts of logic. As

early as 1936 (commenting in his note book on a report by Bernays of Gentzen’s

lecture to a philosophical congress in Paris) he felt that the actual details of

his proof of reducibility on p. 106 should be useful for a consistency proof of

analysis ; and nearly 40 years later, in [1972], he repeated this impression, though

less explicitly. Evidently, the idea was that the ‘collapse’ should not stop at

countable substructures, but should somehow go on to (suitable families of) finite

orderings. Even if successful, this idea would no doubt have to be supplemented

by the difficult step from foundations to technology in Section 7, presumably, by

the discovery of a significant problem in set theory itself which is solved by use

of that idea.

In accordance with his heuristic views, Gödel took little notice of what seems

to be the principal foundational lesson to be learnt from the work described in

Section 9 (in particular, on formal independence results on p. 108): the contrast

between research at an early and at an advanced stage of a subject, well illus-

trated by the difference in meaning of ‘axiom’. For example, Martin’s axiom (in

Chapter B.6 of Barwise [1977]) and Jensen’s ♦ (in Chapter B.5) were discovered

by inspecting elaborate proofs (like many axioms of current mathematical prac-

tice), and are not meant to be seen by inspecting familiar objects (like Vα in the

subsection on p. 98).

However, in the brilliant programmatic lecture [1946], Gödel derived a foun-

dational lesson in the traditional sense of ‘foundations’, from his own work on

definability .66 The most obvious inadequacy of any formal system for analysing

even approximately the possibilities of definitions follows from diagonalization, as

recognized already by Poincaré. In [1946] Gödel pointed out how the use of ordi-

nals in the constructible hierarchy prevents diagonalization, and thus provides a

class of definitions with better closure properties. In conversation he mentioned

66The lecture contains a second lesson of this sort, on (higher) infinite cardinals, which belongs

to Section 10.

Incidentally, though the topics of these lessons are so to speak at opposite poles of the early

‘debate’ on sets, the inadequacies of formal systems are central to both.
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that for a while he thought of it as exhausting all definitions.67 But he soon

noticed that, for example, once one understands (not only Lα, but) the Vα, quan-

tification over sets in Vα is also meaningful, and so he arrived at the notion of

ordinal definability in [1946]. Without being dogmatic or even particularly spe-

cific about a more realistic candidate for an idea(lization) of the possibilities of

humanly intelligible definitions, Gödel felt that L provided at least an idea for

such an idealization.

He also mentioned, in passing, that (so to speak, at the lower end of the spec-

trum) the familiar class of computer programs (for recursive functions) escaped

diagonalization too, but for a different reason: only the larger category of pro-

grammes for partial functions has a (partial) recursive enumeration. Similar ideas

on definitions were pursued in the fifties and early sixties (but without reference to

[1946], which appeared only later), arriving at subclasses of the class of recursive

definitions because now definitions were required to be justified by appropriate

proofs. This was achieved by restricting the ordinal logics in Turing [1939] by

a so-called autonomy condition: before an ordinal was introduced, it had to be

(formally) proved to be one. Here diagonalization was prevented, even though

everything in sight was recursively enumerated, since only proper segments of

the system are justified according to the scheme adopted. The claim was that, in

this way, one had a (simultaneous) characterization of certain informal notions

of proof and definition.

Not surprisingly, whatever its formal merits, the weaknesses of such a charac-

terization are similar to those pointed out (in the subsection on p. 90) in Brouwer’s

attempts to make proofs into a principal object of study. In fact, with all the addi-

tional detail in front of one, the criticism can go further. It concerns growth (and

here it does not matter if one means, literally, growth of neurological connections

or simply of understanding). Evidently, the introduction of hierarchies is reminis-

cent of growth; but the specific laws of growth by the particular hierarchies have

no visible counterpart in experience. The weakness of those characterizations is

not a matter of principle, for example, a conflict with empiricist methodology;

(successful) rational mechanics and (unsuccessful) hydrodynamics of ideal fluids

are not one bit less a priori than those hierarchies. The difference is that so-called

reasonable assumptions about our reason are just much wider off the mark than

our ideas about ‘rational’ behaviour of the planets.68

Be that as it may, the silent majority of logicians has not taken up the part of

[1946] on definability, and provability; certainly less than the other ideas in [1946]

on axioms of infinity, which provide a beautiful illustration of Gödel’s heuristic

views on p. 50. Fortunately for the purpose of testing those views concretely, in

67In fact, ‘L’ stood for ‘law’. Cf. also [1946]: ‘constructible’ means definable.
68There is a charming description in the Preface to Dedekind [1888] of ‘rational’ ideas about

reading : spelling out words is reading in slow motion, with the logical corollary that, for literal

certainty, one ought to slow down (and accept the literal text including printer’s errors, rather

than an obviously intended meaning.
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the last 35 years also other candidates for new axioms of set theory have come

up: they concern infinite two-person games and winning strategies for one of the

players.69 The work on those other axioms has been as different, both in style

and content, from Gödel’s [1946] as can be imagined. So, for contrast, it will be

briefly described in the next section.

6.10 Gödel’s Program: Axioms of Infinity

The axioms in question are intended to hold for suitable segments Vα of the fat

cumulative hierarchy. Evidently, this aim makes sense only for those who know

a basic minimum about that hierarchy. Gödel tried to convey this minimum

knowledge in three publications in the forties, in terms varying according to

(what he considered to be) his audience: for philosophers in [1944], sophisticated

mathematicians in [1946], school masters in [1947]. Instead of speaking of a

‘minimum knowledge’, he spoke of the ‘reality’ of the Vα (as will be described

in more detail in Section 11). In any case, here we accept the aim. But before

one gets to specific problems, there are at least two further broad preliminary

questions.

First of all,

What do we näıvely want to know about Vα?

Gödel concentrated on Cantor’s continuum problem; that is, whether the CH is

true or false (which, by the proof of 6.8.2, concerns only Vω+4). Believing it to

be false, he regarded a refutation of the GCH as an easier first step. He took the

formal undecidability by means of current axioms for granted, and so new axioms

had to be discovered.

By p. 108, there is also the more delicate matter:

Is it at all rewarding to study the Vα further? Or are there variants

of Vα which are (perhaps) less easy to describe, but more manageable

(by use of what we already know of the Vα): should one reculer pour

mieux sauter?

Gödel did not encourage the interest of the näıve question to be questioned by

the others. Instead he gave in [1946] a beautifully plausible account of likely ways

to find new axioms; in other words, of continuing the process which has led to

the currently used axioms.

Enriching the language of formal set theories

The most obvious loss in the passage (on p. 67) from non-elementary axiomatiza-

tions to formalizations is that not arbitrary predicates, but only those defined by

69Incidentally, Zermelo [1912] is one of the first papers on such ‘determinate’ games.
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elementary formulas are used. So the most obvious step is to write down (new)

axioms with the aid of some of those lost predicates.

This is easy, contrary to a wide-spread misunderstanding (generated by the

idea that there is something ‘universal’ about the usual systems of set theory).

Specifically, in terms of numberings n of formulas N (on p. 71): the predicate T

of natural numbers (called truth definition by Tarski)

T (n) if and only if N

is not definable explicitly (by diagonalization), but it has an obvious implicit

definition (by recursion on the number of logical operators in N), also known

in the literature as ‘Tarski’s adequacy conditions’. The definition involves, as an

auxiliary, an enumeration S(n, x) of all monadic predicates defined by formulas N

with one free variable x, any finite sequence of sets being coded by one set. Now,

given a formalization F of set theory, let F+ be obtained by adding the relation

symbol S to the formalism and the implicit definition as a new axiom, the axiom

schemata of F being extended to all formulas in the enlarged formalism. Then

F+ is stronger than F : for example, the consistency of F can be proved in F+.

In short, one of the inadequacies of formal languages (on p. 110) is that not all

implicitly definable predicates are explicitly definable.

Those with special interest in geometry would think of extending the language

of set theory by symbols for geometric relations, and the axioms by propositions

expressing geometric properties of those relations (with the proviso that all sets

of real numbers or subsets of Vω+1 considered, represent geometrically meaningful

figures).

Gödel had a different idea, going back to footnote 48a of [1931], and his other

fruitful contacts with higher types mentioned on p. 104.

Axioms of infinity

He pointed out in [1946] that, for current formalizations F of set theory, the

extension F+ above can be replaced by an axiom IF in the usual language of set

theory , where IF is seen to be valid by the same considerations as F , and all

theorems of F+ in the usual language can be derived from IF in F .

In fact, IF is nothing else but the proposition used in footnote 48a in [1931]

some 15 years earlier, the existence of the least Vα for which F is obviously valid

(cf. note 17). The argument is standard: though no enumeration of the monadic

predicates definable in formal set theory can be explicitly defined, there is such

an enumeration, say S(n, x, y), for the predicates Ny(x) defined as:

x ∈ y and the quantifiers in N are restricted to range over y.

Gödel concluded that, if such a modest use of higher types (actually, more

than) replaced the most natural alternative (extension by enlarging the language
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of set theory), then a little more imagination would do miracles. Of course,

nothing in mathematical practice gives even a hint of any more imaginative use,

unless (following Gödel [1964]) one regards analytic number theory as an instance

of passing to type ω+ 1 in order to solve problems about Vω. But then there are

plenty of open problems in mathematical practice: so why stick to its tradition?

To summarize his programme as it were, Gödel proposed to solve every prob-

lem by use of a suitable axioms of infinity . Naturally, he was not specific about

the term, but the idea was clear enough: a new axiom of infinity is to be sat-

isfied by some Vα, but only for α much bigger than β if Vβ satisfies the already

established axioms (the bigger the α the better). And, certainly, the evidence for

Gödel’s program was not worse than the evidence (mentioned on p. 68) which

Hilbert had for his programme (of Methodenreinheit).

There can be no question of summarizing here the massive work done on

Gödel’s program over the last 45 years (cf. for example Kanamori and Magidor

[1978]). But two directions of such work, firmly established by the end of the

fifties, are worth noting specially.

First, a new70 style of axiom was discovered, known to logicians under the

name of (Lévy’s) reflection principle, and to mathematicians as (Grothendieck’s)

axiom of universes . The general idea is that all properties of Vα, stated in some

given (elementary or non-elementary) language, should also be satisfied by some

element x of Vα (either simultaneously, or by an x depending on the property

considered). The idea corresponds clearly to the (intended) unending character

of the hierarchy Vα. Already the simplest case of a non-elementary language

(so-called Π1
1-reflection) ensures that Vα is closed under all earlier schemes (for

example, in Mahlo [1912]) of building up the hierarchy ‘from below’ (cf. Bernays

[1961]). Evidently, except for properties stated in the most primitive language,

reflection principles are not satisfied by Vω.

The second line of work goes in the opposite direction, as it were: some simple

set-theoretical property P (α) about α and its power set P(α), which holds for

α = ω (and, usually trivially, for α = 2) is asserted or, at least studied, for certain

α > ω.

• One typical example, going back to work in Poland in the thirties, is the

existence of a two-valued measure on P(α) which is additive for subsets of

P(α) of cardinal < α (α is then called a measurable cardinal).

• Another typical example is derived from the partition theorem in Ramsey

[1928].

By the early sixties, any α > ω which has the properties P considered was known

to be larger than all familiar cardinals (for example, for any such α there are

70‘New’, even though the early instances are formally derivable in current set theory F or

from IF .
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α strongly inaccessible cardinals < α). Far from being disturbing (for Gödel’s

programme), this knowledge is a prerequisite if ∃αP (α) is to deserve the name

axiom of infinity at all! After all, one wants here cardinals α which differ from ω

‘as much as’ ω differs from, say, 2. However, with remarkably few exceptions, the

particular properties P that people have stumbled on are very poorly understood;

mostly, one does not know if they are satisfied by any α > ω at all, nor even

whether superficially similar P are not satisfied. (A notable exception is the

property called weak compactness , which follows from Π1
1-reflection.)71

The first genuine implications of axioms of infinity for questions outside cardi-

nal arithmetic were discovered in the early sixties: if α > ω and α is measurable

then some subset of Vα+1 (and even of Vω) is not constructible (as shown by

Scott and, respectively, Rowbottom); in fact, the constructible subsets of Vω are

then countable. Whatever the defects of the particular property of measurability

may be, one sees from the proofs how an arithmetic question might be settled by

‘looking down on ω from above’.

For people more familiar with another sense of ‘L’ (for Lebesgue measure

rather than for constructible sets), an implication discovered later by Solovay is

more instructive: if there is a measurable cardinal α > ω, then every PCA set

of real numbers is L-measurable. The required coverings (by open sets) of such a

set and of its complement are defined by use of the assumed measure on α.

However, Gödel’s particular candidate CH is left (demonstrably) undecided

by any (consistent) axiom of infinity so far proposed. Indeed, it is fair to say

that the only memorable result72 on cardinal exponentiation discovered in the

last eighty years (by Silver) can be proved by methods not too different from

those current at the turn of the century: if α is of cofinality > ω and < α and,

for all β < α, 2ωβ = ωβ+1, then 2ωα = ωα+1 (a nice proof is on pp. 388–389 of

Barwise [1977]).

Before taking stock of work done on Gödel’s program (and, particularly, of

his heuristic views), the quite different direction of research mentioned on p. 112,

has to be summarized.

Axioms of determinacy

In the fifties, when the theory of games was popular, certain so-called infinite

games attracted special attention on Poland, where infinitistic generalizations

had been popular for a quarter of a century.

Suppose G is a set of sequences of natural numbers. Two players choose

71Incidentally, though Gödel [1946] was published only in the sixties, work on those new

axioms (especially of the second kind) could have profited from Gödel’s presentation in 1946,

since Tarski and Erdös were principal contributors: the former was present at the lecture, the

latter was in contact with Gödel.
72Before the quite recent results of Shelah on the same subject, which similarly do not require

any axiom of infinity.
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alternately natural numbers x2n+1 and x2n+2 for n = 0, 1, . . . If ~x stands for the

sequence x1, x2, . . . , the first player has won if ~x ∈ G. A winning strategy for that

player is, by definition, a function f1 (with finite sequences as arguments and with

numerical values) such that, for all choices x2n (where n ≥ 1) the sequence

f1(〈 〉), x2, . . . , f1(〈x2, x4, . . . , x2n〉), x2n+2, . . . ∈ G,

where 〈 〉 is the empty sequence. Similarly, a winning strategy for the other player

is a function f2 such that, for all x2n+1 (where n ≥ 1),

x1, f2(〈x1〉), . . . , x2n+1, f2(〈x1, . . . , x2n+1〉), x2n+3, . . . 6∈ G.

Another way of writing these conditions is

∃x1∀x2 · · · ∃x2n+1∀x2n+2 · · · (~x ∈ G) (6.7)

and, respectively,

∀x1∃x2 · · · ∀x2n+1∃x2n+2 · · · (~x 6∈ G). (6.8)

A kind of dual to such ‘games’ without an end are ‘games’ without a beginning,

where the winning conditions for the two players are

· · · ∀x2n+2∃x2n+1 · · · ∀x2∃x1(~x ∈ G) (6.9)

and, respectively,

· · · ∃x2n+2∀x2n+1 · · · ∃x2∀x1(~x 6∈ G) (6.10)

(and the distinguished player is now the one with the last move).

Steinhaus, later in collaboration with Mycielski, experimented with the un-

promising proposition, called axiom of determinacy : 6.7∨ 6.8 (formulated for all

sets G of sequences: the xn are arbitrary sets, not only natural numbers). The

proposition is unpromising because the general idea behind it is nothing else but

an extension of the well-known law for negating finite sequences of quantifiers .

But a glance at its proof shows that it uses, in an obviously essential way, the fact

that finite sequences have a beginning and an end (in particular, this is needed

for the two basic properties of negation: the laws of contradiction and of the

excluded middle). In fact, ¬(6.7 ∧ 6.8) holds, but not necessarily 6.7 ∨ 6.8.73

For about two decades many articles (of uneven quality) were published on

determinacy, and certainly none that is remotely comparable in distinction to

Gödel’s [1946]. But finally, Martin [1975] proved that all Borel games are deter-

minate; that is, 6.7 ∨ 6.8 holds if G is a Borel set. This is not only of interest

to the subject of infinite games, but easily the most convincing contribution to

73Incidentally, by Galvin and Prikry [1976], neither 6.9 ∨ 6.10 nor ¬(6.9 ∧ 6.10) need hold.
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Gödel’s program so far . More specifically, the proof proceeds by transfinite recur-

sion on the countable ordinals α (< ω1, the first uncountable ordinal), where α

is the number of applications of Borel operations (complementation, projection,

countable unions) used to generate the set Gα. In a very transparent way, the

determinacy of Gα+1, a set of sequences of elements of X, is derived from the

corresponding result for a suitable set Gα of sequences of elements of P(X). In

set-theoretic terminology, the proof uses Vω1 to establish the determinacy of all

Borel sets of sequences of natural numbers (a proposition about the quite familiar,

low level Vω+2 of the cumulative hierarchy).

Even if not for Gödel, for mathematical practice the assumption of Vω1 is an

‘axiom of infinity’. Of course, its interest is established up to the hilt by the

particular proof of Martin [1975],74 since the transfinite iteration of the power set

operation is seen to be useful by inspection. But more is true, by work going back

to Friedman: at least for the usual formulations of set theory, the determinacy of

sets Gα cannot be formally derived at all without use of Vβ, where β is of the same

order of magnitude as α. As on p. 79, this negative result can be given a positive

twist: for any α < ω1, if a proposition of suitably simple (syntactic) structure is

derived from assuming Vα, it can also be derived from Borel determinacy .

A similar positive twist can be given to the results in the literature on the

consistency of stronger axioms of infinity than Vω1 relative to the assumption that

larger classes of sets than Borel sets are determinate. In short, determinacy is an

alternative to Gödel’s program.

Superficially, the relation between axioms of determinacy and the use of Vα
for large α is quite similar to that between the axiom of choice and the use of

transfinite recursion in measure theory at the turn of the century. As long as

only consequences of a simple syntactic structure are formulated, the details of

the definitions in the proofs by transfinite recursion are lost in the statement

of the theorems (just as the details of the winning strategy defined in Martin

[1975] are lost if only simple consequences of Borel determinacy are considered).

It remains to be seen whether somebody discovers problems, also in measure

theory, for which those details are relevant.

74In addition, the (original) proof has the virtue of making a very convincing use of (a simple

instance of) the very attractive so-called priority argument , which was discovered in recursion

theory nearly twenty years earlier, but applied only to the somewhat teratological subject of

degrees of undecidability of recursively enumerable sets.

Maritn has subsequently published (in [1985]) a version of the same proof that does not use

the priority method.
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6.11 Gödel’s foundational views: balancing the

account

As already mentioned on several occasions, in his publications Gödel used tradi-

tional terminology; for example, about conflicting views of ‘realist’ or ‘idealist’

philosophies.

In conversation, at least with me, he was ready to treat them more like differ-

ent branches of the subject, the former concentrating on the things considered,

the latter on the processes of acquiring knowledge about these objects or about

the processes. Naturally, for a given question, a ‘conflict’ remains:

Which branch studies the aspects relevant to solving that question?

with obvious parallels in mathematics and the natural sciences.

Gödel rejected only so-called positivist philosophy which (at least for logic) is

distinctly negative, since it accepts (as arbitrary ‘conventions’, or as ‘facts of our

natural history’) phenomena which the other branches see as problematic, or at

least as capable of a rewarding analysis.

Successes: mixing the realist and idealist traditions

In mathematics, the idealist tradition is involved (in one form or another) in

constructivist foundations which stress the use of definitions and proofs in the

process of acquiring mathematical knowledge (cf. Section 7 and the subsection

on p. 109). In particular, Poincaré stressed definitions, Hilbert and Brouwer

stressed proofs.75 As already mentioned, Gödel solved problems which either had

been formulated explicitly by these three famous constructivists or, at least, are

patently relevant to their foundational schemes.

Gödel himself stressed (most clearly in his letters reprinted in Wang [1974])

that his results are best understood in terms of notions from the realist tradition

which were rejected or simply ignored in the constructivist schemes, such as:

logical validity, arithmetic truth, various fat or thin hierarchies. Gödel’s analysis

was adopted in this chapter.

But another reason for his success was, obviously, his familiarity with the

subjects derived form the constuctivist programs: formal systems, intuitionistic

logic, ramified hierarchies.

By (yet another!) fortunate coincidence, the relative importance of the two

elements in Gödel’s successes can be illustrated by the case of Zermelo (cf. note 7),

who had an equally staunch realist Weltanschauung : so much so that he simply

refused to look at the tainted subjects! Thus, the stated reason for his outburst in

Zermelo [1932] (against Gödel’s incompleteness results) was that Gödel considered

75Incidentally, contrary to an almost universal misunderstanding, Hilbert’s finitist proofs are

much more restricted than intuitionistic ones.
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formal systems at all, establishing their inadequacy instead of dismissing them as

obviously inadequate. (An unstated reason could have been that detailed work

on any subject is liable to create a vested interest in it, and a reluctance to look

at alternatives.)

At that time the still little-known Zermelo [1935] was in preparation, sketching

what we should now call infinitary systems , with infinitely long formulas and

infinite proof figures, intended to represent the meaning of propositions and the

structure of mathematical thought adequately: in short, an alternative to formal

systems. Whatever his conscious motives may have been, Zermelo’s instincts

to protect his alternative were more than justified: he did not get beyond his

intentions! What he actually said about those infinitistic representations was

not only, trivially, formulated in finite terms, but (and this is the critical defect)

already fully expressed in current systems of set theory, as implied by Gödel’s

analysis on p. 113 (though Zermelo [1935] is not mentioned in Gödel [1946] at

all).76

Gödel’s program is nothing else but the first genuine proposal for implementing

those realist intentions, by deriving from them new axioms; to be compared to

deriving mathematical laws from a physical conception (or physical ‘picture’),

Maxwell’s derivation of his equations from Faraday’s picture being the standard

example.

Gödel’s program involves quite different problems from those he had solved

earlier: for one thing, there was no idealist bias to be corrected by injecting

suitable realist elements. He was treading new ground (though surely not ‘rushing

in’, unlike the gamblers on infinite games on p. 115).

Neglected problems: beyond näıve idealism

Evidently (as already illustrated by the opening of Section 10, in the particular

case of sets) recognizing some phenomena as a (legitimate) subject of research is

necessary, but by no means sufficient for progress with understanding them. To

put it paradoxically: once generalized doubts about them have been removed and

some simple useful properties have been noted (here: doubts about infinite sets,

and axioms codifying some obvious properties of the Vα), the principal problem is

selection; selection of objects (among those recognized) which lend themselves to

theory by something like available means, and selection of properties which have

implications for such a theory. Such selection involves, besides the phenomena,

just those processes which are the business of the idealist branch of philosophy

(its sophisticated part, as it were). When reasons for new axioms (that is, mat-

ters of evidence) are at issue (as in Gödel’s program), questions belonging to

76It is also not very well known that so-called fully analysed infinite proof figures were con-

sidered in intuitionistic mathematics in the twenties; cf. Brouwer [1927]. Again, analysis in the

sixties of the properties actually stated about those figures (cf. p. 109) shows that they do not

go very far either.
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sophisticated idealism must be expected to become important, or even dominant.

Here it is to be emphasized that the bulk of the constructivist literature at

best ignores sophisticated questions of selection, but more generally dismisses

them (as a matter of some vague kind of ‘convenience’, or of sacrosanct ‘per-

sonal taste’). Instead, that literature assumes miracles from the slogan about

mathematics being ‘our own construction’, as opposed to some ‘external reality’.

This assumption leads to what might be called näıve idealism, which is no less

widespread than näıve realism (though the name is not). It is näıve on at least

two counts, besides those already listed in the remarks on proofs and definitions

in Section 7 and in the subsection on p. 109:

• First, it forgets the problems arising in those parts of mathematics which

are simply intended to be about our own constructions (for example, about

computation rules); parts in which realist questions of a correct representa-

tion (definition) of a previously understood notion, or of the mathematical

structure of some external phenomenon, do not arise at all.

Nevertheless there remains the problem of recognizing whether a construc-

tion does or does not have some property: it is no simpler to decide if a

diophantine equation has a solution when this problem is interpreted purely

computationally than when one thinks of the natural numbers as properties

of (extensions of) concepts.

• Secondly (and, if anything, this assumption is even more näıve), the con-

structivist literature regards as particularly fundamental those parts of

(mental) experience of which we are most acutely aware; for example, in the

case of definitions and proofs, principal attention is given to the slow early

stages in the learning process (not to our predispositions, nor to our rea-

soning after that elementary knowledge has become part of our intellectual

reflexes).

Parallels in näıve natural philosophy are obvious; for example, whenever

the visible part is simply assumed to be decisive (not only, trivially, for

our view of the world in the literal sense of the term, but also for scientific

understanding).

This näıve part of the idealist tradition, which has of course completely overshad-

owed its sophisticated part, is viewed with great scepticism by the silent majority

(whose objections, as expected, are not very articulate).

Naturally, Gödel too had strong reservations about näıve idealism, though he

would not apply the term ‘näıve’ to any part of traditional philosophy. But, at

least in mathematics, he never seems to have faced squarely the problems raised

in sophisticated idealism. This omission is only too obvious from his obiter dicta
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on evaluating the evidence for new axioms.77 If I had not known him personally, I

should have dismissed those dicta as another ‘body guard’, to protect his program

until the time was ripe for progress. As it is, the level of his discussions in [1944]

and [1947] troubles me. It is not much above that of the ‘debates’ on the paradoxes

mentioned in the subsection on p. 94; more troubling still: it is utterly different

from what I remember of our conversations (up to his illness at the end of the

sixties), more than 20 years after [1944] and [1947] were written. Perhaps others,

less involved than I am, will one day read the masses of his notes in Princeton,

and fit that troublesome material into a more interesting picture of Gödel.

Bibliographical remarks

Both in [1944] and [1947] Gödel tries to use the parallel between mathematical

and physical objects to support his program: without reference to specific exam-

ples, but simply as ‘realities independent of ourselves’. This is doubly suspect.

Trivially (again by the opening of Section 10), this makes his program only a

candidate for research, without the slightest hint of its chances of success: some

physical phenomena are far from having a satisfactory theory. Less trivially, there

is no emphasis on the fact that mathematical notions enter into the description

of the simplest physical phenomena on a par with other notions, not to speak of

physical laws: for example, objects have chromatic and arithmetic properties (a

yellow table with four legs). So one is left without an issue at all (quite apart

from the fact that the methods needed for studying very different kinds of physical

objects differ markedly among themselves).

The proposal in [1947] (already mentioned on p. 104) to judge new axioms by

deciding (demonstrably) formally undecided propositions conflicts with the previ-

ous point, vague as the latter may be. For, in judging new scientific hypotheses,

essential use is made of consequences which are tested independently (for exam-

ple, observationally). A more convincing parallel involves (the use of new axioms

for) new proofs of old theorems (as on p. 521 of [1947], implicitly taken back

on p. 271 of [1964] where such uses, so-called weak extensions, are described as

sterile).78

Gödel developed a remarkable obsession with mere cardinality . Thus [1947]

77A foretaste was given on p. 104, and the full flavour will be conveyed by the samples cited

in the next subsection.
78For the record . Today, some 40 years later, the general level of derivative literature on

assessing new axioms is even more embarrassing. For example, in two of the otherwise most

brilliant expositions in Barwise [1977].

First, on p. 344, a cardinality principle is announced: ‘Thus we see, the more problems a new

axiom settles, the less reason we have for believing that the axiom is true’.

Secondly, on pp. 813–814, in connection with instances of determinacy which are known not

to hold for Lα, their validity for Vα is regarded as plausible because Borel determinacy holds

(but also for Lα if α > ω1!), and because the consequences for descriptive set theory are coherent

and pleasant (so to speak: fat is beautiful).



Kurt Gödel 122

suggests in effect that the most fundamental problem about the continuum is

to decide whether the continuum hypothesis CH is true or false (for Vα where

α ≥ ω + 4), as if one did not want to know the geometry of the continuum just

as much. Obviously, Gödel wanted to forestall the inevitable conneries which the

expected proof of the formal independence of the CH was to produce. He was

doubly unsuccessful:

• First, even some 30 years later, Martin [1976] questions whether the CH

has a definite truth value for the intended meaning at all because, despite

many attempts (by looking at many variants of ordinary set theory), the

CH has not yet been decided: as if there were not infinitely many false

starts, perhaps due to a systematic oversight, for any problem.

• But also, and this is not at all a matter of mere conneries, Gödel’s exaggera-

tion gives no hint of the kind of implications which make those independence

results significant (apart from the technical uses on p. 104): obviously not

by casting doubts on the precision of the continuum problem, but on its

‘fundamental’ character, its interest.

Specifically, because of those results, the CH may be true even if some

perfectly straightforward subset X of Vω1 can be mapped onto Vω or Vω1

only by a very odd map, and the CH may be false simply because some

quite odd X cannot be mapped onto Vω or Vω1 (at all).

In terms of the subsection on p. 80 (explaining the unexpected usefulness of

the general notion of logical validity), the CH lacks stability (with respect

to perturbation of the domain of sets X involved). Without such stability,

the problems of sophisticated idealism become decisive: which sets X and

which maps do we want to know about?

Examples were considered by Cantor and Brouwer more than eighty years

ago: the former showed that the CH does hold for closed sets X; the latter

considered (in [1908a]) geometrically meaningful, topological maps, when

the CH is false even for quite simple X.79

Still in connection with geometrical properties , Gödel notes in [1947] that not

all sets of points are geometrically significant, but calls certain consequences of

the CH ‘paradoxical’: at most a conflict with geometric impressions is involved,

but not more than in the case of several well-known consequences of the axiom

of choice (and, by p. 104, he had recognized the validity of that axiom for the

Vα).80

79For spaces of choice sequences with the usual topology, all maps are automatically contin-

uous: then the CH is obviously false.
80Actually, even without the axiom of choice one gets geometrically meaningless results when

∀x∃!yA(x, y) holds but the unique function f which satisfies: ∀xA[x, f(x)] is highly discontinu-

ous (for example, characteristic functions of sets defined by the comprehension principle applied

to logically complicated predicates).
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The points above troubled me, as already mentioned on p. 59, before I met

Gödel personally. The following gem occurred to him later, concerning weakly

and strongly inaccessible cardinals:81

for finite cardinals, the two properties are not equivalent: 1 (in con-

trast to: 2) is only weakly, not strongly inaccessible (since 00 = 1).

From this Gödel concluded that the GCH was implausible, since it implies that

all weakly inaccessible infinite cardinals are also strongly inaccessible. Before

publication in [1964], Gödel told me his discovery. He added, with the expec-

tant look he always had when he thought he was saying something particularly

naughty, that I surely regarded it all as no more than a play on words (Wort-

spiel). I still remember my pleasure (and his) when a totally ambiguous comment

occurred to me. No similar banter is to be found in [1964] itself.

6.12 Philosophy: Speculations and Reflection

The three published samples of Gödel’s speculations on spectacular topic are

about time travel, minds and machines, and the origin of life on earth.

• The first was developed by him in considerable detail in [1949], [1949a] and

[1950].

• The second was a principal topic of our conversations in the sixties.

• The third happens to bring out particularly clearly, by contrast with Crick

and Orgel [1973], the single most distinctive point in Gödel’s heuristic views:

his preference for using general qualitative (rather than specific ‘empirical’)

data, in accordance with the ideals of traditional philosophy.

On present evidence Gödel’s contributions to the topics above are not conclu-

sive, and certainly not comparable to his successes in the previous sections. It

is beyond the scope of this chapter to go into the many differences involved, in

the nature of the topics, the stages of development, the attention Gödel gave to

them, and so forth. Nevertheless, quite apart from a pleasing freshness and wit,

the special twists he gave to his speculations provide striking illustrations, in the

quite different area of natural science, for the lessons learnt from reflecting on his

incompleteness theorems in the foundations of mathematics (cf. the subsections

on pp. 74 and 78).

81The latter are defined in note 45; the former need not be closed under exponentiation.
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General Theory of Relativity

Gödel’s early interest in the subject and his close contacts with Einstein were

described in Section 1.

Gödel’s writings on the General Theory of Relativity82 were not extensive

(consisting of the three quite short articles [1949], [1949a] and [1950]), but they

were highly original and, in the long run, quite influential. In these articles he

described a family of cosmological solutions of Einsteins’ equations that possessed

a number of novel features.

Most striking among these was the presence of closed timelike curves in his

original non-expanding model. Thus, in this model, it would be possible in princi-

ple for an observer to travel into his own past. While for the majority of physicists,

this feature might be regarded as a sufficient criterion to rule the model out as

‘physically unrealistic’, Gödel appears to have taken a contrary view. Indeed, in

[1949a] he computed, in a footnote, the amount of fuel required for the execution

of such a journey and, finding this to be absurdly large, concluded that his model

could not be ruled out as contradicting experience. (He did not, however, con-

sider the vastly ‘cheaper’ but equally paradoxical possibility of an observer merely

sending a signal into his own past.) In the modern theory of global general rel-

ativity (for example, in Hawking and Ellis [1974]) it has been found necessary

to examine the various types of ‘pathology’ that can exist in space-time models

even when these features might be regarded as sufficient to rule out the models

as ‘physically unreasonable’. Thus, this original Gödel model has provided an

interesting and significant example of a space-time precisely because of this ‘un-

physical’ feature. Indeed, the Gödel model was the first simply-connected such

example, the closed timelike curves being therefore ‘essential’ in the sense that

they cannot be removed by passing to a covering space. The model is interesting

also for a more philosophical reason. It shows that a concept of time that is

globally quite different from that seemingly implied by our normal experiences

cannot be ruled out merely on the basis of the known local physical laws, once

some of the ideas of general relativity are taken into account.

A second feature possessed by Gödel’s models is that the matter in them ro-

tates relative to the local inertial frames. Thus, the models show that at least

one form of ‘Mach’s principle’ is not a consequence of general relativity (contrary

to what Einstein had originally hoped). Gödel also proposed expanding rotating

models (without closed timelike curves) which could be serious candidates for the

actual large-scale structure of the universe. Gödel’s demonstration of the exis-

tence of apparently realistic models in which there is a relative rotation between

inertial frames and distant matter led to the speculation among cosmologists that

such a feature might also be detectable in the actual universe. However, very low

observational limits can now be placed on this hypothetical rotation (apparently

82The following account of Gödel’s publications in the area is due to R. Penrose.
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< 10−16s−1).

A third feature of the models is that they possess spatial homogeneity but

not isotropy . Gödel appears to have been the first to study such models and to

introduce the appropriate non-holonomic frame techniques (largely unfamiliar to

relativists of the time) for their detailed analysis. However, much of his work in

this area remained unpublished and had to be rediscovered by others. The study

of spatially homogeneous models has become an important part of theoretical

cosmology in more recent years (cf. Heckmann and Schucking [1962]). Gödel was

concerned only with space-times filled with incoherent matter. A corresponding

analysis of empty space-times was made by Taub [1951] shortly afterwards.83

Thus the direct physical interest of Gödel’s papers is limited, in accordance

with Einstein’s comment on [1949a] in the same volume. (Gödel’s papers ap-

peared in the middle of a long period during which the general theory made little

progress.) But Gödel’s work served as a cross check on mathematical conjectures

and proofs in the modern global theory of relativity. This is the first of the strik-

ing parallels to his incompleteness theorems promised at the beginning of this

section; in particular, to the use (on p. 78) of his second incompleteness theorem

as a cross check on proposed consistency proofs (though, as mentioned there, the

direct foundational interest of that theorem is quite limited).

Bibliographical remark . In a long typed essay at Princeton, Gödel expanded

[1949a] in the style of academic philosophy, using [1949] to interpret Kant’s ideas

on time. Perhaps closer study will show what more is gained from this pedantic

attention to Kant’s elaborations than from the simple idea of ghosts which, by p.

55, had long been in Gödel’s thoughts (while, as he says in the essay, he never had

much sympathy for Kant’s general philosophy). In any case, though the typescript

dates from the fifties, Gödel did not publish it; but he put it among the items to

be published after his death, on lists he made in the seventies (especially on days

when he though he was going to die).

Non-mechanical laws of nature

Throughout his life Gödel looked for good reasons which would justify the most

spectacular conclusion that has been drawn from his first incompleteness theorem:

minds are not (Turing) machines . In other words, going back to p. 63, the laws of

though are not mechanical84 (that is, cannot be programmed even on an idealized

computer).

The popular reasons are quite inconclusive. Certainly, by (Matyasevic’s im-

provement of) the incompleteness theorem, those minds which can settle all dio-

phantine problems are not machines; but we have not found any evidence of such

83Here ends Penrose’s account.
84‘Mechanical’ should not be confused with ‘mechanistic’, in the sense of deterministic; the

usual probabilistic laws are mechanically computable.



Kurt Gödel 126

minds. Nor there is the slightest hint of any computer programs which stimulate

(even in outline) actual proof search; not even for solving problems which do have

a mechanical decision procedure (for example, propositional algebra).85

In conversation Gödel brought up one of his favourite twists:

Either mind is not mechanical, or mathematics (in fact, arithmetic)

is not our own construction.

The tacit assumption here, one of those reasonable assumptions about our rea-

son (cf. nore 68), is that we can decide all properties of our own constructions.

Gödel remained unsympathetic to the admittedly tasteless comparison with our

physiological productions, which can have painfully unexpected properties.

His reaction was quite different to another objection I made in the early sixties,

expressed by the question: Is mechanics mechanical? More formally:

Are the laws of current physics mechanical in the sense that, according

to current theory, every analogue computer can be simulated by a

digital computer (with the same probability of error)?

It is certainly not evident that celestial mechanics is mechanical; in particular,

that collision properties of n-body configurations are mechanically decidable, even

in finite time intervals.86 Other candidates for non-mechanical laws came from

statistical mechanics of co-operative phenomena (such as boiling).

The question above expresses an objection; for if some laws of ordinary matter

are non-mechanical, then the notion of machine is not adequate ‘in principle’ to

separate mind and matter. Gödel was at first tempted to dismiss the question, by

the familiar petitio principii of supposing that only mechanical laws are precise

(for a non-mechanical mind?), but he stopped himself in the middle of the sen-

tence (I believe, the only time in all our conversations). Afterwards, he took an

active interest in the search for non-mechanical laws, both in physics and in the

part of logic which studies specifically mental constructions.87 (In the latter the

petitio principii to be avoided is the requirement that those constructions must

be represented by a mechanical procedure.)

The question above is not yet settled. Here the parallel (promised at the

beginning of this section) to the lessons learnt (on pp. 74 and 78) from the in-

completeness theorem concerns the evaluation of the ‘empirical evidence’ provided

by existing solutions in mechanics.

• Certainly, the bulk are mechanical; just as the bulk of ordinary mathematics

is easily formalized in Principia (despite its incompleteness).

85Cf. the use of impure methods stressed at the end of Sections 2 and 3.
86A little care is needed in the formulation: the data should not be points, but neighbourhoods

in phase space.
87According to Wang [1974], in the seventies Gödel seems to have gone back to his original

twist; but his arguments for supposing that physical laws must be mechanical have a, for him,

strangely positivistic flavour.
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• If there are mechanically undecidable problems in some parts of mechanics,

they may have been discounted by now (replaced by more tractable ques-

tions); just as number-theoretic practice concentrated on more rewarding

problems about diophantine equations, long before the negative solution of

Hilbert’s tenth problem so to speak ratified the practice.

• Corresponding to the positive aspects emphasized in Davis, Matijasevic

and Robinson [1976], in mechanics one would hope to have a new kind of

analogue computer.

• Last but not least, the mere existence of some non-mechanical laws of na-

ture, just as the mere existence of some formally undecided problems in

mathematics, does not settle their significance in the sense of their fre-

quency in different branches of science. Incompleteness phenomena are, on

present evidence, much more significant for set theory than for arithmetic

(tacitly, for the questions that strike us as interesting). it certainly cannot

be excluded that, similarly, the phenomena of consciousness (that strike

us) follow non-mechanical laws as a rule (in contrast to the phenomena of

ordinary physics, at least those on which physical theory concentrates).

Bibliographical remarks . Komar [1964], which was overlooked in our conver-

sations, points out that non-mechanical laws arise in those parts of physics where

theoretically admissible states σ are represented by so-called primitive recursive

sequences s of natural numbers (given by a description of the experimental set

up), and some observable relation R between σ1 and σ2 corresponds to: s1 and

s2 differ infinitely often. But Komar [1964] is inconclusive, since the theories

considered are not shown to permit arbitrary primitive recursive s (or enough for

R to be non-mechanical).

More recently, on p. 59 of Browder [1976], Arnold mentioned other candidates

for non-mechanical laws in statistical mechanics involving vector fields given by

polynomials with rational coefficients; but, like the n-body problems on p. 126,

Arnold’s seem to need neighbourhoods instead of discrete coefficients.88

Pour El and Richards [1981] have found computable initial data (in dimensions

> 1) for which the wave equation has a unique, but non-computable solution. It

remains to be seen if a physical system, perhaps by use of lasers, can realize

these solutions with the kind of probability of error expected in the execution of

a computer program (by a digital computer).

88Mechanical undecidability is usually easier to establish in the latter case. Occasionally

there are neat theoretical reasons, even in classical mechanics, for discrete data; for example,

Newton’s for the exponent −2 in his law of gravitation.
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Chemical evolution of living organisms on earth

Though Gödel’s published comment on this topic (on p. 326 of Wang [1974]) is

very brief, it is worth mentioning since it fits in with his general views expressed in

many conversations. His particular conjecture was that the probability of a living

organism developing in geological time as a result of random chemical operations

was vanishingly small. The initial distribution of matter is assumed to be random,

and nothing is said about the significant features of either the chemical reactions

or of living organisms which would be used in the calculation. Evidently, he

hoped that only ‘basic’ knowledge, for example, schoolboy chemistry would be

needed, since (as he often said) the use of specific detail could not be convincing

in Big Questions.

As it happens, Crick and Orgel [1973] present a perfect example of so to

speak the opposite heuristic view. Briefly, they use two ‘very’ specific details

about molybdenum: it is rare in our part of the universe, and it occurs in living

organisms. So it seems a foregone conclusion that, with these two additional

hypotheses, Gödel’s conjecture holds, and should be easy to prove formally. But

also, while Gödel’s conjecture (as formulated) gives no hint at all of any positive

theory about the origin of life on earth, Crick and Orgel [1973] inevitably looked

for a source in regions of the universe where molybdenum is more plentiful and

where chemical evolution could have succeeded, free from terrestrial constraints.

(After that they followed Genesis : like Jehovah those extra-terrestrial beings set

about populating the Earth, in their fashion.)

Their speculations have not settled the origin of life on earth. But their use of

‘specific detail’ about molybdenum provides a neat parallel to one of the lessons

on incompleteness on p. 74. The aim of Gödel [1931] and its improvements in

the thirties was independence of subject matter, for as broad a class of formal

systems as possible. The so far most successful applications of incompleteness

involve ‘specific’ properties, such as the size of ordinals in set theory or the rate

of growth of number-theoretic functions, and above all the informal notion of

arithmetic truth (at least, for diophantine problems).89

General interests (and a contrast)

Judged by the amount of space in Gödel’s note books dealing with general philos-

ophy and theology (including demonology), these subjects occupied a great deal

of his attention ever since his student days. They were rarely touched in our

conversations, since there was not enough common interest. However, during the

15 years or so when I saw a great deal of him, he would occasionally quote pas-

89Remark on another spectacular topic. The literature on hidden variables in the quantum

theory contains several impossibility proofs which are also incomparable, without stressing this

fact. By and large philosophers and logicians try to avoid specific details of the theory, and

prefer to use (familiar) properties studied in logic or probability theory.
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sages from his preferred reading at the time: Kant, then the slow-paced Husserl,

then so to speak the opposite extremes, Fichte and Schelling. The quotations

were not at all well-known and, at least for me, very perceptive. Given Gödel’s

methodical habits mentioned on p. 51, he may well have kept a record of these

and similar passages. The publication of such an anthology is likely to produce

a minor revolution in philosophy: if we came to associate Hegel or Husserl with

a dozen crisp and memorable ideas, we could cherish them as much as (what we

know of) Heraclitus.

Gödel’s conversations on the general topics above, at least until his illness, had

the light touch and exquisite discretion noted already elsewhere in this chapter,

in contrast to the impression left by some of his more popular writings (p. 59).

In this respect there is a striking parallel to the difference between the letters of

Archimedes and his public image which has him look for a fulcrum in outer space

to move the earth (as might be expected from some kind of misfit, ill at ease on

this planet).

Incidentally, if Gödel’s work is to be compared to that of one of the ancients,

Archimedes is a better choice than Aristotle (who invented logic, but proved little

about it). Archimedes did not invent mechanics, as Gödel did not invent logic.

But both of them changed their subjects profoundly, by work with an almost

unsurpassable ratio of interest of the results to effort (as seen in Sections 4 and

6 above, or in the laws of the lever).

6.13 Foundations and the Common Understand-

ing

As promised at the outset, this chapter has described Gödel’s contribution to

our present understanding of formal and (non-elementary) axiomatic notions; in

particular: logical validity in Section 6, arithmetic truth (or equivalently, in fancy

language: consequence from Peano’s non-elementary axioms) in Section 4, and

truth for segments of the cumulative hierarchy of sets in Section 9. Those notions

had been neglected by most logicians for a quarter of a century before Gödel’s fa-

mous results put them back into circulation, by establishing memorable relations

between them and formal notions. Apart from any heuristic value which non-

elementary notions may have had for Gödel’s own discoveries, they continue to

be essential (even for an effective use of elementary logic itself; cf. the subsection

on p. 84). The interest of Gödel’s contribution is in no way diminished by the

checkered development of the subject since then: by the efforts needed to dis-

cover rewarding applications, the limitations of Gödel’s general program to apply

traditional philosophical notions more broadly (in Sections 11 and 12), and not

even by the endless refinements of his work which have gone far beyond the point

of diminishing returns.
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Also as promised at the outset, the refutations of the best known foundational

schemes of this century by use of Gödel’s results were compared with an alter-

native critique, by inspecting (later) mathematical experience. The comparison

is familiar from so-called purely mathematical and experimental refutations of

theories in the natural sciences:

• The former involve conflicts with very familiar facts, so to speak with the

bare minimum expected of the theories; a standard example is Galileo’s

refutation of his (first) proposal that the velocity of a freely falling body

is proportional to the distance covered (and so a body at rest would never

start to fall at all, contrary to very familiar experience).

• So-called experimental tests of theories, even of those presented as ab-

stractly as Newton’s or Einstein’s theories of gravitation, generally require

a high level of unfamiliar extensions of ordinary experience (and, if positive,

the tests supersede mathematical refutations of competing theories).

In the case of foundational schemes: Gödel’s results provide mathematical refuta-

tions, while details of mathematical experience are used to pin-point less obvious

defects of the schemes.

As a corollary (already asserted on p. 49): since the silent majority has the

experience needed for the alternative critique, Gödel’s results could not be ex-

pected to affect significantly the conception (let alone the practice) of that major-

ity. Sooner or later, it would discount foundational ideals; either ignoring them

altogether, or putting them in their place by reference to experience. For the

same reason, the majority has no need for a pedantic formulation of the ideals

themselves.

The presentation above leaves out of account a side of Gödel’s contribution

to foundations (in fact, of the subject of foundations itself, which is literally of

the highest interest), for two principal reasons:

1. First of all, the scientific experience needed for the alternative critique has

not been, and cannot be absorbed at all widely. Some philosophers (includ-

ing Wittgenstein) have attempted something like that alternative, using

only examples from quite elementary mathematics. This was unconvincing.

It left a nagging doubt whether the examples were representative. More for-

mally, as shown in logic (cf. Section 7), large parts of mathematics can be

set out in accordance with conflicting foundational schemes, usually quite

elegantly after some practice with the style involved. So, quite objectively,

elementary experience is not enough for a decision between such schemes,

let along against (all of) them.

2. Secondly, foundational questions occur to us when we know little; as little as

a school boy in his teens, or even as little as the Greeks 2300 years ago. At

this stage of experience the familiar foundational answers or schemes have
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a great attraction (in keeping with the objective fact, mentioned in 1, that

limited experience does not decide against them). In such circumstances, it

is rare indeed that anything significant (let alone conclusive) can be done

using only a mild extension of familiar experience.

Gödel’s results which are relevant here are significant, and can be fully under-

stood with a minimum of background (especially those in Section 4 and 6 use

no more additional knowledge than the elementary parts of logic available in the

twenties, practically no more than needed to state the foundational schemes in

mathematical terms90). So these results have an exceptional value, measured by

the simplest criteria of all: the size and probable duration of the market for his

contributions (or, equivalently, measured by the particular kind of fame which

Schopenhauer analysed in Chapter 4 of his Aphorismen der Lebensweisheit).

This value of Gödel’s results is of course quite separate from their value (for

foundations or for science) at a more developed stage, perhaps to be compared

to those elements which are valuable or even vital at an early stage of evolution,

and less rewarding or even superfluous later. With one difference: in the case of

the evolution of knowledge, each generation starts off at an early stage. Besides,

for all of us there are areas about which we know little, and have first impressions

analogous to foundational schemes. Gödel’s results on the famous schemes of

Russell and Hilbert, at least when looked at in the way just described, give one

confidence in the possibility of analysing other schemes of this sort instead of sim-

ply suppressing them (and the analyses of other foundational schemes mentioned

in Sections 7 and 9, support this confidence).

Sub specie aeternitatis, or at least as long as our age of intellectual affluence

lasts, the value to the common understanding described above may well be seen as

the most extraordinary part of Gödel’s contributions, memorable as their scientific

uses (reported in Sections 4, 6 and 9) undoubtedly are.

90His notes to later reprints or translations give, with loving care, the most economical

formulations.



Chapter 7

Gödel’s Early Works

Gödel became instantaneously famous after a couple of articles on mathematical

logic at the ages of 24 and 25, proving the completeness of the (formal) rules for

predicate logic ([1930]) and the incompleteness of formal systems for arithmetic

([1931]). They raise two principal questions, which could not have been answered

at the time and arise as follows.

Gödel himself presented his work (as stressed in the introductions of his two

papers) by reference to the sensational formalist thesis :

all mathematics is like doing sums

(in a sense explained in more detail below). As with other extravagant theses,

programs, ideals, or what have you, the first question is:

Why not simply ignore such things?

Next, since work on extravagances rarely suggests convincing improvements, there

is a second question:

What might be done with the (here, mathematical) tools used?

At this point one might agonize about ignoring these two questions in turn.

Instead we’ll ask them first about another thesis.

The Pythagorean thesis

The following is usually attributed to Pythagoras, more than 2500 years ago:

(natural) number is the measure of all things.

0This chapter is based on ‘Gödel’s Collected Works, Volume I’, Notre Dame Journal of

Formal Logic, 29 (1988) 160–181.

132
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It is not, because no natural number or ratio between such numbers measures

the diagonal of the unit square, which has length
√

2. The tools used in this

refutation are the geometric theorem of Pythagoras about right-angled triangles,

and an arithmetic theorem about the (so-called diophantine) equation n2 = 2m2,

which has no solution in natural numbers n and m.

This refutation has not suggested any improvements, say, in the form of an-

other measure for all things. On the contrary, being mundane enough to remove

any sense of awe inspired by the Pythagorean thesis, the refutation raises ques-

tions about assumptions behind the thesis . For example,

What would be so wonderful if the thesis were true?

After all, even where only rational numbers are ‘needed’ (as in limits for experi-

mental errors), others are used (e.g., the interval for a measured length of some

diagonal of a unit square is often given in the form
√

2 ± ε, with rational ε and

thus irrational endpoints). More generally,

Is it sensible to demand one measure for all things, rather than rela-

tively few measures for relatively many things?

So to speak in the opposite direction:

Are there phenomena, possibly far-removed from everyday experience

(of Pythagoras or even of ourselves) that do lend themselves to one,

as it were, fundamental measure?

and so forth.

Similar questions come up about the thesis refuted by Gödel’s work, but also

analogues to the sociological fact that a few bands of the faithful continue to

pursue the Pythagorean thesis (in numerology, or in reductions of mathematics

to arithmetic).

As to the tools mentioned earlier, it would be unrealistic to try to be precise

about cause and effect in the last 2500 years. (Did the yodeler or the echo

trigger the avalanche?) As somebody said, such matters tend to be difficult just

because they have so few consequences. Be that as it may, the tools used remain

memorable samples .

Summary

Readers of Gödel’s papers should not expect similarly colloquial language in the

rest of the chapter. Partly this is a matter of temperament. But also, those of

us who know the detailed analyses made in the meantime can now judge which

familiar ideas are typical enough to illustrate a particular general issue reliably;

occasional uses below of erudite language will thus serve as reminders of those
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analyses (for example: instead of ‘doing sums’ there will be ‘formal procedures’,

i.e. computations according to the logical idea(lization) of the perfect computer).

But before we can even try to answer questions about tools used in Gödel’s

results, we’d better know (about) them. They are reviewed in Section 2, while

Section 1 provides the needed background. We then return to the two questions

in Section 3.

7.1 Background: Doing Sums Formally

We briefly describe formal numerical computations, as a quite typical example of

those formal procedures which Gödel’s early results refer to.

Numerical equations

The alphabet consists of the following symbols:

0 1 + · ( ) = .

The terms are defined inductively as follows:

• 0 and 1 are terms

• if t1 and t2 are terms, so are (t1 + t2) and (t1 · t2).

An equation is an expression of the following form (where, here and below, t1 and

t2 stand for arbitrary terms):

t1 = t2.

The axioms are:

• 1 = (0 + 1)

• (t1 + 0) = t1

• (t1 + (t2 + 1)) = ((t1 + t2) + 1)

• (t1 · 0) = 0

• (t1 · (t2 + 1)) = ((t1 · t2) + t1).

A derivation is a finite partially (or, for ordinary writing, linearly) ordered se-

quence of equations E, such that E is either an axiom or obtained from preceding

equations by the rule of substitution of equals for equals :

if both t1 = t2 and t3 = t4, one can substitute t2 for one or more

occurrences of t1 in t3 = t4.
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An equation E is a formal theorem if there is a derivation whose last equation is

E.

Exercises 7.1.1 a) t = t is a theorem. (Hint: (t + 0) = t is an axioms. Substitute t

for (t+ 0) in (t+ 0) = t.)

b) If t1 = t2 is a theorem, so is t2 = t1. (Hint: Substitute t2 for the left t1 in t1 = t1.)

The numerals are defined inductively as follows:

• 0 is a numeral

• if t is a numeral, so is (t+ 1).

Thus the numerals are

0 (0 + 1) ((0 + 1) + 1) · · ·

and the n-th numeral is indicated by n.

Exercise 7.1.2 For each term t there is a numeral |t|, such that t = |t| is a formal

theorem. (Hint: 0 is itself a numeral. 1 = (0 + 1) is an axiom. Note that for numerals

|t1| and |t2|, (|t1| + |t2|) and (|t1| · |t2|) can be proved to be equal to numerals, and

follow the buildup of terms.)

The symbols of the alphabet can be given their usual arithmetic meaning

(parentheses being part of the notation for addition and multiplication). In that

case, we can talk of an equation being true or false. The words completeness and

soundness of formal rules (used in Section 3) mean here that exactly the true

equations t1 = t2 are formal theorems.

Exercise 7.1.3 The rules are sound and complete for equality of terms. (Hint: The

axioms are true and the rules preserve truth, hence all formal theorems are true. But

t1 = t2 is true only if |t1| and |t2| are identical, in which case |t1| = |t2| is an instance

of t = t, and thus a formal theorem.)

Like other formal rules, those given above leave a choice in their order of

application. When computing a numerical value, knowledge of arithmetic prop-

erties helps in an efficient choice; for example, knowing that |(0 · t)| = 0 helps in

computing the value of (0 · t).

Exercise 7.1.4 For each term t, (0 · (t+ 1)) = (0 · t). (Hint: for t1 = 0, (t1 · (t+ 1)) =

((t1 · t) + t1) becomes (0 · (t + 1)) = ((0 · t) + 0), which becomes (0 · (t + 1)) = (0 · t)
when (0 · t) is substituted for t1 in (t1 + 0) = t1.)

Thus, when computing (0 · (t + 1)) = 0, do not compute t first (as suggested by

exercise 7.1.2), but use (0 · (t+ 1)) = (0 · t) as the first step.
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Numerical inequalities

The formal system above can be supplemented as follows, to deal not only with

equalities of terms, but also with inequalities:

• The alphabet is enriched by the new symbol ‘ 6=’.

• An inequality is an expression of the form t1 6= t2, where t1 and t2 are terms

in the previous sense.

• For any term t, the following is a new axiom: (t+ 1) 6= 0.

• There are two new rules , one for substitution:

if t1 = t2 and t3 6= t4, one can substitute t2 for one or more

occurrences of t1 in t3 6= t4,

and one for deductions:

if (t1 + 1) 6= (t2 + 1) then t1 6= t2.
1

Exercise 7.1.5 The new rules are sound and complete for inequality of terms. (Hint:

If t1 6= t2 is true then one term, say |t2|, of the pair of numerals |t1| and |t2| is a proper

part of the other. Let |t| be (the numeral of) the difference. Then |t| 6= 0 is an axiom,

and |t1| 6= |t2| is inferred from |t| 6= 0 by (|t2| applications of) the new deduction rule.)

Diophantine questions

They have been mentioned already (on p. 133) in connection with
√

2, and concern

equations between polynomials with numerical coefficients; in the notation above,

such polynomials are the terms generated by adding the ‘variables’ x1, x2, . . . to

the ‘constants’ 0 and 1.

Diophantine questions ask whether or not an equation between polynomials

has a solution by natural numbers:

• For positive answers, the rules for equality given above are enough: if

x1, x2, . . . are (the numerals of) solutions, this fact is verified by compu-

tation.

• But there are simply no formal rules at all that are (correct and) enough

for all negative answers , so-called diophantine inequalities (recall n2 6= 2m2

in connection with
√

2).2

1This corresponds to the cancellation rule for equations:

if (t1 + 1) = (t2 + 1) then t1 = t2,

which is superfluous in the sense that the rules for equations are complete without it.
2This is a negative response to Hilbert’s demand for such rules (in his tenth problem).
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Thus, even if only logical relations are considered, solving diophantine equations

is not like doing sums .

There is a plausible parallel between diophantine questions and metamathe-

matical questions about derivability by formal rules:3

• If a formula is derivable, this fact is verified by (nonnumerical) computation

with formal objects.

• Underivability is usually established by use of specific properties of the

formula considered, as illustrated by non-Euclidean models in the case of

Euclid’s fifth postulate.

Thinking about sums: facts of experience

Building up derivations (for example, by following the rules above mechanically) is

more exhausting than, say, reflecting on shortcuts and thus, realistically speaking,

more liable to error.

This fact is dismissed in foundations as human weakness, and thus as irrele-

vant to logic. Perhaps; but if so, the broader philosophical topic of human data

processing just does not have a (primarily) logical character. In particular, those

‘weaknesses’ may be of the essence in determining the extent to which human

data processing is not discrete.4

7.2 Two Twists by Gödel on Cantor’s Results

A formal counterpart to Cantor’s coding arguments

Cantor’s enumerations of pairs and of finite sequences of objects in an enumerated

set are familiar. For example, the rationals are enumerated as pairs of integers,

and the algebraic numbers by the sequence of coefficients of their primitive equa-

tions. Formal objects like those of Section 1 are sequences (of letters in the

alphabet of the system used), and can thus be enumerated too.

Cantor himself did not pay attention to the numerical properties and relations

that correspond to those for numbered sequences. But given a numbering it is

3Specialists know a precise sense of this parallel from work on Hilbert’s tenth problem (cf.

note 2).
4In Philosophical Investigations, Wittgenstein queries about following (mechanical) rules

correctly . His wording is purely logical: it concerns the idea of a correct application of a given

rule (like Kant, Kritik der reinen Vernunft , A 132–133), and possibly irreconcilable conflicts

over different interpretations of that idea in certain imagined situations.

Actually, computational errors do occur; with the difference that their presence is recognized

(even if no erroneous step is located!), and so those (imagined) conflicts are rare. However, it is

to be noted that the errors are of a kind that would not at all be expected to occur frequently

in wholly discrete data processing.
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often, in practice, a matter of routine to write them down.5 Here ‘in practice’

means that any of the familiar arithmetic operations, like exponentiation, are

used; in any case, polynomials alone (the subject of Section 1) would not be

enough.6

The following twist by Gödel involves something new, even if it is little more

than remembering (the possibility of) incompleteness; in other words, a difference

between truth and formal provability.7 It concerns two kinds of formal represen-

tation of properties of numbers (of formal objects).

First, let T be the property of being the number of a formal theorem of the

system considered, and D8 be a formula with one free variable.

Definition 7.2.1 D is said to represent T numerically if, for each number n,

T (n) is true ⇔ D(n) is a formal theorem. (7.1)

Here, as in Section 1, n is the numeral of n.

Exercise 7.2.2 Verify that in an inconsistent system, where every formula is a formal

theorem, only one property is representable. (Hint: Consider the property which holds

for all n.)

Let ¬ be formal negation. For a complete (formal) system, where either D(n)

or ¬D(n) is a formal theorem, it follows that

T (n) is false ⇔ ¬D(n) is a formal theorem. (7.2)

5For example, it is in the case of the operation τ defined as follows:

τ(w, v) is the result of substituting (the sequence) v for some chosen element in

w,

a version of which is considered below.
6Numberings (of words of a numbered alphabet and of other syntactic objects) are used

traditionally, and appropriately if some proposition about numbers is to be shown formally

independent.

But if the rhetoric about set-theoretic foundations were taken literally, one would consider

systems for sets, and code (that is, represent) their syntactic objects by means of hereditarily

finite sets, as is done in some elementary texts. For the rhetoric mentioned the ‘identification’

of symbols with sets is a matter of course, and the representation of sequences of sets by sets

is familiar. Viewed this way, it is quite lopsided to present arithmetization as a most central

component (let alone novelty) in Gödel’s proofs of incompleteness.

Arithmetization or, more precisely, ingenious variants have become central for such delicate

later developments as reducing the number of variables in a ‘universal’ diophantine equation.
7Actually, Gödel’s proofs apply also to suitable sets (of axioms) that are not formal (or,

equivalently, recursively enumerable). Basically, the set of consequences should be representable

(it is if, for example, all true ∀-sentences are added to formal arithmetic).
8Pedantically, DT should be used here (since D depends on T ).
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To underline the point, the literature uses a new word for representations that

also satisfy 7.2: originally, entscheidungsdefinit; today, more often, invariant

definitions .

The idea is extended to sequences ~P of properties P0, P2, . . .

Definition 7.2.3 A formula F with two free variables represents ~P = {P0, P1, . . .}
if, for all m and n,

Pm(n) is true ⇔ F (m,n) is a formal theorem.

Evidently, even if each member of a sequence has a representation, the whole

sequence need not be representable by any formula of the system (for example,

in Section 1, each polynomial is represented, but no sequence that includes all

the polynomials).

This warning serves as a foil to representing a sequence of all representable

properties by use of D and the substitution operation σ:9

σ(m,n) is the numeral10 of the formula M(n), where M is the formula

whose number is m.

If Pm is the property represented by the formula with number m then

Pm(n) is true ⇔ D[σ(m,n)] is a formal theorem.

If the system considered is complete, then the representation is a definition and

D[σ(x, y)] would define an enumeration of all representable properties (a notion

familiar from Cantor’s cardinal arithmetic).

A formal counterpart to Cantor’s diagonal arguments

As usual, two properties of numbers are called different if some number has one

of the properties, but not the other.

Proposition 7.2.4 For every sequence ~P of properties there is a property ~Pd,

depending of course on ~P , that is different from each property of the given se-

quence.

Proof. If ~P = {P0, P1, . . .} let

~Pd(n) be true ⇔ Pn(n) is false. (7.3)

9The operation σ is a variant of τ in note 5.
10In the rest of this section, for convenience, when we say ‘numeral’ of a formula we mean

‘numeral whose numerical value is the number’ of a formula.
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Consider any Pn. It differs from ~Pd; specifically, at the argument n which, by

definition, has the property ~Pd if and only if it does not have the property Pn.11

�

For a long time, the principal use of the passage (that is, the operation) from
~P to ~Pd was made in cardinal arithmetic, Cantor’s pet. Specifically, in contrast

to (say) the set of all algebraic numbers, and like the set of all real numbers, the

set of all sets of natural numbers is not enumerable. An enumeration is nothing

else but a sequence, and it would not include the corresponding diagonal set 7.3.

Long before the representation of all representable sets (by Gödel, cf. the

end of the previous subsection) Cantor’s argument caused malaise, and people

thrashed about for ways of expressing this malaise. There were those dubious

doubts about the existence of (the) uncountable sets mentioned above, but also

talk about the language in which they are defined, although cardinal arithmetic

is not restricted to sets that happen to be specified in any particular language.

Similar words (but with quite a different meaning!) get a point in the twist

from cardinal arithmetic to formal representations. Gödel’s twist12 on Cantor’s

diagonal construction is applied to the sequence represented by D[σ(x, y)].13

Theorem 7.2.5 If the property of being a formal theorem (of T ) is representable

in T , then T is incomplete.

Proof. As already noted, if T were complete then D[σ(x, y] would define an

enumeration of all representable properties.

The diagonal set of that sequence would be defined by ¬D[σ(x, x)], which is

of the form

D[∼ σ(x, x)],

where ∼ n is the numeral of the negation of the formula whose numeral is n.

Now, the formula

G(x) = D[∼ σ(x, x)]

11The literature sometimes speaks of self-reference here. This is literally true, since an

argument where ~Pd differs from Pn is the subscript of Pn itself (after all, for most function

terms their evaluation at the argument n refers to n).

Psychoanalysts may speculate on the fact of experience that the word has clouded the critical

judgment of many, but the practice itself is harmless.
12The twist is only implicit in Gödel’s famous paper [1931]. It is explicit in Turing’s work

[1936], but also in Gödel’s letter to Zermelo (of 1931), which can be found in Grattan-Guiness

[1979].
13This is a representation of a sequence of all representable properties (of the system consid-

ered) in the sense above or, equivalently, an enumeration of them for m = 0, 1, . . . It is perhaps

satisfaisant pour l’esprit that Kleene called such enumerations, which are indeed central to

incompleteness, complete (for recursively enumerable sets); ‘universal’ is more usual now.

In the language of functions, they correspond to partial recursive enumerations of all partial

recursive functions. Here the difference between total and partial functions corresponds to the

difference between truth and provability, mentioned above.
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has a number g. By the diagonal construction, this purported representation of

the diagonal set is certainly not a definition for x = g, since (by 7.3),

D[∼ σ(g, g)] is true ⇔ G(g), i.e. ¬D[∼ σ(g, g)], is false.

Hence T is incomplete. �

Readers familiar with the literature are warned that, instead of

G(g) = D[∼ σ(g, g)] with g number of G(x) = D[∼ σ(x, x)],

usually the formula

G0(g0) = ¬D[σ(g0, g0)] with g0 number of G0(x) = ¬D[σ(x, x)]

is used.

Interpretations

For the rest of this section T is a system as in 7.2.5, that is in which the property

of being a formal theorem is representable (by D).

Since the proof above is a little slick, it pays to interpret the formulas used;

in particular, in terms of two related metamathematical properties of formal

systems:

• soundness : for every formula F , if F is a formal theorem then F is true;

• consistency : for every formula F , F and ¬F are not both formal theorems.

We start first with a literal interpretation. Since D represents the property of

being a formal theorem, G(g) = D[∼ σ(g, g)] expresses

‘the formula with numeral ∼ σ(g, g) is a formal theorem’.

But G(g) has numeral σ(g, g), and thus the formula with numeral ∼ σ(g, g) is

¬G(g). Then

G(g) expresses ‘¬G(g) is a formal theorem’,

and

¬G(g) expresses ‘¬G(g) is not a formal theorem’.14

Theorem 7.2.6 If T is consistent, neither G(g) nor ¬G(g) is a formal theorem.

14Similarly, for the formula G0 considered above, one has that

G0(g0) expresses ‘G0(g0) is not a formal theorem’.



Gödel’s Early Works 142

Proof. Suppose G(g) = D[∼ σ(g, g)] is a formal theorem. Then, by the right-

to-left direction of 7.1, (the formula with numeral ∼ σ(g, g), i.e.) ¬G(g) is also a

formal theorem.

Conversely, suppose ¬G(g) is a formal theorem. Then, by the left-to-right

direction of 7.1, (D[∼ σ(g, g)], i.e.) G(g) is also a formal theorem.

Thus, if one of G(g) and ¬G(g) is a formal theorem, so is the other, and the

system is inconsistent. �

In particular, G(g) and ¬G(g) are witnesses of the incompleteness of T .

Theorem 7.2.7 ¬G(g) is an instance of soundness (precisely, for ¬G(g) itself).

Proof. We have already seen that G(g) means ‘¬G(g) is a formal theorem’. As

usual, ¬G(g) means ‘¬G(g) is true’. Thus, the instance of soundness for ¬G(g):

if ¬G(g) is a formal theorem then ¬G(g) is true

reduces to

G(g)⇒ ¬G(g),

which is equivalent to ¬G(g). �

As a corollary, (even) the particular case of the soundness principle applied

only to ¬G(g) is not a formal theorem of the systems considered in 7.2.5.

Theorem 7.2.8 If the system is complete for G(g), i.e.

if G(g) is true then G(g) is a formal theorem,

then ¬G(g) is an instance of consistency (precisely, for G(g) and ¬G(g) them-

selves).

Proof. The completeness assumption reduces to

G(g) ⇒ D[σ(g, g)]. (7.4)

Consistency for G(g) and ¬G(g) is equivalent to

if G(g) is a formal theorem then ¬G(g) is not a formal theorem,

which reduces to

D[σ(g, g)] ⇒ ¬D[∼ σ(g, g)],

and hence to

D[σ(g, g)] ⇒ ¬G(g). (7.5)

By 7.4 and 7.5,

G(g) ⇒ ¬G(g),
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which is equivalent to ¬G(g). Thus consistency implies ¬G(g).

Conversely, ¬G(g) is equivalent to ¬D[∼ σ(g, g)], and hence it trivially im-

plies consistency for G(g) and ¬G(g) in the form given above. �

In terms of Section 1, here two special properties are used: that of G(g) being

like solvability of a diophantine equation; and of course of the system considered,

which must prove of itself that verification by computation is possible.

Corollary 7.2.9 If a consistent system is provably complete for G(g), then con-

sistency (for G(g) and ¬G(g)) is not a formal theorem.

Proof. The hypothesis means that

G(g) → D[σ(g, g)]

is a formal theorem.

The conclusion means that

D[σ(g, g)] → ¬D[∼ σ(g, g)]

is not a formal theorem. If it were, by the proof above ¬G(g) would be a formal

theorem too, contradicting 7.2.6. �

In particular, for systems S as in 7.2.5 with the additional hypothesis of 7.2.9,

the consistency of S is not a formal theorem, and so it is consistent to assume

(that is, add to S the axiom) that S is inconsistent .

It should be recalled that many current systems satisfy the additional condi-

tion that, demonstrably, each inconsistency implies an arbitrary formula. With

this further condition,15 it is consistent to assume that every proposition is a

formal theorem.

Finally, it is worth noting that the (second) relation above, with the soundness

principle, makes consistency - for the special systems considered - more than a

purely necessary, so to speak negative virtue (i.e., the absence of particularly

crass errors like contradictions).

Discussion

We have conflicting requirements for a scientifically successful pursuit of math-

ematical logic, and for a philosophically adequate examination of foundational

claims like Hilbert’s thesis. For the former it is most rewarding to pursue the

details of the proofs above, including the details of D, thus establishing the po-

tential of formalization. But for a proper assessment of the intended thesis it is

essential to realize how few details are needed (for its refutation)!

15Some current systems (for example, cut-free ones) do not satisfy this additional condition.
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Either the various representations are not available in the system

considered (and the system fails because it lacks expressive power),

or the system is incomplete (and so fails because it lacks deductive)

power.

This refutation is, perhaps, little more than a wisecrack. If so, the punishment

fits the crime, as it were: the formalist thesis is so badly wrong that a refutation

is so undemanding.

This kind of thing is familiar in memorable foundations, and not only in the

case of refutations. Thus Tarski gave an impeccable translation of

‘snow is white’ is true

by

snow is white

(used in 7.2.7). Whatever problems there may be here, they concern the optical

properties of snow, not the general notion of truth. This shows, for example, that

Pilate had no reason to stay for an answer (in any case, it does not seem to be

recorded whether he asked his question with bated breath or a shrug-and-a-wink).

This use of mathematics (in particular, mathematical logic) is a refrain of the

whole chapter. Being mundane enough to remove any sense of awe inspired by

those Big Words, it corrects our view of them.

Digression on representations (optional)

For the results up to 7.2.7, the notion of numerical representation for properties is

perfectly adequate. Specifically, the results stated hold for all representations (of

the particular property in question), even though the latter need not be formally

equivalent.16

More generally (for example, for 7.2.9), attention is required not only by

the representation of properties, but also of propositions . Here, as so often, the

best guide for progress comes from broad mathematical experience rather than

16For example, if σ represents the substitution operation, so does σ1 = σ+0, but the formulas

D[∼ σ(x, x)] and D[∼ σ1(x, x)] have different numbers g and g1. However, both D[∼ σ(g, g)]

and D[∼ σ1(g1, g1)] satisfy the condition for so-called Gödel sentences S:

S ⇔ D(∼ s),

where s is the number of the formula S.

In (literate) English the popular use of the definite article (‘the’ Gödel sentence) requires

some equivalence relation connecting all formulas that satisfy the condition above. For broad

classes of common systems all Gödel sentences are in fact formally equivalent, for others they

are not or not known to be equivalent. (Specialists will think here of so-called Rosser systems.)

Similar questions can be raised about ‘this’ in ‘This sentence is false’.
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from the recent logical literature; specifically, from the introduction of (algebraic)

coordinates in (synthetic) geometry:17

• Codes (arithmetic or set-theoretic) correspond to the coordinates ;

• syntactic objects (either thought of as finite words of an enumerated alpha-

bet, or as finite trees) correspond to geometric points ;

• properties of the objects (such as terms, formulas, derivations) and relations

(say, between derivations and their last formula) correspond to geometric

relations (for example, collinearity).

At least one (historical) difference is to be noted, especially with respect to

the delicate cases of projective or desarguean geometry, which would be called

weak systems in contemporary logical jargon (compared to the geometry of the

full Euclidean plane).

• The geometric axioms came first, and the corresponding algebraic ideas (of

skew fields, fields etc.) afterwards.

• In contrast, axioms for arithmetic (including weak subsystems of familiar

formal arithmetic) came first, while formal systems for syntax (concatena-

tion theory, or theories of finite trees) are still not very familiar; especially,

the choice of axioms satisfied by the syntactic properties and relations above

is usually left implicit.

17Readers familiar with interpretations in the sense of Tarski (that is, uniform definitions

of a model for one theory in another) may wish to compare the introduction of coordinates

to the interpretation of the particular systems of geometry considered in the corresponding

algebraic systems; to be quite precise, systems for vectors over the coordinate space (projective

geometry corresponds to skew fields, Pappus to commutative fields, etc.). But over and above

an interpretation, coordinates provide an embedding , which induces the (definable algebraic)

relations that interpret the so-called nonlogical constants of the geometry considered. All this

is well known.

Hilbert went further in his Foundations of Geometry , and interpreted the algebraic systems

in the corresponding geometry too. Specifically, he defined ternary relations A and M in the

language of projective geometry, and proved for them geometrically the laws of addition and

multiplication that hold in the corresponding algebra, with the same (formulas) A and M for all

the extensions of the projective axioms and the axioms for skew fields (and the same embedding,

the identity, for the planes and the algebras in question). This tour de force is a high spot in

the tradition to which so-called reverse mathematics belongs.

In the present subsection coding of syntax is meant as interpreting a suitable formal theory

of syntax (i.e. of finite words or finite trees, with certain inductive definitions of such syntactic

properties as: being terms, proofs, provable) in generally weak systems of arithmetic. The

reverse direction corresponding to Hilbert’s tour de force does not seem to have been investi-

gated. Roughly speaking, it looks for an arithmetic ‘structure’ in - the language of - syntax

(even though so far this has no more been needed in coding than the tour de force was needed

in geometry).

Strictly speaking, a relative interpretation is involved since the embedding is not onto (that

is, not all natural numbers are codes of some syntactic object).
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Put differently, it is left open which data determine the formal rules con-

sidered for generating terms, etc.18

There is also a difference in jargon. The mathematical tradition does not

have the refrain, introduced in this section, about the difference between truth

and provability , but about truth (in, say, the Euclidean plane) and validity (for

all projective or desarguean planes): the definitions involved in the introduction

of coordinates are uniform (for all projective or desarguean planes considered).

There are other differences too. For example: in provability logic one has

iterated codes (of codes, etc.), but practically never in geometry (coordinates of

coordinates). In the opposite direction: the literature on (Gödel) numberings is

rarely explicit about the ‘structure’ on finite sequences (to be represented).

Readers will recall two elements in the introduction of coordinates. First,

there is the matter of determining (algebraic) coordinates for points uniquely

up to transformations of a suitable kind (usually, some transformation group).

Secondly, for a given choice of coordinates it is shown that algebraic relations

that satisfy the geometric axioms must be of a certain form (for example, a

relation satisfying the axioms for collinearity in two dimensions will be linear in

the algebraic sense).

The notion of canonical representation (of properties of numbers of formal

objects), follows the model just recalled.19 In particular, given a (canonically

defined) coding of the syntactic objects, such canonical representations of syntac-

tic properties are arithmetic predicates satisfying (demonstrably) the inductive

definitions induced by the Post production rules for those properties. Any two

canonical representations of a given property are then demonstrably equivalent,

provided of course the system of arithmetic considered contains enough induction.

The corresponding uniqueness condition satisfied by the (canonical) codings

themselves is adequately illustrated by the humble matter of (surjective) pairing

π with its left and right inverses λ and ρ, satisfying

z = π[λ(z), ρ(z)]

18If Post production rules are meant, the corresponding additional axioms of the concatena-

tion theory have the form of so-called elementary inductive definitions (including the principle

of proof by induction, which expresses that the least solution of the inductive definition is

meant).
19For the record, I was not conscious of the close relation between canonical representations

and the introduction of coordinates when I introduced the former some thirty years ago (though

I had learnt the latter from Hilbert’s Foundations of Geometry twenty years earlier; cf. the

footnote on p. 261 of Hodge and Pedoe [1947]).

Incidentally, the classical literature on the foundations of geometry was far more sophisticated

than the (sloppy) literature on natural representations, especially common in connection with

consistency statements. It did not assume that what happened to be familiar from ordinary

analytic geometry since Descartes would also be natural for, say, all projective planes. On the

contrary, it investigated whether familiar techniques were adequate in the case of unfamiliar,

so to speak nonstandard (projective) planes; ‘adequate’ for its elegant (though half-forgotten)

representation theorems, with their explicitly stated adequacy conditions.
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for all z.20 If (π′, λ′, ρ′) is another such pairing, then the transformation from z

to z′ is given by:

z′ = π′[λ(z), ρ(z)].

This uniqueness up to definable isomorphism here corresponds to uniqueness

within the geometric transformation group in the case of coordinates.

Before leaving the subject of canonical representations, it is as well to recog-

nize a wide-spread malaise about details of coding, often felt to be boring. This

is a ‘subjective correlative’ of the fact that, generally, the results actually proved

(about a particular coding or by use of it) are also valid for any other coding that

may come to mind. In other words, the details are introduced for some ritual of

‘precision’, which draws attention away from the more demanding questions of

what one is being precise about, and why.

• At an elementary stage there are two principal strategies for progress.

One, exemplified by the canonical representations above (and categorical

axioms in another sphere), is to formulate some kind of maximal require-

ment, enough for any developments in sight.

At an opposite extreme one looks at minimal requirements for each of the

more prominent results.

• At a later stage, brute power may be used (as in the ‘ingenious variants’

alluded to in note 6) and, as always, there is the delicate job of discovering

relatively few requirements adequate in relatively many situations.21 (All

this may be hard, but it is not boring.)

20The weaker condition on (not necessarily surjective) pairings that used to be quoted, namely

that

π(x1, y1) = π(x2, y2) ⇒ (x1 = x2 ∧ y1 = y2),

would of course not be enough for the following transformation.
21A good example is provided by the popular and successful modal language of provability

logic. It realizes the idea of ‘relatively many situations’ by its established expressive power.

A moment’s thought shows that the full panoply of canonical requirements is liable to be

excessive here: they are enough to cover also propositions about proofs (i.e., derivations), while

the language is restricted to provability statements.

For example, the latter require only conditions on D which ensure that statements in the

modal language are equivalent when D is substituted for �. Because of the iteration of �, it is

not enough that D be a representation in the sense used in the text.

As experts surely know but do not publicize, if modus ponens or, pedantically,

�(p→ q) → (�p→ �q)

is derivable for the representation D used, the required condition simplifies. Instead they talk

of modus ponens being ‘natural’, ignoring both the discovery that cut-free rules are useful, and

a philosophical observation (cf. note 32) about the general weakness of the formal picture for

understanding the phenomena of proof.
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Systems that prove their own consistency

The ‘deviant’ (self-referential) sentence introduced by Rosser (to eliminate Gödel’s

condition of ω-consistency for a system S) is simply a Gödel sentence (in the sense

of note 16) for the canonical representation of the system SR defined as follows:

d is a derivation of A in SR if d is a derivation of A in S, and there is

no derivation d1 of ¬A before d (i.e. with d1 < d).

I do not know whether, in general, SR proves its own consistency (of course,

formulated canonically), but S+
R certainly does, where it is required in addition

that

if A = ¬B, there is no derivation d2 of B before d either.

Note that the passage from S to S+
R is (not only a simple but) a recursive opera-

tion.22 Incidentally, and without forgetting limitations of all formal systems, S+
R

possesses a feature of actual experience with proofs that is not present in more

usual systems : the results are cross- checked against background knowledge.

For consistent S, S and S+
R have not only the same set of theorems but the

same proofs; only the procedures for checking the latter are different. Thus the

(still common) formulation of Gödel’s second theorem ‘for all sufficiently strong

systems’ is not at all sloppy, but just sadly ignorant (in particular, of anything

like S+
R above).

A civilized formulation (modulo minimal conditions) is in the next result,

sharpened and expressed in modal language (where � is substituted for D, and

completeness is restricted to provability statements).

Theorem 7.2.10 Either consistency or completeness for Σ0
1 statements is not

(internally) derivable.

Proof (following Jeroslow). Suppose

1. G↔ �¬G23

2. �¬G→ ��¬G

3. ¬(�G ∧�¬G)

are all formal theorems. They are if, respectively:

1. G is a Gödel sentence

22Here meant in the usual strong sense, not merely the sense of having recursive values at

recursive arguments.
23This a modal counterpart of so-called literal Gödel sentences (cf. note 16), constructed

earlier in this section.
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2. completeness for Σ0
1 statements (in particular ¬G) is internally derivable

3. consistenct for Σ0
1 statements is internally derivable.

Then

�¬G↔ �¬�¬G

by 1 (substituting the right-hand-side for G on both sides). In particular,

�¬G→ �¬�¬G.

Together with 2, we have

�¬G→ �(�¬G) ∧�¬(�¬G)

and, by 1 again,

�¬G→ �G ∧�¬G.

But the conclusion is the negation of 3, so (¬�¬G and, by 1) ¬G is derivable.

This is impossible, since G is a Gödel sentence. �

Corollary 7.2.11 Ordinary cut-free systems do not prove their own consistency.

Proof. The proof above does not use closure under modus ponens, and ordinary

cut-free systems are complete with respect to Σ0
1 statements. �

Notice that here consistency is taken in a sensible form, not merely in Hilbert’s

coy version ‘¬� ⊥’, which implies usual consistency in the presence of modus

ponens. In cut-free systems, ¬� ⊥ is provable in the system itself.

Finally, to repeat what cannot be repeated too often: without completeness

with respect to Σ0
1 statements, consistency is very pale indeed . Indeed, it does not

even ensure the truth of (proved) Π0
1 statements (the formula G(g) in 7.2.5 is Σ0

1,

and so ¬G(g) is Π0
1).

7.3 Back to the Two Questions

Formal (or, equivalently, mechanical) aspects of mathemat-

ics: what are they, and what are they supposed to do?

These questions, but not the specific answers below, come from the title of

Dedekind [1888].

Computations with 0, 1,+,× (as done in elementary school) are quite typical

of formal procedures. Section 1 has sketched both the drill involved, and shortcuts

resulting from (humanly inevitable) reflection on it.

Today, computations on an electronic computer are familiar. They are even

better examples, with one proviso: not too much attention to details either of
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the hardware or of the wetware (computer jargon for ‘intellect’), since the logical

idea of the computing machine corresponds only to Simple Simon’s image of

computing Man.

Both kinds of examples convey very well what formal procedures are, but

they do not provide an effective background for Gödel’s (best known) result.

This states some odd things that even an ideal computer cannot do, which are

wholly overshadowed by the many things that even actual computers can do;

realistically speaking, far beyond Leibniz’s dream.24

The extravagant formalist thesis provides, of course, a much more glamorous

background. The first of the details about that thesis (promised at the outset) is

a distinction, between:

• thought processes in mathematics

• mathematical thoughts (or, more simply, results).

The pioneers, especially Frege, concentrated on the logical relations between re-

sults; without any claims on the full range of the mathematical imagination,

or even dismissing questions about the latter as irrelevant (to mathematics).25

Brief indications of this distinction, applied to addition and multiplication, are

in Section 1.

What is at issue is an understanding or theory of reasoning (at least, in

mathematics). And the claim of the formalist thesis is that the formal elements

reflect all that is significant. Thus a theory takes the form of a formalization,

which consists of: a formal language with a basic alphabet, a formal grammar,

and formal rules of derivation. Section 1 provides a sample, but the formalization

of elementary (predicate) logic, which appeared more than one hundred years

24Even if not the oft-quoted part about settling moral or legal squabbles mechanically. It

seems to me it should not be too hard to program expert systems that generate, statistically,

more or less the usual judgments. But the market is likely to be limited. Lawyers would

not be enthusiastic, for obvious reasons; nor those, among the accused and litigants, who are

not satisfied with statistical justice (even when they accept the two cherished principles of the

uniqueness of each individual and of equality before the law, which would make it wise to be

satisfied).
25In contrast to the pioneers a century ago, around the middle of our century Turing pro-

posed a test for ‘identifying’ thinking behavior by its not being distinguishable from human

performance. Naturally, distinctions by reference to certain aspects (so-called results) were

meant; comparable in the case of artificial locomotion to ‘identifying’ walking with roller skat-

ing as long as one starts and finishes together. For artificial locomotion viewed as a branch

of engineering, which lives on achieving given results (i.e., tasks) by novel processes, Turing’s

proposal is a matter of course. It becomes remarkable if it is viewed as contributing somehow

to elucidating the processes in data processing: by putting them into black boxes, as it were, or

ignoring them in other ways. Needless to say, that ‘test’ has become popular among the vulgar,

like the most vulgar uses of Ockham’s razor (where the fact that something is not needed to

explain a particular bunch of phenomena is interpreted to show that it does not exist). For the

record, that ‘test’ is the only indiscretion of Turing that I both know of and have found at all

disturbing.
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ago, remains more impressive; above all, because of the expressive power of its

simple notation (vocabulary and grammar). This became relatively soon part of

mathematical (and even general) culture; much more so than its rules of inference,

inevitably reminiscent of processes.

Let there be no mistake: even the formalization for doing sums is amazingly

simple, compared to the phenomena that present themselves naturally; specif-

ically, in the many nuances of natural (written, and especially spoken) mathe-

matical language(s). The price to pay for this simplicity is a malaise: the formal

elements constitute a very pale picture of even the two elementary parts of math-

ematics in the last paragraph, let alone a broad mathematical experience.

One consolation, albeit overlooked by Goethe himself, is implicit in 1.2037 of

Faust I : all theory is grey. So paleness by itself is not a defect of any theory, logical

or not. More substantial encouragement comes from the mechanical picture of

the physical world around us in terms of point masses and their motion in space-

time (which leaves out colors and shapes, not to speak of chemical composition).

This picture, hardly less pale than the formal picture above, has not only been

most successful in its domain, but remained for centuries a model for theoretical

understanding. After Section 2, readers may pursue the parallel with the formal

picture(s) of the world of mathematics a step further: not only are the objects

of mechanics here represented, but also spatio-temporal relations between them

(cf. Gödel’s twist representing properties of Cantor’s numerical representations

of words).

Memorable formalizations were proposed in the two decades around the turn

of this century:

• by Whitehead and Russell for all of mathematics (in the three volumes of

Principia Mathematica);

• by Hilbert for various branches of it (beginning, in the Foundations of

Geometry , with elementary geometry), with respect for both the venerable

ideal of purity of method, and for the mathematical tradition of concise

exposition.

But for the sequel, and probably sub specie aeternitatis, the following difference

between the two styles is much more consequential:

• In his so-called metamathematics Hilbert paid attention to global mathe-

matical properties of the formal pictures, such as completeness (taken up

in the next paragraph).

• Principia did not; in the tradition of natural history, which is content with

a compact description of data that happen to catch our attention (by math-

ematical formulas, when it uses mathematics at all).
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Admittedly, this side of metamathematics got lost in Hilbert’s later rhetoric,

for example, about real and ideal elements in the tradition of Ockham’s razor

(already mentioned in note 25).

A specific principal requirement on formal pictures is this. For propositions

P represented by p in the formalization considered, p should be a formal theorem

if and only if P is true. When P is about some particular notion or ‘structure’,

then

either P is true or its negation is.

The corresponding mathematical property of the formalization is that

either p is a formal theorem or the formal negation of p is.

This is called formal completeness (cf. p. 136).26

Perhaps it is worth adding that, even when P is about some specific structure,

formal completeness would not be generally even plausible, if thought processes

were the main object of study. There is simply not a shred of evidence that every

problem of, say, Higher Arithmetic is solvable in any even remotely realistic sense,

let alone that we should want to look at every problem (in current formalizations).

The incompleteness theorem: a literal refutation

Gödel’s (most famous) incompleteness theorem was originally stated for Principia

and related systems; in fact, for the parts that serve to represent arithmetic

properties. For each such system T , some true proposition of arithmetic is not

a formal theorem (of T ), where the proposition depends upon T . Thus, doing

higher arithmetic is not like doing sums (cf. Section 1 on diophantine equations).

As we saw in 7.2.7, the particular true proposition obtained by Gödel has a

simple interpretation: it is (the so-called arithmetization of) an instance of the

soundness principle.

For our ordinary view of (the logical relations between results in) mathematics,

this principle is a minimal consequence of understanding the rules of T at all

(and, it may be added, rules actually used are understood; at least, enough for

this consequence).

Viewed this way, T would simply be said not to prove the particular property

of itself expressed in the principle, though T proves many things (also about

26In general, the restriction to particular notions is needed, as seen in the case of pure logic

where (as Leibniz put it) truth in all possible worlds is meant. So P is not logically true if it is

false in some such world. But the negation of P is logically true only if P holds in no possible

world. Thus neither P nor its negation need be logically true, and so formal completeness is

not required here.

Nor is it required when P is about (say) sets, before we have made up our minds on the

particular kind of set to be considered; for some P , neither P need be true for all kinds of sets

contemplated, nor its negation.
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itself). Thus the formalist thesis is refuted according to the letter , since one of its

explicitly formulated (cl)aims (completeness for arithmetic) is not realized.

The completeness theorem: a Pyrrhic victory

For grand theses, and especially for ideals (here, of theoretical understanding), a

broader sense of ‘refutation’ is philosophically appropriate:

when the ideal is realized, the realization is found to be unsatisfactory.

To spell it out: the realization is found to lack (or have) certain properties that,

as can now be seen, had been tacitly assumed to go with (or against) the ideal.

In this way, inspection of a realization can identify tacit assumptions behind the

ideal ; which constitutes a refutation in the broader, second sense (by a Pyrrhic

victory, as it were).

An example of such a refutation of the formalist thesis is Gödel’s other very

well-known early result: the completeness of Frege’s formalization for elementary

predicate logic, but now in the sense that for each formula F , either F is a formal

theorem or F is not true in all possible worlds.

Viewed dispassionately, this result does not at all give a privileged place to

Frege’s rules. It just shows that they are sufficient-in-principle (as Kant liked to

say)27 or, more soberly, sufficient to generate the logically true formulas in the

formalization.

On the contrary, by using the concept of logical truth, the result draws at-

tention to quite different possibilities of proving logical theorems; specifically, the

possibility of drawing on knowledge (if not of all possible worlds, at least) of many

corners of our world; in other words, the possibility of proving logical theorems

by so-called logically impure methods .28

In point of fact such impure methods have been used increasingly since the

formalization of pure logic more than one hundred years ago, and especially since

Gödel’s result sixty years ago; incidentally, this is often done by people totally

ignorant of the formal rules (so that it is wide open in which way the conviction

carried by their proofs can be realistically related to the formalization).

27The ethereal business of possibilities-in-principle has been most prominent in foundation;

not only in the writings of Kant, but also of logicians like Russell, who described Principia as

‘a parenthesis in the refutation of Kant’. Many of Kant’s observations on reasoning apply im-

peccably to actual phenomena, but are false if interpreted as needs-in-principle. Thus, contrary

to Kant, appeal to geometric experience (especially, visualization, also called Anschauung) is

not needed in principle for mathematical deductions; but it continues to be used widely, and

to good effect. More specifically, Euclidean geometry does not have the privileged place that

Kant, taken literally, gave to it (nor, of course, for physical space near massive bodies; and it

is not the geometry of visual space either); but, to this day, mathematicians continue to think

in Euclidean terms also when defining non-Euclidean spaces.
28Specialists will think here of theorems that are or can be formulated in Frege’s logical

language (for example, about ordered or real closed fields), but are proved by topological

methods.
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Sensationalism and utilitarianism

Before turning to more positive aspects of the two refutations above by the in-

completeness and completeness theorems, a couple of comments seem in order.

The first is general. The proofs of both theorems are pearls of logic. But

not both results can be sensational! If the completeness of a formalization for

mere elementary logic is a sensation, then incompleteness of Higher Arithmetic

is not.29 Historical counterfactuals aside, one hundred years ago it would have

been fitting to give pride of place to the completeness theorem, bolstering up the

then-tentative project of formalization, with the incompleteness theorem ratifying

(formally, as it were) the then general distrust of that project.

The second comment concerns the open secret that, outside mathematical

logic, neither of these two results turns up in the ordinary mathematical literature.

There is no conspiracy against them. As stated, they just have not found a use;

fittingly, in view of the fact that they are tailor-made for (refuting or supporting,

no matter) a refuted thesis .

This is the situation considered at the outset, with all its problems; in particu-

lar, the one of finding some sober use for the tools employed. Especially when, as

in the present case, the tools are of obvious ‘raw’ interest, the principal obstacle

to solving those problems is blindness to them; in particular, the illusion that

pretty mathematics must ‘somehow’ have already solved those problems. Tracta-

tus 6.21, about mathematics not expressing any thought, is surely literally false.

But, equally surely, mathematics very often leaves questions open that require

more (demanding) thought than the mathematical solution.

Shifts of emphasis: what more do we know from formaliza-

tion?

Obviously this question does not even arise if the formalist thesis is elevated,

as indeed has been done, to the doctrine that there is nothing (precise) besides

formalization.

The question is less innocent than it may look. For effective contributions

to some particular area the additional knowledge (in answer to: ‘What more

. . . ?’) must be expressed in terms used in that area, and is thus liable to require

familiarity with it. The following two general points have a larger market.

First, there is the matter of choosing a formal system rationally. By Gödel’s

incompleteness theorem, the only general idea for reducing the arbitrariness of

29For example, a couple of years before Gödel’s discovery of incompleteness Siegel [1929] and

Weil [1928] discounted, in effect though in different terms, the possibility of a complete formal

theory for diophantine equations. In fact, their equations had just two variables, respectively

for integral and rational solutions. Weil’s equations were even only of degree four.

The question of whether or not there is a complete formal theory for these special cases is

still open. Incidentally, the two papers referred to were immediately famous.
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such a choice (namely, completeness) is not even ‘in principle’ available for sys-

tems of arithmetic. One of the current favorites for answering the question above

provides a better (and sometimes even practical) idea for a choice, based on the

rate of growth of those functions that can be shown in T to solve suitable30 prob-

lems P (provided one wants to know about such things). Here, P comes first and

T is a tool , not a ‘foundation’.

The second point concerns complete formalizations , such as (Frege’s) logical

rules. To repeat what cannot be repeated too often: unless formalization is

required as a matter of doctrine, the question ‘What more . . . ?’ is just as hot here

as for incomplete systems. The answer is simply: a new description of the object

involved ; in the case above, of the logically true propositions (in Frege’s language).

For effective knowledge this description competes then with others , such as the

‘impure’ kinds in the last section. Logicians think here of the competition between

descriptions in model-theoretic and diverse proof-theoretic terms.

There is an obvious parallel here with the Pythagorean thesis, specifically

with the use of irrationals even when they could be avoided-in-principle. But a

more significant element of the parallel is this: the proofs of completeness and

incompleteness are mundane enough to remove any sense of awe inspired by the

refuted formalist thesis, and leave us free to examine some assumptions behind

the latter.

What is so wonderful about formalization?

People have been thrashing about for an answer. Only one will be considered here.

It is the tacit assumption of some ethereal need (here, satisfied by formalization)

for an ultimate norm of precision; a tacit assumption popular not only in the

foundations of mathematics, but almost throughout all Western culture.

Presumably according to the books they read in their teens, particular authors

writing on such norms refer to:

• the finiteness of formal objects

• their spatio-temporal character

• more generally: their public character

• going the whole hog: the idea that the thought processes themselves are

formal (i.e., mechanical in the sense of the perfect computer), in which case

only formal rules can be unambiguous.

30‘Suitable’ means in practice that P has the form ∀∃, and that incompleteness applies even

if all true purely universal propositions are added to T as axioms. The bounds are established

by so-called consistency proofs for those (necessarily incomplete) T .



Gödel’s Early Works 156

All this would carry little weight without the master assumption that there are

genuine doubts about the precision or reliability of principles currently in use.

(Viewed this way, all those little paradoxes are a godsend for this assumption.)

Now, if the principles in question are in fact 100% reliable, then doubts about

them are dubious (which doubts can be, just as much as can assertions). The

privileged place given to doubts (for example, by Descartes) looks very much

like other pious conventions that are only too familiar. But it pays to be more

specific.

To put first things first, there can be perfectly proper doubts, even about

principles. Thus, not so long ago, (antecedents of) those now current about sets

were problematic; the problems were solved by saying out loud which sets were

meant (and not by putting principles into formal dress which, after all, Frege

did in his Grundgesetze).31 Though (occasionally) obviously problematic princi-

ples are investigated, most often those proper doubts are about (the probability

of) incorrect applications of correct principles . In this case preoccupation with

reliability-in-principle (that is, reliability of principles) simply distracts from the

dominant factor (here, dominant source of error).

Is this factor a foundational concern? According to a principal tradition of

the subject, it is not. In this case the topic of reliability has been discovered not

to be primarily foundational (by the way, not necessarily a comedown; see the

discussion on p. 143). A discovery of the nonfoundational character of a topic

(here, of reliability) is to be compared to discoveries in the natural sciences; for

example, of the gravitational or magnetic character of some phenomenon, say,

near the surface of the earth (in other words, whether the dominant force, if

there is one, is gravity or the magnetic field of the earth). Similarly, in note 28

concerning ‘impure’ methods, problems stated in logical language but solved by

topological methods are thereby discovered to have topological character.

As in other scientific experience, research has produced ways both to cope with

such delicate points as mixtures and, above all, ways to recognize when enough

is enough: that is, enough for using such characterizations without looking for

new evidence, or even referring to the old. (Our existing knowledge of those

characterizations is thus treated as a priori.) Given the level of generality of all

this, it applies of course to norms as well; here of precision, but surely also in

practical life. For the literal sense of ‘philosophy’, recognizing when enough is

enough has always been a central concern. Thus in the Metaphysics (Γ, 4, 1006a,

6–9) Aristotle relied on good breeding. The following couple of points help too:

• There is extended experience, which may but need not confirm ordinary

practice.

For example, as already explained, experience has rehabilitated our ordinary

‘norms’ (or, more simply, checks) in the case of logical reasoning, as opposed

31Cf. note 26 on completeness.
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to the demands of so-called formal reasoning.

In contrast, after the discovery in the last century of so-called abstract

reasoning we have never looked back. Specifically, we express in axiomatic

terms what we feel to be essential about an argument. For example: in

elementary number theory, analysis in terms of abstract finite groups is

used; we do not isolate only, say, the ‘numerical content’.

• Particularly significant for the present subsection: (a good deal of) the foun-

dational literature obscures the consequences of such extended experience,

including logical experience.

Thus, it wails about ‘far-reaching reductions’ (of mathematics to formal

systems) that are (allegedly) lost by the refutation of the formalist thesis,

apparently without remembering the fact that those would-be magic reduc-

tions are already available in substantial areas (such as elementary geometry

or logic) but not used : least of all, as a norm of precision.

Readers familiar with foundational (bad) habits surely know much more along

these lines. But the snippets above are enough to show that the topic of reliability

is not a rewarding market for formalization, and certainly less so than the answers

above to the question ‘What more . . . ?’.

This suggests also a genuinely philosophical conclusion: it is simply not plau-

sible that this particular topic will get very far without closer attention to thought

processes , which (by p. 151) are neglected in the pale formal picture.32

Short answers to the initial questions

Gödel’s results and the refutations they provided of the formalist thesis were

involved in locating and examining assumptions behind the latter, such as dubious

doubts or doctrinaire norms of precision. Admittedly, those assumptions can be

and were questioned before settling or even formulating the thesis. But the

refutation and, particularly, its elementary character (stressed in Section 2) can

help establish a sense of proportion for the examination: above all, by eliminating

undue worry about not having grasped the full inwardness of the thesis.

As to the tools , sketched in Section 2, the situation is not too different from

that of the Pythagorean thesis; except that 60, not 2500, years have passed: this

32Warning . The heading ‘length of proofs’ of Gödel [1936] suggests consequences for un-

derstanding thought processes; but the formal picture is just too pale to support such colorful

interpretations! A short description of a long formal proof, especially with underlining of its

memorable parts, is in fact easier to process than a relatively short formal proof.

In a similar vein, the process of discovering a new axiom to prove some given result is often

not only less demanding than discovering a proof of it from given axioms, but has a similar

flavor. Though such a proof by given axioms can in principle be found mechanically by trial

and error, in practice it is not so found (cf. note 27).
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affects both the choice of problems and the methods of solution.33 But Gödel’s

proofs remain memorable samples in the second subject.

For the record, I still find his direct and self-assured style in the early works

appealing, compared to the extremes of pedantry and sloppiness rampant at the

time.34 The so-called substance, of proofs and results, has been superseded, in

accordance with Buffon’s ces choses sont hors de l’homme (those things - meaning

results - are impersonal), which preceded his much better known pronouncement

(on August 25, 1753): le style est l’homme.

So much for logic. But logicians do not live by logic alone, not even intellec-

tually. To me, a principal reward for refuting (rather than ignoring) extravagant

theses is in that broader area, as follows.

Refutations: For a better quality of life

Material pollution presents a similar choice. In the austere 50’s, those com-

plaining of noise or other pollution were told to ignore it. Progressives, always

characterized more by temperament than by specific views, had only contempt

for the (to them, obviously absurd) Air Force general played by George C. Scott

in the film Dr. Strangelove, who worried about chemicals in drinking water. And

(for all I know) they may have a point, if selection by resistance to pollution helps

the species flourish in our cold, unfriendly universe. But for some (of us) it was

not so easy to ignore the pollution.

Similarly, (we) logically sensitive souls do not so easily ignore the logical atroc-

ities in (Hilbert’s) presentations of the formalist thesis, especially when research

stagnated and the claims inflated. The pollution was all around, spread by a

band of the faithful who found the presentation so congenial that it matters little

whether it helped form or ‘only’ consolidate their views.

Here are a couple of samples:

1. The laws of thought are mechanical, and non ignorabimus.

Actually, the idea was that those laws were already formulated in Hilbert’s sys-

tems, and that we shall (want to) know the answers to all the problems formulated

there.

As a kind of fallback, Hilbert had a weaker (would-be cute) meaning for non

ignorabimus:

2. It is consistent to assume that every problem can be solved.

33Thus there is a greater difference between the proofs of Mordell’s conjecture (a recent

highlight) and the irrationality of
√

2 in the theory of diophantine equations than between,

say, ‘double’ diagonalization in so-called priority arguments of Recursion Theory and simple

diagonalization in Section 2.
34And also, for that matter, to some constipated parts of the editorial material in the volume

(Gödel [1986]) collecting those works.
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In other words, to assume for every proposition P that either P is a formal

theorem (of the ‘foundational’ system) or its negation is.

Gödel’s results refute 1 and 2 conclusively and most elegantly. For 1, this is

clear without further analysis. For 2, a corollary is needed that is valid only for

a more special class of systems, but certainly for all current at the time (cf. the

discussion after 7.2.9):

3. It is even consistent to assume that every proposition can be proved,

from which 2 follows trivially. We breathe more freely.35

This relief is hardly necessary in practice; not, for example, for the robust

among us who ignored the formalist thesis in their work even if they gushed

about it in private. Philosophically, the relief is only a palliative: it just distracts

from the source of the pollution, the assumptions behind the thesis. But (as seen

by the subsection on p. 155) cleaning this up is a costly business, requiring more

capital (scientific experience) and labor (sustained reflection). Palliatives have a

wider market.

To pursue the parallel a little further, but also to end on an irreverent note,

it may be remembered that similar technologies can create as well as clean up

pollution, and that quite often the same firm manufactures both types. In the

50’s, Gödel himself (as so often in this chapter, in effect, not in these words)

modified 1 above by adding nil nisi externum (to non ignorabimus: what he

actually asserted was that we know everything about our own constructions).

Then his incompleteness result implies the hot news:

Either mind is not mechanical, or the natural numbers36 are not our

own construction

For the record, I don’t choke at that emission, but almost cherish it, together

with memories of many conversations with him, spiced with spontaneous twists

of a similar flavor.

But all in all it’s fair to say that elementary metamathematics and, particu-

larly, Gödel’s contributions are good value; at least for those who, for one reason

or another, have learned about them. What seems to me wide open is how ef-

fective those contributions are for conveying that which is of general interest in

35Hilbert continued to repeat his mantra even after Gödel’s incompleteness paper, and never

saw that 2 follows from 3. This is not merely a personal, but a metaphysical affront!

What is so offensive here is that Hilbert had been repeating his ‘grand’ pronouncement with

the conviction that 2, being so deep, could never be refuted; obviously never dreaming that it

could actually be proved! And trivially, to boot.

And it would be absurd to split hairs by saying that 2 is not proved by the means of proof

for P considered, since Hilbert’s many false conjectures are quite implausible once the relevant

difference in methods of proof is remembered at all.

This is the kind of stuff of which metaphysical anger is made.
36Nor, pace Kronecker, the reals.
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them; in particular, that which is genuinely generally accessible (effective com-

pared to metaphors from more widely available knowledge, as in the Pythagorean

thesis). The matter is wide open because my skepticism seems to be shared by

others in the trade, and so existing (unsuccessful) attempts at popular exposition

have been perpetrated by the uninformed,37 in line with the proverb:

fools rush in, where angels fear to tread.

37At least in my view, Smullyan’s What is the name of this book? does not belong here at

all. (For one thing, the author is well informed.) It contains a remarkable collection of puzzles,

puns, and other jeux d’esprit in which their logical aspects may fairly be said to be dominant.

They are understood by use of propositional (or, at most, propositional provability) logic. But,

realistically speaking, this recreational corner of experience seems to me to be of very specialized

interest; for example, more so than the broader matters in the last chapter of his book, with

more jokes, but without much (relation to any earlier) point. True, Smullyan’s fancies are no

further from ordinary linguistic experience than, say, Galileo’s bags of feathers falling behind

leaden spheres are from ordinary mechanical phenomena. But they bring (at least to my mind)

a jolly wake for a defunct two-thousand-year-old tradition, that of the Liar, rather than a first

step to higher things like celestial mechanics.



Chapter 8

Gödel’s Later Works

After his completeness and incompleteness theorems at the ages of 24 and 25,

Gödel’s fame was consolidated by his work in set theory, on Cantor’s continuum

hypothesis, published when he was 32. Gödel himself stressed, in the titles and

introductions of those papers, the connection of his results with the foundational

views and controversies in the first quarter of this century. Briefly, Gödel’s re-

sults refuted or deflated those grand schemes, without however putting nothing

comparable in the place of the soundly discredited and, in practice, (properly)

ignored foundational views.

The mathematical development of his work over the last sixty years have

involved (in effect, if not by intention) a search for local uses of the general

notions and ideas, whose significance had previously been so grossly misjudged

in foundations.

Gödel instead devoted a good part of the remaining two thirds of his working

life (till his illness, at the end of the sixties) to use his scientific successes in a quite

different direction, of interest not only to mathematics but also to the natural

sciences (and, of course, also independent of the discredited views). Specifically, in

retrospect, he saw his successes as special cases of a general scheme, to be applied

to suitable traditional philosophical notions and issues: by making them precise,

one arrives painlessly at fruitful concepts, correct conjectures, and generally easy

proofs.

Naturally, Gödel’s later reflections are not presented as formal theorems but

in essays, relatively short notes, and programmatic lectures. Far from being the

result of some kind of premature senility, at the age of 36, Gödel’s new interests

were simply ahead of his contemporaries: without exaggeration, more so than in

the thirties. In particular, he saw the need for some analysis of his successes to

forestall a useless kind of ‘revisionist’ history.

The two trends in Gödel’s writings can be related, respectively, to (the fol-

lowing) two traditions.

0Originally published in Notre Dame Journal of Formal Logic, 31 (1990) , as ‘Gödel’s Col-

lected Works, Volume II’.
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Metamathematics

Gödel’s work from the first half of his life (till his mid thirties) is squarely in one

tradition, going back to Hilbert’s Foundations of Geometry . Through the latter

not only (young Gödel’s kind of) mathematical logic, but generally the axiomatic

method in its modern sense was put on the map.

Hilbert’s agenda at the turn of the century1 was:

to replace the often tedious literary forms of logic chopping in the

foundations of mathematics by those of mathematical logic, with em-

phasis on the idea(l)s of consistency , completeness and decidability .

These household words were applied by Hilbert to formal objects, defined inde-

pendently of any further interpretation.

The scheme recalled (the best of) rational mechanics beginning in the 17th

century, which both replaced logic chopping concerning matter and motion, and

gave scope to the armchair (applied) mathematician. Results in the literary forms

of mathematical logic were expected to ‘speak for themselves’ too.

Gödel’s contributions to this line of business ([1930], [1931], [1938]) remain

(among) its most memorable successes.

Logic chopping

The later part of Gödel’s work (from [1944] on) belongs to an older tradition,

variously known as logic chopping or exact philosophy (in the academic sense of

this word); the latter, in turn, derives from the heroic perennials familiar from

philosophy in its more popular sense.

Gödel’s agenda for this period became:

What is lacking (in the earlier work)?

Specifically, ‘lacking’ if logic is to be a science prior to all others, which contains

the ideas and principles underlying all sciences (cf. the opening of [1944]). In less

academic terms, logic is to be a seed from which the tree of knowledge grows , and

the logical order of priority is the corresponding (tree) ordering.

Roughly speaking, Gödel saw the best prospects for this idea(l) in going back

to the older tradition; in particular, to elements that are (as it were) prematurely

disregarded in Hilbert’s scheme. Gödel presented such elements at various levels

of sophistication, both in mathematical and other literary forms.

Our agenda for this chapter will be:

to balance the account.

1Not to be confused with his later program, in which so-called finitist parts of (what had

come to be called) metamathematics were privileged (with the usual consequences of such

practice).
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More precisely:

• The internal coherence of Gödel’s view is emphasized, with some formal

consequences of those neglected elements from the last 40 years.

• There are (and this is, of course, of broader interest) reminders of genuine

alternatives to that heroic perennial of knowledge growing like a tree from

a seed;2 made particularly memorable, I believe, by contrast with (Gödel’s)

pursuits of that idea.3

The first six sections of this chapter deal with isolated significant topics

prompted, or at least suggested, by Gödel’s later works. We then conclude, in

Section 7, by going back to the begining of Chapter 7 about ‘principal questions,

which could not have been answered at the time’, but now applied to the entirety

of Gödel’s work.

8.1 How Adequate Are Those Would-Be Funda-

mental Metamathematical Notions? ([1938],

[1939], [1940])

The adequacy meant here is a common-or-garden variety; viewed

• neither as a mere matter of principle (of being ever or never adequate),

since this is not in doubt

• nor (of course) according to the heroic ideal of logic on Gödel’s agenda,

since this is on trial here.

We use as a sample the particular notion of (relative) consistency prominent in

Gödel’s own titles for his work on the continuum hypothesis (cf. [1938], [1939],

[1940]). The details are familiar enough to rely on the following reminders:

• First, it is a common place that the work in question is more adequately

described by different labels ; for example, ‘inner model constructions’, ‘ab-

soluteness’ (albeit relative to the ordinals), or ‘conservation’. Pedantically,

results (stated in such different terms) are obtained as corollaries to the

work by means of general logical theorems, which correspond to so-called

abstract nonsense in current mathematical jargon. Then, contributions of

the work to effective knowledge are discovered to follow from those different

descriptions, but not from Gödel’s titles.

2Pedantically, provided the mind is permitted to use its natural capacity for processing data

in parallel (not only ‘systematically’).
3Here, as elsewhere, the general idea of this theme (on alternatives to the ideal of a tree of

knowledge) is abstractly so familiar as to be banal. But also, as elsewhere, it is in conflict with

venerable ideals; for example, of a ‘definitive evaluation’. More information on that conflict

(where and how it arises) is in the chapter, especially in Section 7.
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• Secondly, and this keeps the first point topical: the later literature (for

example, relating axioms of infinity and determinacy) continues to rely on

relative consistency as if it were an adequate description.

This alone would be enough to illustrate vividly Gödel’s reservations about

following Hilbert’s ideal (of course, not despite, but because of the fact that they

conflict with Gödel’s own practice in his ‘salad days’). A closer look underlines

the point as follows.

Finite axiomatizations . If relative consistency (and the metamathematical

methods of proof used) were the first order of business, and such alternatives

as (inner) model constructions only a means, then finite axiomatizations would

have compelling consequences. For example, mere validity of those constructions

ensures a relative consistency proof by quite elementary methods, while (in gen-

eral) this is not so (even) for r.e. systems of axioms. But the trade dealing in

relative consistency results does not generally regard finite axiomatizations as so

privileged.

The points above, about labels and formal incongruities, would be as irrelevant

as the name ‘rose’ in horticulture, if mathematical logic could be viewed as a

similar trade with an established market. Such a view may well apply, by now, to

certain parts of logic and their markets (dealing with finitely generated groups,

finite fields and a few more). But those markets had only just been discovered

at the time of Gödel’s agenda, and certainly are not prominent in it (nor in this

chapter).

Almost as a corollary, there is a positive side to all this (at least for those

readers who are looking for object lessons from experience with problematic as-

pects of the logical enterprises). This need not be a parochial interest, since those

aspects are (as it were) chemically pure specimens of those found throughout the

commerce of ideas .

Digression on the commerce of ideas (optional)

Throughout this chapter, the metaphor of ‘commerce of ideas’ serves to underline

aspects (in the ‘knowledge business’4) central for our agenda; more fully, aspects

which are neglected by venerable ideas, but correspond to household words in

ordinary commerce. Samples :

• Above all, there is so-called marketing ; but not confined to door-to-door

salesmanship (though this too has its parallels in the commerce of ideas).

It requires the discovery of markets or (at least) gaps in the market, for

products over and above their (mere) legitimacy (that is, absence of fraud).

In our commerce, legitimacy corresponds to the likes of existence, truth or

consistency.

4A literal translation of Kant’s Vernunftgeschäft (A 724), but with a twist in meaning.
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• In a somewhat different vein: there are different priorities for those who

labour (say, on the shop floor, or on arranging shop windows) and, more

broadly, for trade unions and management of corporations. These, in turn,

combine against those concerned with correcting traditions common to the

‘supply side’ (for example, by philosophies of mergers and unbundling).

More topically, failures of so-called Big Science often recall those of big

business conducted according to idea(l)s familiar from (and well established

in) experience of craftsmen and village grocers.

These simple home truths, concerning the emphasis on different aspects, are in

conflict with erudite, traditional (here, economic) isms , for which certain aspects

alone are privileged.

For effective use of those home truths, one should realize that generally, and

especially for our agenda, the appropriate pay-off in the commerce of ideas is not

monetary (which is relatively prominent in ordinary commerce5). A venerable

alternative payoff, just knowledge, is memorably described in Goethe’s letter of

18 June 1795 to Humboldt (by reference to his experience with science; according

to him, in contrast with works of art).

Concerning my own use of the parallel (not only in this chapter), I have

nothing to say about changing the world (here, of our commerce), only about

interpreting it.6

8.2 Logic Chopping: Elementary Samples ([1944])

Whatever the literary defects of the essay [1944] on Russell’s mathematical logic,

the topic itself was (and remains) perfect for anybody who has anything to add

to the logical literature.

5But recall the striking exceptions in the pretty theory(!) by Kreps under the heading

‘bounded rationality’ (tacitly, in Simple Simon’s sense of ‘rationality’).
6These words come from one of Marx’s (many) popular dicta:

The philosophers have only interpreted the world in various ways; the point is to

change it.

This is not my point. I do not see that I know enough (or even that enough is to be known) about

predicting the world (or history) to make Marx’s philosophy above even remotely plausible (I

mean, globally: one’s backyard is another matter, as Candide might have added.)

For the record, ever since my teens I have viewed that dictum (of course, not as the single

most distinctive, but) the shrillest element in (what I have learnt of) Marxist thought. Viewed

this way, and contrary to Engels’ quote from Marx:

All I know is that I am not a Marxist,

not only he was very much a Marxist, but so are many so-called anti- Marxists and specially

ex-Marxists.

Passing thought . Temperament is involved in my particular brand of anti-Marxism.
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Russell had an exceptional talent for formulating memorably almost any

thought that could cross anybody’s mind, and used it freely. So he has left

us plenty of pegs (one of them being his paradox), on which to hang (actually,

often salutary) additions; obviously, to consolidate, not to introduce broad ideas.

In the present case the broad idea involved is of course this:

logical results, which do not speak (well) for themselves, may do so

(better) when supplemented by some traditional logic chopping.

After nearly a century of experience it is fair to say that some of the items

thrown up by people thrashing about for something to say about that paradox,

are more rewarding here than the paradox itself;7 let alone, Gödel’s oft-quoted,

would-be dramatic comment:

By analyzing the paradoxes to which Cantor’s set theory had led,

[Russell] freed them from all mathematical technicalities, thus bring-

ing to light the amazing8 fact that our logical intuitions . . . are self-

contradictory.

7In the body of this section, the focus will be the logical interest of the paradoxes (more

fully, the interest of their logical aspects). For contrast, here and in notes 8 and 10 the focus is

different: on alternatives to assuming that the interest of the paradoxes is primarily related to

their logical aspects.

For one thing, paradoxes (in other words, refutations of familiar, implicit or explicit, more

or less thoughtless assumptions) are commonplace; especially, around (ab)uses of the definite

article, as in Russell’s ‘the class of . . . ’, but also in ‘the greatest integer’. (In the latter case,

‘the’ is misplaced both for the usual sense of ‘integer’ and for, say, integers mod p, when the

usual order is incompatible with the ring operations.) In short, the logical interest is dubious.

Secondly, inasmuch as the kind of logic around the paradoxes is typical, logic just isn’t

mathematics. More soberly, notes 8 and 10 below draw attention to other aspects of phenomena

around the paradoxes. So it is (just) simple-minded to assume that their mathematical aspects

are rewarding (let alone, decisive). This twist is two-fold:

• For one thing, it reminds of how marginal (especially, higher) mathematics is; not only

here, but generally in the broad commerce of ideas.

• Secondly, and on this score unions and management close rank across the board (in the

world of academic disciplines), traditions of a trade are not sacrosanct ; specifically, not

those of academic philosophy, which claims to know the extent to which the raw potential

of a commodity is enhanced by its own resources (here, potential of the paradoxes).

8What is regarded as amazing is obviously, at least partly, a matter of temperament. Less

obviously, this applies to ‘our’ intuitions, for example when a solitary temperament does not

get an opportunity to compare personal impressions with wider experience. (Of course, dim-

witted people have little chance of benefitting from such experience even if they have a different

temperament.)

Once again, an abuse of the definite article (here: in ‘the problem of paradoxes’, when the

latter have, obviously, many different aspects) helps to bring in tacit assumptions about ‘the’

solution. For example, that amazing facts must have great inwardness; never mind, whether

as sources of profound wisdom or as the work of demons (or in another quarter, witches, so to

speak as a matter of sexual preference). The tacit assumption is that they are not simply blind
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Frege had written down the following axiom scheme for (his idea of) predicates

and classes: for every predicate P ,

∃y∀z[z ∈ y ⇔ P (z)].

For P (z) = ¬(z ∈ z) this becomes a special case of

∃y∀z[R(z, y) ⇔ ¬R(z, z)],

which is impossible for arbitrary (binary) relations R, since it implies (when

z = y)

∃y[R(y, y) ⇔ ¬R(y, y)].

Frege’s scheme, which had been totally ignored in scientific trades of the com-

merce of ideas before Russell’s paradox, gained a little notoriety by it. More

high-minded (and less experienced) traditions assumed (as it were, as a matter

of course) that there was a specific error (to understand) in Frege’s scheme; so

to speak, ‘the’ root cause of its failure (in some tree of ignorance). For example,

the following demons :

infinity, self-reference, impredicativity.

But are they really demons?9 And, whatever the answer(s), just where are they

in the result above?

spots.

Needless to say, matters of temperament and background are often difficult to disentangle

(since one may not wish or be able to manipulate either). But in some cases such aspects of

background as general education are more visible, and thus easier to document and convey,

even to solitary temperaments. ‘Convey’, not discover, since experience of men and events (not

available to solitary temperaments) is needed to use the historical record sensibly, or even to

have an inkling of possible snags.

In the case of Gödel’s ‘amazing fact’, there is the historical record of Cantor’s and specially

Frege’s complaints about being ignored. In other words, for philistine intuitions topics like ‘be-

ing’ (Gödel mentions also ‘truth’, ‘concept’, ‘class’) weren’t even candidates for (mathematical)

study.
9For one of the parochial concerns in this chapter (the growth of knowledge of sets), infinity,

self-reference and impredicativity are straws clutched at by people thrashing about for something

to say after Russell’s paradox. Preoccupied with the latter (and, generally, with Frege’s naughty

axiom) they neglected, by and large, more rewarding questions about sets; for example, about

the replacement axiom and (some of) those called axioms of infinity (cf. section 4).

Obviously, straws have properties too, and so can be perfectly legitimate objects of (precise)

study (as in predicativity on p. 172). Clutchers differ in style and power, and so they too can

be subjects of musings (for example, in note 10 on Weyl).

For wider concerns, one of the more glamorous candidates for a straw among heroic perennials

is the following (allegedly fundamental) ‘opposition’:

Objective and subjective (knowledge).

Just as in the case of sets above, (scientific) experience presents (in fact, many) questions around

the glamour issues above. Certainly, for the broad philosophy (in the popular sense) of this
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• infinity

Gödel does not go into this. Readers should recall ‘the’ barber (in some

hypothetical finite village), with its embarrassingly blatant abuse of the

definite article.10

• self-reference11

chapter, the focus on some opposition between objective and subjective knowledge, which is

of course high-minded, is above all simple-minded (and probably even below any threshold of

informed discussion).

The general idea of clutching at straws is perfectly commonplace. What is stressed here is

that this idea applies to (and may be even adequate to specify principal errors in) would-be

sophisticated enterprises.

Disclaimers (again in terms of a refrain of this chapter). The idea of clutching at straws is

not thought of (here) as a seed from which a tree of knowledge grows. So, as matter of practical

politics, it (is of course a legitimate topic of analysis or what have you, but) is not assumed

to be a rewarding object of recondite or otherwise extended study. Metaphors for alternatives

abound:

• At one extreme there are pegs (with luck, not straws) on which diverse items (of knowl-

edge) are assembled, which would otherwise float in thin air, and be inaccessible.

• At another there are (mathematical) attractors in chaotic dynamics; so to speak, steady

states presenting a more or less adequate idea(l) in turbulent surroundings.

10For the record, Weyl did not remember this in his comment on the paradox in his review

[1946].

Incidentally, Weyl had a choice between the literary forms of ordinary mathematics (of which

he was a master), of mathematical logic, of metaphors and similes, and others from the ordinary

literary tradition. He chose the latter, calling Gödel’s essay [1944] ‘the work of a pointillist’.

This simply does not fit what he wanted to say. A pointillist worth the name uses points, which

are individually of no weight, to produce the impression of a recognizable object with global

features. But then Weyl goes on to say, of course in different terms, that he had not derived

any global idea from Gödel’s points. (By what said above, he had not perceived their individual

weight either.)

An alternative available at the time was to use details of the constructible hierarchy, if only

for a metaphor (cf. footnote 11 of Gödel [1947]): Weyl’s only (but well-known) ‘intervention’

in the foundational debate was his emphasis on the first level of ramified analysis, obviously

related to the ramified ‘theory’ of types up to ω considered by Whitehead and Russell. Gödel’s

essay [1944] emphasizes the (close) connection to the constructible hierarchy.
11Reminder (with a shift of emphasis away from the ‘self’ in ‘self reference’). As stressed

in the subsection on p. 144 of Chapter 7, contemporary mathematics provides a good deal of

effective knowledge on representing one kind of thing by another (so-called choice of data).

Such representations are then used to refer to those other things.

As in the general topic of representation (including reference), it goes without saying that

its mental aspects (for example, intentions involved in reference) strike the mind’s eye most

vividly. But it also goes without saying that this fact does not guarantee that those aspects

lend themselves well to theory (tacitly, as always: by anything remotely like current means).

Of course, we know a lot about them; it’s just not theoretical knowledge.

For reassurance: inanities about reference (in so-called theories of meaning), which ‘identify’

it either with mental aspects, or the software (that is, mathematical aspects of representations),

or with the wetware (data processing in the brain) will fall into place in Section 7. It would be
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In the result above, this is the specialization of z to y. Gödel ridicules the

assumption that self reference is a demon, by a more subdued reminder:

there doubtlessly exist sentences referring to a totality of sen-

tences to which they themselves belong as, e.g., the sentence:

‘Every sentence (of a given language) contains at least one rela-

tion word’.

For the record, (by temperament and) by contrast with my earlier experi-

ence of traditional logic chopping, I (continue to) find this example of the

genre compelling.

• impredicativity

This is of course related to the broad topic of self-reference since, pedantries

aside, it is about defining an object by reference to a totality containing it.

So what?

Of course, such definitions do not fit the metaphor of knowledge growing

like a tree: any cycle vitiates any (tree) order . For our agenda, where that

metaphor is on trial, it is an open (and main) question whether this conflict

is evidence for or against it (and such other items on Gödel’s agenda as his

logical order(s) of priority). But, for those of us grateful for small mercies,

it is relief that he raises at least the less demanding question:

Just where is there any impredicativity in Russell’s paradox?

The predicate used (¬z ∈ z) contains no quantifiers, which could be said

to ‘refer’ to a totality. Gödel focuses on the range of the variable z itself;

in other words, something left implicit in the logical notation.12

Here too Gödel’s (compelling) point, which does not use formal construc-

tions, fits the academic tradition of philosophy; as, for example, in Kant’s

aperçu (A713):

philosophy analyses and mathematics builds up concepts.13

A sound perspective (here, on logic chopping) requires the following elemen-

tary distinction, and above all attention to its neglected consequences.

The samples above correct errors; both in the traditional literature and on the

would-be ‘purely’ mathematical side. It is a common place that it would be merely

premature to agonize over them here.
12Incidentally, Cantor’s criticism in his review [1885] of Frege’s Grundlagen, more than 15

years before Russell’s paradox, also focuses on the indefinite range, albeit in different (medieval)

terms.
13The aperçu is, as so often, useful provided only it is not taken literally! There are plenty

of mathematical analyses of concepts, and there were some at his time, too.
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high-minded (and thus liable to be simple-minded) to assume that, in some given

area of knowledge, the correction of errors must contribute rather than simply

distract; more generally, that extended logic chopping must (help to) contribute

(in A716 and A718 Kant ridiculed the assumption by the example of geometry

and analysing the concept of triangle). One simply may do better by making a

fresh start. But it should also be added (and this is illustrated throughout the

chapter) that errors are not automatically corrected by contributions (in the area

considered): the latter do not generally ‘speak for themselves’; not enough for

the corrections in question.

8.3 Absolutes: a Top Priority in the Logical

Tradition ([1946])

In [1946] Gödel emphasizes absoluteness of such venerable notions as definabil-

ity and provability . This is in sharp(est) contrast with Hilbert’s scheme, which

applies them only to some formal system or ‘language’ (leaving open, or at most

paraphrased, the adequacy of such choices; cf. p. 258 of Chapter 11 in the case

of completeness).14

Gödel introduces the topic by reference to (mechanical) computability and to

its analysis by Turing. Quite explicitly, but so innocently that this too sounds

absolute, he assumes that the (mathematical) concept of recursiveness itself de-

rives its importance from its absolute character; that is, the independence of this

definition (of computability) from any particular formalism:

In all other cases treated previously, such as demonstrability or de-

finability, one has been able to define them only relative to a given

language . . . For the concept of computability, however, . . . the situ-

ation is different.

Now, computability evidently involves both definability and provability (by rou-

tine verification). So, after Turing’s success, Gödel proposes to go the whole hog

and analyse the absolute idea(l) of the two perennials above:

This, I think, should encourage one to expect the same thing to be

possible also in other cases (such as demonstrability or definability).

Incidentally, Gödel’s flourish in [1946] about Turing’s analysis being a first in

human history requires a correction: classical propositional logic too is (not only

deductively, but also) functionally complete; in other words, the adequacy of its

14Model theory, central to mathematical logic (today, not 45 years ago), also concerns aspects

ignored in Hilbert’s scheme (models or structures), but not those stressed by Gödel. Thus

model-theoretic definability is generally relative to a language, and hence not absolute (in the

sense used by Gödel here).
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formalism is established. For our agenda, the correction is less innocent than it

may sound; actually on two scores:

• it takes some of the glamour out of any logic chopping that may be used in

establishing such absoluteness

• it shows that doctrinaire (formalist) objections to Gödel’s proposal (namely,

that the notions involved are ‘essentially’ relative to some formalism) are

below any threshold of informed discussion.

Once grasped, these insights (may help to) shift the emphasis to (naturally, more

demanding) matters above threshold. For example, incompatibilities between

the aspects (of definability and of provability) required by the logical orders of

priority and by effective knowledge. But this is quite another (and outside the

logical trade) only too familiar story.

To end on a positive note, here are a couple of cheerful news (from [1946]):

• For one thing, at least for suitable variants of absoluteness and suitably

adjusted expectations (cf. the next subsection), Gödel’s remarks on defin-

ability (say, of sets of natural numbers) have been checked. For example, for

such variants it has been proved that only countably many are so definable

(and, naturally, there is no enumeration that is so defined).

• The second cheerful item is Gödel’s own blithe disregard for his own idea(l)

of absoluteness when he goes on to muse about (the possibility of a com-

plete set of what are now called) axioms of infinity. Here, quite cheerfully,

completeness for the ordinary language of set theory is meant:

every proposition expressible in set theory is decidable from the

present axioms plus some true assertion about the largeness of

the universe of all sets.

It is a matter of temperament whether, like (the older) Gödel, you like

to ‘aim for the stars’. Ever since my teens I have been told that, in this

way, ‘you may hit the moon’ (and even long before there were astronauts, I

wondered whether this was really good advice to those who have a chance

of actually going to the moon).

Be that as it may, a later generation had a few successes with a few axioms of

infinity; in accordance with some, but certainly not all elements prominent

in Gödel’s musings.
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Autobiographical remarks: absoluteness scaled down

Though I saw Gödel [1946] only in the mid 60’s (when it was published), the

general drift was clear enough from his conversations 10 years earlier.15 At the

time I was equally ill at ease with popular claims for and against general, so-

called epistemological notions (cf. the opening of [1946]). But also I had no idea

how to formulate the malaise; not even, for example, in terms of the obvious

incompatibility between the logical order of priority and orders discovered to fit

the facts of experience better (which is a refrain of this chapter). So I could not

(and of course did not) take Gödel’s words literally. However, they struck several

chords:16

1. Finitist provability

This too is ‘absolute’, for those so benighted that other proofs are inaccessi-

ble to them. Now, footnote 2 of Kreisel [1951], which I had quite forgotten

by the time I met Gödel (and nobody including him had challenged), is

spoilt by a blind spot. I had assumed there that a (satisfactory) definition

of finitist provability should also be established finitistically; in other words,

that it should be satisfactory to a finitist, too. Now, whatever malaise I had

with Gödel absolutes taken literally, what he said about them was enough

to remove my blind spot.

His (admittedly arresting) terminology jarred with the view I took of finitism.

Given my temperament, it would not do (for me) to sanctify benighted

shortcomings by terms like ‘absolute’. So instead I used the (admittedly

colourless) word ‘informal’; for example, in my [1960] (cf. footnote 4 of

Gödel [1958]).

2. Predicative provability

As described elsewhere, by a fluke I came across Kleene’s papers on hyper-

arithmetic predicates at about the same time. Of course, there was nothing

wrong with them. But, to me, they became more rewarding when related

to the traditional literature on predicativity. Later I noticed a more specific

use for analysing different proofs of Cantor-Bendixson, which I had learned

in my teens in Littlewood’s lectures, the only course I liked at Cambridge.

(There was a corresponding shift of emphasis in the questions asked about

hyperarithmetic objects.)

15As usual, he did not breathe a word about his earlier (here, oral) publication (cf. Chapter

10 [∞]).
16Since Gödel thought of the isms in 1–3 below as ‘opposed’ to realism, his realism could

have led to my interest in the others only out of perverseness (which I do not wish to exclude;

but then: Who am I to judge my unconscious motives?). However, I was totally conscious of

the fact that what he had to say not only revived my earlier interests (mentioned in Kreisel

[1951]), but consolidated them.
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3. Intuitionistic provability

As in 1, in the course of conversations with Gödel about his system T I

came to see some merits in this idea (which were indeed enormous, com-

pared to my earlier expectations!). In contrast to the topic of sets, here was

lots of virgin territory, starting with the possibility of completeness theo-

rems without concocted semantics. In Gödel’s terms, one had now absolute

results on intuitionistic provability (albeit only about propositions stated in

familiar formal languages); ‘positive’ ones for propositional logic, ‘negative’

ones for predicate logic. Most memorably, at least for me, results on new

propositional operators served as a foil to the functional completeness of

classical propositional logic (a specimen of absoluteness ignored by Gödel,

as mentioned above).

Nothing in 1–3 had shown (to my satisfaction) that the informal notions

considered are particularly suited to describe the facts of (here, mathematical)

experience. I was aware of this risk at the time [∞], and others noted my aware-

ness (cf. the introduction to Benacerraf and Putnam [1964], but dropped from

the second edition).

Once again, it is a matter of temperament whether correcting widespread

misconceptions (here, about the scientific potential of traditional informal notions

of proof) is or is not adequate pay-off; to be compared to correcting the idea that

butter (which tastes good) is bad for you, as opposed to discovering that seal fat

(which stinks) is good for you. (In both cases you have to look at those fats.)

8.4 Selected Thoughts About Sets

They come mainly from scattered footnotes in Gödel’s piece on Cantor’s con-

tinuum hypothesis ([1947] and [1964]). But first a few words on Gödel’s own

emphasis are in order, lest the shift below cause unnecessary malaise; ‘unneces-

sary’ today, not 40 years ago, when I at least knew nothing simple enough about

it (or set-theoretic foundations generally) to dispel (anybody’s) malaise.17

17Gödel’s essays in the 40’s had blinded me so completely by their (to me still atrocious)

opening fanfares that, 40 years ago, I declined von Neumann’s proposal (via the geophysicist

Bullard, for whom I had done some work) to visit the Institute at Princeton for contact with

Gödel. The visit would have interfered with some plans for frivolity, which was (as I saw things

at the time) more rewarding.

Fortunately, actually at the ICM at Amsterdam in 1954, I was reassured by a friend, whose

views I had found compelling for more than 10 years and who had personal knowledge of all

parties concerned.

When I met Gödel in 1955 I learnt to see - what still appear to me - gems in those essays

(admittedly, perhaps brighter than they are, against those ‘philosophical’ fanfares as a foil).

But above all I very soon discovered to my delight (and, admittedly, again possibly all the

greater by contrast with expectations) that, in practice, he took a very catholic view of his pet

ism:
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Gödel’s own perspective and our agenda

His first order of business is the question whether the concepts used to state

the continuum hypothesis CH are well-defined; his answer is in terms of ‘some

well-determined reality’ (philosophical realism):

in this reality Cantor’s conjecture must be either true or false, and its

undecidability from the axioms as known today can only mean that

these axioms do not contain a complete description of this reality.

There are many, albeit partial, results which he relates to his answer. But, as

for everything else in the world, this is not (and certainly does not remain) the

only compelling emphasis; in fact, not even remotely so. (By the same token, the

constructible sets also constitute some well-determined reality.)

For the record, 40 years ago my (and my chums’) malaise with Gödel’s piece

was simply compounded by all that heavy breathing about ‘reality’; recalling

Hamlet :

The lady doth protest too much, me thinks.

Today I can be more explicit; partly by reference to specific logical discoveries

in the meantime: they show that the results about the continuum, established

(and rewarding) in geometry, are even logically independent of CH.18 Probably

more convincingly, at least for those with broad research experience, there are

general reminders : when a question is of little consequence, that is it has few

consequences of interest in the area considered (like CH above in geometry), it

is likely to be both difficult and unrewarding to decide.

In terms of (erudite) isms, the assumption implicit in Gödel’s emphasis is

tantamount to the most vulgar form of pragmatism: what exists is useful (here,

in the commerce of ideas).

But just as in the last section, here too there is cheerful news . Despite his

unpromising general perspective, Gödel’s piece has some almost equally memo-

rable points of obviously lasting use. But before going into them, some warning

and reminders (int the next two subsections) are salutary.

You trust in God (represented by philosophical isms) and keep your powder dry

(by being both realistic and constructive, in the popular senses of these words).

18More precisely, the single most significant discovery about the continuum, made early in

this century and consolidated since then, is the following.

First, the set of points and maps prominent in general (set-theoretic) topology are unreward-

ing geometrically except, as always, for a few general (and therefore simple) facts.

Secondly, the opposite is true of those prominent in the (incidentally, relatively few) branches

of contemporary topology. Furthermore, the properties studied in the latter are (generally

demonstrably) insensitive to the cardinal of the continuum (as in the case of homotopy).
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Terminology

Instead of Gödel’s ‘set in the sense of arbitrary multitude’ or ‘extension of de-

finable property’ (in footnote 2 of [1947], quoted below), corresponding more

familiar words are used below; in particular, sets in (segments of) the cumulative

hierarchy Vα generated by the power set operation, constructible sets in Lα, etc.

Generally, ‘kind of set’ is used without agonizing whether the kinds involved are

restrictions of some (more) general kind. In terms of the refrain about the growth

of knowledge (here, knowledge of sets): without agonizing whether such a general

kind functions like a seed, or is the result of (growth by) accretion.

In any case, throughout this section the emphasis is on sets in suitable Vα’s.19

In terms of the properties listed among axioms of familiar set theories, all α or

all limit ordinals α may be ‘suitable’, depending on which Vα have the property

in question. For example: all Vα satisfy the axiom of union; for each limit ordinal

α, Vα is closed under pairing and, of course, under its generating (power set)

operation.

Some home truths, half truths and untruths

Above all, in the first place, Vα for particular α are meant. Where conditions

(and ways) have been spotted for extending results to ‘all’ ordinals, it is sensible

to do so. It is not sensible merely because one ‘wants’ to (cf. Dirac [1978] on

sensible mathematics). A rough parallel is a child’s experience with finite α on

the one hand, combined with general (that is, indefinite) properties on the other;

pedantically, of indefinite extension.

But parallels between Vω and Vα (for specific α > ω) generally reach the point

of diminishing returns quite soon; much sooner, as it were, than those between,

say, Z and the rings of algebraic integers in number fields (cf. the Appendix).

Samples :

• In Vω (what since Cantor are called) cardinals and ordinals satisfy the same

arithmetic laws, but not beyond.

For example, for cardinals a: 2a > a holds generally, while 2a > an (1 <

n < ω) is a consequence for all a ≥ ω, but not for all a < ω.

The generalized continuum hypothesis GCH (2a is the successor of a) is

false in Vω, except for a = 0 and a = 1, but it would be as pathetic to

draw any conclusion from this about Vα for α > ω as from the fact that 1

is weakly, but not strongly inaccessible.

19The emphasis has an obvious parallel in the case of number (in place of set), for example

when axioms for rings or fields are explained by reference to familiar or otherwise easily described

kinds of numbers. As with any emphasis, something is lost; for example, we have no parallel

here for Conway [1976]’s numbers-large-and-small.
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• Vω (like everything else in the world) has many descriptions, all of which

can be generalized (again, like everything else in mathematics); but not

necessarily to Vα for α > ω.

Thus Vω is generated from ∅ by: x, y 7→ x ∪ {y}. In old-fashioned terms:

this satisfies l’esprit fin (of algebra, or its infinitistic analogue in L), in

contrast to l’esprit géometrique of the (impredicative) power set operation.

Thus ω has at least two descriptions, as the closure ordinal of each of those

generating operations (of course, without the usual accumulation at limits).

For the metaphor of a tree of knowledge there is, as always, some (logical)

order of evidence or at least of justification. But its use or, for that matter,

niggling about it simply distracts from effective knowledge of those phenomena

in familiar experience that have the labels above (and are genuinely in demand

in the commerce of ideas). Specifically, the logical order imposed on descriptions

(where one is privileged as a definition, and the others are deduced) produces

artifacts; certainly with respect to the historical order. For example, the Greeks

managed well with their geometric (impredicative) descriptions.

The reminders above, including the last one about effective knowledge (serve

to) correct errors. They are not contributions to effective knowledge (of Vα for

α > ω). But, compared to the logic chopping in earlier sections, they rely more

on mathematical constructions than on other thoughts. (The latter are meant as

in Tractatus 6.21, about mathematics not expressing any thought.20)

Axiom of choice

Footnote 2 of [1947] recalls that

this axiom is, in the present state of knowledge, exactly as well-

founded as the system of the other axioms . . . It is exactly as evident

as the other axioms for sets in the sense of arbitrary multitudes and,

as for sets in the sense of extensions of definable properties; it also

is demonstrable for those concepts of definability for which, in the

present state of knowledge, it is possible to prove the other axioms.

Thus, the axiom is valid for the Vα’s (the ‘arbitrary multitudes’); actually, at

each α, at least in its multiplicative version. As for the flourish about ‘evidence’,

the axiom is (realistically) more evident than, say, replacement (see below). His-

torically, it was used freely; to be compared to axioms for order , which are used

in Euclid, but not stated there either.

Secondly, Gödel notes that the axiom also holds for L; in other words, for sets

defined from the ordinals by familiar logical operations and accumulation. This

flourish misses a couple of opportunities:

20Tractatus is (best regarded as) an ode to propositional calculus, when its otherwise irritating

exaggerations become perfectly acceptable instances of poetic license.
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• Logical hygiene concerning the sets (say, in Vω+1) which are definable in the

absolute sense adumbrated in [1946] (where this topic is presented as a first

order of business).

Now, whatever doubts there may be about the scientific sterility of this

sense, there is no doubt that it is among the first thoughts that cross any-

body’s mind. For those sets the axiom of choice is quite dubious. Viewed

this way, the fuss about it is not merely thoughtless and thus simply em-

barrassing (as it is in the bulk of the literature).

• Reminder concerning the contemporary sense of the word axiom (for the

motto: dégager les hypothèses utiles).

Suppose the property P satisfies some general conditions which ensure ∃xP
by the axiom of choice, and (the lemma, as it were) ∃xP is enough to infer

Q. Then, given a proof of Q from P [x/f ] with some more or less elaborate

definition of (a choice function) f , the motto requires either the use of the

axiom of choice or some rewarding strengthening of Q which follows from

P [x/f ], but not from ∃xP alone. The traditional preoccupation with the

validity of choice for airy-fairy notions of sets distracts from the sensible

use of ‘axiom’ above.

Viewed this way, well known conservation results applying to Q of suitable

logical form are in accordance with the motto; at least, when utility for

formal derivability is meant.

Comprehension

Footnotes 12-14 of [1947] are about (what is there called) the operation ‘set of

x’s’:

The operation ‘set of x’s’ cannot be defined satisfactorily (at least in

the present state of knowledge), . . . but as opposed to the concept of

set in general (if considered as primitive) we have a clear notion of

this operation.

For the record, Gödel did not object to the use which I make below of those

footnotes, and made in many conversations with him.

In a nut shell, the use is (not, of course, to agonize over paradoxes but) to find

a memorable interpretation of the literature: on Frege’s oversight (which Cantor

called ‘unglücklich’, an unfortunate idea)

∃y∀z[z ∈ y ↔ P (z)];

and on Zermelo’s

∀x∃y∀z[z ∈ y ↔ z ∈ x ∧ P (z)],
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which has superseded it. Mere (mathematical) survival certainly does not depend

on reviving Frege’s fossil in the evolution of ideas. The (cl)aim is merely about

a suitable place for it in a museum of them, if we can afford it in our age of

intellectual affluence.

Zermelo’s clause ‘z ∈ x’ gets a memorable interpretation in Gödel’s thought

of (here, y being) a set of x’s. Actually, in conversation I went the whole hog, and

interpreted ‘z ∈ x ∧ P (z)’ as a property of x’s, too. On the other hand, rightly

or wrongly, the relation to Cantor’s sense of definite (applied to extensions of

properties, here, to elements z ∈ x) was to me too obvious to require mentioning

it (to Gödel); as opposed to: undetermined for some particular z. After all,

in connection with impredicativity in Section 2, he himself had drawn attention

to the (indefinite) range of the membership relation used in Russell’s paradox.

And if this relation were undetermined in set theory, what on earth should be

determined there? Be that as it may, comprehension holds for all Vα.

Reminder on the other kind of property (not ‘determined without arbitrari-

ness’). Suppose a quantified first order formula of ordinary set theory is presented

as a definition of P for some given x ∈ Vα, but without stating the range Vβ of

the quantifiers in the formula. In general, the property so defined does depend

on β, and if the choice of β is regarded as arbitrary, the property is indeed not

determined without arbitrariness.

Replacement and (uncountable) strongly inaccessible car-

dinals

By Zermelo’s [1930] and for infinite α, Vα satisfies replacement for arbitrary (in

other words, second-order) functional relations if and only if α is strongly inac-

cessible; naturally, well defined relations are meant.21

Now, the replacement axiom differs in many down-to-earth respects from the

others; in particular, from choice and comprehension:

• For one thing, it is not true for all α; in fact, not for any α (> ω) usually

encountered in the commerce of ideas (where it is, realistically speaking, an

axiom of infinity).

• For another, its first-order and second-order versions differ in a more brutal

way than that illustrated in the Reminder at the end of the previous sub-

section. There simply are accessible α such that the former version holds

for Vα (but, of course, not the latter).

As to Gödel’s own perceptions of evidence, they required education over several

years after his correspondence with Zermelo in 1931. There he alluded to his

21Incidentally, in [1930] Zermelo uses the homely words ‘definite property’, but without would-

be erudite explanations, to be compared to the use of ‘finite’ without any ritual of set-theoretic

definitions.
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malaise with Zermelo [1930], but could not (politely) pursue the matter since

Zermelo did not take him up on it. At least according to what Gödel told me, he

was ill at ease with replacement.

This malaise had a practical consequence for him in his work on the con-

structible hierarchy. He had the general idea for his proof of GCH for L as a

student, and even lectured on L in 1936. But with his malaise he hesitated to use

von Neumann’s ordinals of the required high types; and, without them, tiresome

definitions of well-orderings are needed up to ωω in Vω+ω (cf. [1939]). This delayed

the final publication for a couple more years; until he had satisfied himself about

inaccessibles.

For the record, I once asked him for his later thought(s) on these things. His

answer:

those inaccessibles are implicit in the concept of ordinal

was to me a reminder:

the series of ordinals is (conceived as) absolutely unending.

I did not have sufficiently specific questions to have a chance of getting much

from any specific answers (he might have). So I did not pursue the matter at

the time. Only later did I see in the many Pyrrhic victories of set theory in

general, and especially of set-theoretic foundations, a fertile subject of cultural

interest ; too late to become sufficiently steeped in it for genuine interest (let

alone, contributions).

Addendum on replacement (optional)

Much less than the above is enough for the following correction of errors ; actually,

at two extremes:

• So to speak, on the negative side: not every instance (of replacement) that

holds for a particular Vα, provides support for the axiom itself.

For example, α = ω does not; not surprisingly, after what was said in

the Samples on p. 175 about (other) parallels with ω. If α = ω then, for

arbitrary functional relations restricted to Vα, domain and range are finite.

Thus, if the range consists of ordinals, it actually contains its supremum.

But accessibility of α can be problematic only if the supremum of a set (of

x’s < α) may exceed all elements (and be = α).

Strong accessibility involves the exponential function, which is not well

understood for α ≥ ω (in contrast to α < ω, from which fact the literature

both on computation and on certain non-standard models of arithmetic

distracts). In simplest terms, in the present case, parallels with Vα when

α > ω are spoilt by incomparably greater experience with Vω; including the
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impredicative knowledge of facts about Vω, which are described by use of

the idea finite.

• At an opposite extreme is the superstition that replacement is suspect

merely because it is a kind of (infinitistic) ‘closure’ condition, and hence

tainted by Frege’s ‘closure’ condition on properties and sets: P 7→ {z :

P (z)}.
It is familiar that Frege thus obliterates the traditional distinction between

properties and sets, which applies the membership relation only to the lat-

ter; Cantor spoke of ‘arbitrary varieties’ in contrast to those ‘grasped as

unities’.22

Remarks on what may be lacking. First, what is not lacking is progress in our

understanding of inaccessibles; specifically, in the last quarter of this century:

• Thus Solovay’s use of them for defining kinds of sets (that is, models of set

theory), for which every set of reals is L-measurable is simply qualitatively

more substantial than any earlier material.

• Even more directly pertinent is Shelah’s demonstration, as it were in the

opposite direction: how knowledge of L-measures for certain projective sets

provides new descriptions of ordinals, which establish the latter to be inac-

cessible in L; to be compared to impredicative knowledge about ω used in

the discussion of Vω above.

Secondly, at least with respect to demands in the market of which I am repre-

sentative, what is certainly lacking is an analogue to Gödel’s felicitous expression

22Pertinent, but less familiar are the following reminders.

Some 2500 years ago, in Physics (III, 6, 206b 33-35), Aristotle made a distinction, admittedly

in clumsy terms, under the heading: the infinite.

It is exactly the opposite to what is [tacitly, sometimes or, perhaps, usually] said

to be: not what has nothing outside, but what has always something outside [each

of its parts].

Applied to strong inaccessibility, viewed as an axiom of infinity, this emphasis on ‘parts’ corre-

sponds to the use of strict order:

If β < α and γ < α then βγ < α.

This would be obviously false with ≤ in place of <. (Frege’s condition does not have a corre-

sponding bound.)

Some 100 years ago much attention was given to a particular class of closure conditions,

called ‘from below’ or ‘inductive’. These do admit equality, with a least fix point (and others

‘outside’ it).

To repeat what cannot be repeated too often: the reminders above correct elementary (that is,

brutal) errors (here, dubious doubts) about inaccessibles, but are not enough for contributions.
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‘set of x’s’ for a thought that supplied what was previously lacking in connection

with comprehension.23

Thirdly, this last and similar defects may be connected with a lack of a sen-

sible perspective; specifically, in the emphasis on the (logical) need for axioms of

infinity for new results, which distracts from the market for their uses as a better

bargain (in competition with possibly already existing proofs):

• Cantor’s cardinality argument for the mere existence of transcendental num-

bers remains a better bargain than the specific transcendental
∑

10−n!,

which Liouville had produced 10 years earlier (with more work, for a very

limited market).

• When Martin gave his proof of Borel determinacy by use of (what is realisti-

cally) an axiom of infinity, the emphasis was either on the theorem itself or

on the logical need of the axiom for proving it; overlooking the main novelty

of Martin’s product: the use of higher cardinals for something that at least

remotely resembles some things in demand by the market in question.

8.5 Intuitionistic Logic: Hitting a (Little) Moon

First, and Then Dreaming of the Stars

By our agenda, this kind of logic is viewed here like the kinds of set in the last

section: without agonizing whether any general notion of logic is a seed for some

tree of knowledge of which our kind is a (sturdy) branch, or whether any such

notion has grown by accretion from components, among which our kind remains

a visible entity. For one thing, future research may have something to say about

these two options. For another, (premature) agonies about such options are

traditional, and our agenda requires emphasis on alternatives to the traditions

involved.

Background

First, there is another kind of logic, which is meant for propositions:

• without incompletely defined terms

• with the property that they are either true or false.

These aspects were considered by Aristotle; quite explicitly, as necessary to make

propositions rewarding objects for study. Since the latter was his trade, those

23Incidentally, when work on axioms of infinity began some 30 years ago I was (obviously

wrongly) convinced that, at a minimum, it would lead to an adequate expression for a corre-

spondingly adequate thought in connection with inaccessibles.
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aspects were indeed essential. The sanctimonious expression ‘of the essence’ is

apt if trade interests are sacred (whatever the actual usage of that expression

may be).

Now, it is a simple fact of life that mere truth is often a distraction; for

example, for the accused who (knows he) is guilty, provided only the law happens

to consider him innocent unless proved guilty. His business is not truth, but an

irrefutable defense; formally, double negation is weaker than truth.

Intuitionistic logic, which ignores truth (in favour of evidence) altogether,

provides a coherent scheme for a corresponding interpretation of the logical par-

ticles. It therefore also provides a literary form for underlining that first order of

business for the accused.

As always, it is a separate question how (if at all) theoretical elaborations

of intuitionistic logic contribute here. At any rate, as always, it would be a

philosophical mistake to assume that all (effective) thought must be theoretical.

Though I can see the broad interest of the rhetorical aspects touched above, I

am not sufficiently familiar with them to be interested; let alone, to report on

details.

The second reminder is more parochial (but less than higher set theory in the

last section). In mathematics too, we generally know more about propositions

than whether they are true or false (and sometimes want a vehicle for expressing

such additional knowledge); most often, how they depend on parameters (so-

called functional dependence). This is obvious in the case of ∃xP and p∨ q, with

some (explicit or implicit) parameter; but as a moment’s thought shows, also

with p→ q. There are at least two options:

1. One is to make the dependence explicit, when the logical particle involved

is simply eliminated.

2. Another one is to adapt the logical laws, and thus ensure that (logically

proved) theorems are subject to suitable dependencies. Logicians are famil-

iar with such dependencies from various kinds of reducibility in recursion

theory.

Gödel’s scheme

In a lecture on 15 April 1941, Gödel asked:

In what sense is intuitionistic logic constructive?

Here he meant, roughly, option 2 above; to be precise, he had to explain what

dependencies are meant in the case of logically compound expressions like (p →
q) → r, which do not occur in ordinary mathematical thought (but do occur

in formal systems). For simple expressions p → q his option involves different

(familiar) reducibilities, according to the logical forms of p and q; roughly, one-

to-one reducibilities if they are in prenex form without alternation of quantifiers
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(in other words, Skolem functions of a suitable prenex form of q ∨ ¬p are used),

but not generally.

Gödel meant ‘constructive’ in its usual mathematical sense; with emphasis

on the (functional) dependencies, as above (less on the means of showing that

the functions do what they are supposed to do). In the example above, of ∃xP
with parameter a and an explicit function X (of a), this would require a proof of

P [X(a)] (for the range of a considered).

Corresponding to iterated implications, as in the example above and for which

intuitionistic logic is notorious, Gödel had operations of higher (finite) type. His

answer to his question was an impeccable interpretation of Heyting’s arithmetic,

a most familiar system of intuitionistic logic. The definitions of the operations

used have a very familiar look: except for the higher types (and the corresponding

conventions of a typed λ-calculus), the whole scheme looks just like primitive

recursive arithmetic. In terms he used 10 years earlier, on incompleteness of the

familiar system of Principia, the interpretation is easily seen to be typical of

‘related systems’, and so enough for the general picture below.

A pyrrhic success

The two outstanding facts here are that Gödel’s scheme:

• provides definitions for the operations in the mainstream of constructive

mathematics (cf. the background above)

• it has not contributed to that mainstream.

Incompleteness results distract from both those facts.

Now, with both the scheme and that mathematical experience before one, one

can also see what is lacking in the former; specifically, concerning its ‘functional

dependencies’.

By experience, separation of some (albeit relatively few) different

kinds is necessary (for significant results), while the scheme concerns

what they have in common.

Refinements (for example, according to the syntactic form of the definitions)

produce (of course, precise) results that are not significant for mathematics; in

contrast to such classifications as algebraic or topological dependencies. Now,

this property of the scheme has a perfect parallel in the common consent among

experienced mathematicians about set-theoretic foundations (as being the ‘least

interesting side’ of the business); of course, also where the latter are amply com-

plete. As a corollary, this neglect of significance in classifications is not peculiar

to any particular foundational scheme (or even ism, with which it may be con-

nected), but is part of the foundational ideal (in other words, of the metaphor of

knowledge growing like a tree).
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Gödel himself does not touch this foundational side. But, starting in his

first paper [1958] (in contrast to the lecture in 1941), and especially in his later

additions, his (cl)aims concern quite different aspects of his scheme: relations to

such traditional idea(l)s as reductive proof (in footnote h of [1972]). It is not

particularly hard to elaborate such matters (as in the subsection on p. 172 for

other traditional notions of proof), and thus ‘formulate the philosophical gain

achieved’, when the ‘gain’ is measured by the canons of academic epistemology.

This leaves open what gain, if any, there is for a more realistic view (of knowledge).

Be that as it may, all this shows vividly that, for good or ill, Gödel’s attachment

to his so-called Platonism did not keep his hands off other isms.24

8.6 Cosmology and Some (Even) More Ethereal

Ologies ([1949], [1949a], [1950])

This section has to do with Gödel’s three short papers around a previously ne-

glected type of cosmological solution of Einstein’s equations for gravitation. For

readers with a general mathematical education, the knowledge of differential ge-

ometry needed here is no more demanding than the logic in some of Gödel’s other

papers.

In [1949] Gödel lists some properties of his solution, in particular: there exist

closed time-like lines (though every world line of matter is an open line of infinite

length). In [1949a] Gödel treats the solution quite solemnly, as a contribution to

effective knowledge; of the nature (as one says) of time.

For the present chapter, this is below threshold before looking at alternatives.

For example, the following:

24Abstractly, there is a staggering contrast between Gödel’s:

1. acuteness and imagination in seeing and exploiting logical (and other mathematical)

aspects of quite hackneyed idea(l)s

2. blithe disregard for general scientific experience where the idea in question has proved

sterile or false.

An extreme case is the idea of God being a mathematician, a (hackneyed) way of saying that

spectacular mathematics must be (a guarantee for) ‘truth’; of a particular interpretation to

boot. The example of the theory of a complex variable, which is also the theory of ideal liquids

in two dimensions, is often quoted (the ideal of reductive proofs above is a candidate, too;

specifically, Gödel swalled the reductive interpretation of Gentzen’s results, mainly because of

their obvious mathematical wit).

But (and this too is a fact of experience, not a mere possibility) Gödel is by no means unique

in combining 1 and 2. After all, 2 is a simple attachment to ideas learnt in one’s teens, when one

often really has too little scientific experience to correct them convincingly (cf. A brief history

of time by Hawking, who wrote an editorial note for a couple of items in the collection Gödel

[1989], with many memorable examples of combining 1 and 2).
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Analysis of language

This dread idea of the academic tradition is here applied to the language of

(theoretical) sciences, in particular, the mathematics of differential geometry.

Viewed this way, Gödel’s solution unquestionably corrects the neglect of solutions

of his type. So what?

• Singularities .

Gödel’s type has none; admittedly, this fact is not listed in [1949]. But also,

at least since the 60’s there has been interest (in particular, by Penrose and

later also Hawking) in the matter of singularities in solutions of Einstein’s

equations. Whatever else may be in doubt, if something is to be proved

about classes of solutions with singularities, Gödel’s type has to be excluded .

If nothing else, it is a complement to (later) results about such classes.25

In contrast, it would be simple-minded to assume that it must have (had)

so-called heuristic value; ‘simple-minded’ by overlooking, for example, the

possibility that the type was excluded tacitly.

• Combinations with (equations for) other aspects, besides gravitation, of the

phenomena considered.

This matter is prominent in the common-or-garden varieties of science; for

example, at the beginning of Newton’s Principia. The development of ra-

tional mechanics in the 17th and 18th century produced many examples of

such combinations (with his equations for gravity, where actually solving

the combined equations is another story altogether). Attention to prob-

lems arising from such combinations is one particularly striking difference

between practice in the common-or-garden varieties of science (or, in fact,

thought generally), and in those would-be all-encompassing schemes, which

(cl)aim to leave out nothing (with which to combine aspects privileged in

them). Foundational schemes are of course chemically pure specimens of

this idea(l).

It is by now a common place that relativistic (requirements on) equations

are hard to combine with others. Dirac’s equation for the electron, re-

specting special relativity, became correspondingly famous. Gödel’s solu-

tion presents itself as a new type of candidate for object lessons on such

25Downmarket Hawking’s imaginary time, used in his answer to questions about where the

universe ‘comes from’ (the universe just ‘is’), gives the flavour of such complements; more

cheaply, since it is familiar that his switch turns hyperbolic into elliptic equations, which are

much tamer.

For the record, the later work has been supplemented by yet another type of solution without

singularities which satisfies most conditions prominent in earlier singularitiy theorems (but not,

for example, the convergence of light rays); cf. Senovilla [1990] or the breezy account on p. 201

in Nature (17.V.1990).
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combinations; at least by analogy with my own experience, as in the fol-

lowing digression.

The assumption is that the ‘ends of time’ are irrelevant in at least some

situations where the combination in question is a main problem. Given

that not much is known about them, what options (as always, if any) are

there? One, of course, is to leave those ‘ends dangling’; another is to ‘glue

them together’. This has nothing to do with conventionalism or any other

ism. In either case some key element may become visible (that is, some

memorable obstacle to combinations) and with luck means of removing it,

which then opens the way in other situations, too. Incidentally, the obstacle

may be (later seen as) a blind spot.26

The points above are - meant to be - alternatives to the solemn tradition (and,

in fact, anathema for it), especially the motto:

nothing but the universe is good enough for us.

For the record, the price paid for this motto seems (to me) fair enough: it generally

spawns work that, at best, corrects errors rather than contributes to effective

knowledge. Exceptions exist (often by Big Science, cf. p. 165), but they tend to

be quite costly by any realistic account(ing).

Sundry tit-bits: old and new

Aristotle’s primary (measure of) time is cyclic (cf. Physics , VIII, 265a 15). His

student Eudemus mused about time being cyclic too. They do not seem to have

agonized over effects possibly preceding causes (for a local direction, as in (4) in

[1949]); perhaps not surprisingly. For one thing, Aristotle has little to say about

temporal causes; for another, neither of them discusses the possibility of going

back in time. Still, I had hoped that some sophist at the time had objected:

What happens if you go back and kill your father when he was a baby? Better

26Obviously, nobody (in his senses) with my limited experience here would be tempted to

pontificate about cosmology. But there are the following easy parallels.

Jets in rapid motion, producing cavities, often disintegrate into turbulence (about which not

much is known, and the details of which pretty obviously have little to do with the general

motion). Experience has shown that, for a successful theory of those broad aspects, the ‘ends’

of the jets are sent off into a different Riemann surface.

But also, still in connection with rapid motion with forces that are very much greater than

gravity, the combination with gravity may be dramatic in permitting a new type of solution.

Specifically boundary conditions, which now determine a solution, have none - for equations

- without gravity; for example, an infinite jet with a free surface (at the top) deflected by an

infinite plate partially immersed (below that surface).

Incidentally, there is a recent claim by Motz and Motz [1990] about a similar story for

equations of the photon.
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still: And what if East ever met West? Alas, even if anything of such pastimes

among sophists is known, it has not come my way.27

The next and last tit-bit is a little different. It is about markets for literature

concerning the universe:

• As far as ordinary commerce (say, of the book trade) is concerned, the facts

are striking, and I certainly have nothing to add by way of interpretation.

• The commerce of ideas is a different matter. At one time venerable theolo-

gians constituted an, as it were, captive market. Times have surely changed

but, perhaps, not as much as suggested by Carl Sagan in his preface to A

brief history of time. He considers pre-school children who ask:

Where do we come from?

and envisages an answer in cosmological terms; perhaps:

the Big Bang.28

I have heard it said that the idea of quite ordinary bangs, which do not even

move the earth for those involved, also finds a market among pre- school

children.

Other ethereal ologies

It is time to return to Gödel. Related topics came up in our conversations, as

I report below. His musings were not as coarse (in either sense of the word) as

the last subsection, but they did not consist of solemn logic chopping or erudite

references to the ancients either. He just had a general interest in ethereal ologies;

for example: theology itself, but also pneumatology (not only of the Holy Ghost,

but of ordinary ghosts too), and demonology .

Gödel’s (broad) interest in these matters is common enough; what I find most

satisfaisant pour l’esprit is the parallel to experience with the logical ‘demons’ of

Section 2 (infinity, self-reference, impredicativity): a kind of ‘clutching at straws’

[∞]. As could be expected from the broad philosophy of this chapter, this shifts

the emphasis to different aspects, pursued in the next subsection. But first some

27Fortunately, the question above is in the introductory note to [1949] (in Gödel [1989]) by

Hawking, solemnly shown in the introductory note to [1949a] by Stein to be a less decisive

objection than his brasher co-editor clearly assumes. To be precise, Stein considers a variant,

where you go back and, more simply, murder your own former self ; pedantically, you ‘murder’

your ‘spirit’ (since, as mentioned, world lines of matter are open and of infinite length). It’s all

good, clean fun for us more cheerful readers, whatever the editorial intentions may have been.
28Unless ‘the universe just is’, like the Creator according to theologians when asked: Who

created the Creator?
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Anecdotes . When I read the following passage on time travel in Gödel’s article

[1949a], it struck me as attempting to provide a kind of explanation why one rarely

sees familiar ghosts (that is, of the recent past; cf. p. 124 of Chapter 6):

It is possible in these worlds . . . to travel into the near past of those

places where [one] has himself lived. There [one] would find a person

who would be himself at some earlier period of his life . . . But the

velocities which would be necessary in order to complete the voyage

in a reasonable length of time are far beyond everything that can be

expected ever to become a practical possibility.

I happened to tell him about it in the presence of his wife, who then spoke

mockingly and at length about his life long interests in ghosts (which, according

to her, was shared by Viennese washerwomen), and about the many books he

had read on the subject (I remember using this to change the subject, by noting

that those washerwomen surely did not rely on books).

Gödel became very expansive on the need for a great deal of basic agreement

if conversations are to be fruitful (but read on). I did not need much persuading,

since I have always applied this ‘non-missionary’ view even to my writings. Here

are a few additional points.

Gödel’s faith in the wisdom of the ancients (including ghosts, demons, deities

and so forth) was not shocking to me. It reminded me of a lecture by Lord Keynes

at Trinity College, Cambridge. Keynes had bought in Ireland a ship trunk full

of Newton’s papers, and spoke most memorably of Newton’s attempts to deduce

all sorts of things from the number of the beast (in the Apocrypha). I tried to

convey my impressions of Keynes’ style to Gödel, but doubt that I succeeded.

Without sharing Gödel’s faith at all, I did not reject it out of hand; at least, not

abstractly. Obviously, unusual skills were needed to make good use of it. Common

place objections to that kind of faith seemed to me weaker than the faith itself;

perhaps, comparable to my distaste for the usual objections to informal rigour in

the analysis of intended meanings, even granted that the latter may be unsuitable

for their intended purposes. Besides, in human affairs the wisdom of the ancients

is widely accepted; in effect, if not in these words.

But the agreement quoted above did not go very deep. On one occasion, I

think out of the blue, Gödel brought up the familiar asymmetry of the universe:

so many more events are unpleasant. From this he concluded the existence of

demons. I don’t remember, if ever I knew, what came over me to talk about an

evenly distributed universe, but my being so often below par that I could not

exploit pleasant opportunities. Evidently, I had forgotten to consider the role of

demons in my being below par. At any rate, in his gentle way, Gödel attributed

my blunder to lack of interest, not demons. We never talked about the subject

again.

There clearly was something to Gödel’s view; at least, if the loaded expression



Gödel’s Later Works 189

‘wisdom of the ancients’ is replaced by, say, ‘naive ideas’. Gödel’s own favourite

refrain was:

if one could be so successful [with such ideas] as he was, one must

expect marvels if one tried harder.

During his life I never felt quite comfortable about the whole business. Only when

I came to the end of the original version of Chapter 6 did I put my reservations

into words:

Perhaps those ideas are good to remove blindspots, and then they are

wonderfully efficient. But it still bothers me that the law of diminish-

ing returns seems to apply to them so very soon.

Digression on logical aspects of theology (for intellectually

cheerful readers)

The general idea follows from a refrain of this chapter:

Though everything has logical aspects, they will be most visible where

they are not overshadowed by other (more rewarding) aspects.

Furthermore, by experience, neglect of logical aspects can be occa-

sionally costly (in the commerce of ideas, too).

The occasional observation is that there seems to be a gap in the market for

supplementing the literary forms of mathematical logic, which are used for making

particularly elementary logical properties memorable (enough to be remembered

when they present themselves). The theological literature is one (re)source. And

a good bargain too,29 since many possess knowledge of it already.

In the following examples, the emphasis is on particularly crass logical errors in

(familiar) theology, and on how to use them (as it were) as vaccines for immunity

in more delicate situations (where related errors occur).

1. Various ontological arguments, preferably in Latin (which has no articles at

all), concerning ‘the perfect Being’ illustrate abuses of the definite article,

which are not covered by Russell’s ‘the present king of France’.30

29Naturally, not for those who are determined either to remain committed to the solemn

tradition, or to stay away from it altogether.

For the rest of us, it pays to know something of the conventions of such literature. What to

do with such knowledge may depend on temperament: whether we want to interpret or change

the world (of this sector in our commerce); in the latter case, whether by merger, take-over or

unbundling.
30Both ‘the present king of France is bold’ and ‘the present king of France is not bold’ are

false on Russell’s analysis, which conflicts with (a first reading of) Tarski’s ‘adequacy’ condition

for truth: T (¬p)↔ ¬T (p) (cf. Gödel [1944]).
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For example, by the tradition of theology (of their day), critics of those

arguments could not assume that there was no such being. Nevertheless,

they were able to make their point without any ritual of formal ‘paradoxes’ .

The word ‘ritual’ is meant to underline (not only the obvious possibility,

but) the fact of experience that formal contradictions are neither the only

defects of reasoning, nor particularly instructive. Specifically, while Can-

tor’s review [1885] of Frege’s Grundlagen specified a convincing defect in

Frege’s naughty axiom, Russell’s paradox continued to attract attention to

itself (and not, for example, to the definite article in: ‘the class of all classes

not belonging to themselves’).

2. One of the properties required of ‘the perfect Being’ in 1 above is omnipo-

tence or (in terms of Section 3) absolute power. Cusanus had some formally

very simple closure conditions on his idea(l) of omnipotence: not only (the

power to create) an immovable material object (in his case, a stone), but

also the power to move all material objects (including stones). Incidentally,

it appears that Cusanus wanted a Creator with such absolute power.

Now, not only did Frege impose closure properties (on such logical ob-

jects as predicates and classes) which have a prima facie similarly absolute

flavour (and so are suspect if Cusanus is remembered). But, more than 50

years after Russell’s paradox, the faithful (in a then-new sect devoted to

categories) blithely wanted a category of all categories (without any of the

many qualifications which present themselves after a moment’s thought).

Of course, this treatment conflicts with (theological) conventions, as follows.

First of all, the style is a breech of good manners in solemn circles; most

simply, by its lack of respect for what is holy . It is of course a matter of routine

to avoid it, if one wants to do so.

Secondly, the solemn tradition assumes that that shift of emphasis risks a

permanent loss by distraction (from the full inwardness of higher aspects); a kind

of mirror image to the refrain in this chapter about distractions from effective

knowledge (by clutching at straws). In fact, that assumed risk is often presented

as involving a loss of effective knowledge, too (especially by Gödel, albeit in an

exceptionally innocent manner; cf. the end of [1944]). This overlooks at least two

snags:

• In such complex situations it is simple-minded to assume that relations

of cause and effect are appropriate at all, and even more to rely on flash

judgement.

• It is equally simple-minded not to balance the account of such (assumed)

gains against the cost (of futile pursuits of solemn idea(l)s).

This is the ‘theoretical’ side. More significantly:
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• What do we know of the probability that the risk in question materializes?

Even for interpreting the solemn tradition it is, by experience, good policy

to correct for the lopsidedness of its preoccupation which that risk introduces.

As before, changing it would be a more difficult matter, requiring the practical

skills of unbundlers. Their policy is to give their targets rope: they are a better

bargain if they have pursued their idea(l)s further, when it is easier to see (that

is, cheaper in the commerce of ideas) what to keep.

8.7 What Was Lacking (60, 40, or Even 20 Years

Ago)?

Pedantically, ‘lacking’ concerning the main refrain of this chapter about alterna-

tives to the idea(l) of a tree of knowledge growing from (logical) seeds.

60 years ago, there was just lack of logical experience; in particular, of what

else to do (with knowledge of logic; besides growing and trimming trees in logical

foundations).

40 years ago, one had elementary results which, at least when used with discre-

tion (and in sometimes imaginative combinations with more specific knowledge),

contributed effectively:

• The most striking example remains mechanical computation; naturally,

more for what can be done with it than for its limitations.

• Malcev had published other such combinations about 50 years ago.31

But, certainly, those of my chums who took any interest in logic at all had a view

of scientific knowledge that was still dominated by expositions of the relativity and

quantum theories according to the ideal of a tree of knowledge (or, in Dirac’s tour

de force, almost along a single branch!). Not even Bourbaki’s scheme (of relatively

few basic structures to be used for very many combinations) was presented (by

its authors) or recognized (by us) as an alternative to the foundational ideal.

Besides, it was not familiar enough (to us at the time) for its effectiveness to be

seen (by us).

20 years ago alternatives to that idea(l) had become spectacularly visible

through scientific experience:

• Molecular biology, full of brilliant thoughts, just isn’t a theory according to

the stone-age ideal.

31For the record, nobody had drawn my attention to them even 40 years ago. I had found

for myself some significant combinations with proof theory.
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• Big science (naturally, by p. 165, when used with skills closer to big business

than those in demand by crafts and guilds) had combined successfully (as

it were, in parallel) ideas, people and technical apparatus.32

Without exaggeration, this experience corrected a parochial idea of understand-

ing . New possibilities were established, to be compared to the discovery of new

kinds of solution (in mathematics). But applied to logic, at least for most, this

broader view merely shifted the emphasis away from the foundational ideal. One

tied up loose ends, by solving (clearly formulated) familiar problems, and com-

bined logic with more substantial mathematics (in commercial terms: with richer

resources).

During the last 20 years, even to the outsider, spectacular events in the com-

merce of material goods and services have shifted the emphasis to aspects that

have obvious parallels in the commerce of ideas. In particular, (genuine) new

markets (beyond, as always, new bandwagons) have become prominent which,

previously, were genuinely marginal or simply ignored by piety towards traditions

of the trade (usually shared by management and unions alike). One example (cf.

p. 158 of Chapter 7) is suggested by the discovery that attention to pollution can

make (not only for legitimate, but) rewarding business. Here it should be added

that it is even more promising in the commerce of ideas. To use (again) the words

of Marx, but with opposite emphasis:

in contrast to the case of material pollution, a change in interpretation

is sometimes enough to change the world (of ideas).

It would not do to end on this note of smugness, as if events in the last 60

years belonged to the best of all possible worlds (of ideas). It would be a missed

opportunity (at least for interpreting the past, even if we forget it when it is

needed in the future) not to mention the following reminder:

Just think of any (thing that strikes the literal or the mind’s eye as

an) object. Every relation to anything else (not only to what strikes

the eye as a part) is a property of that object.

When this home truth (repeated in different words for more than 2500 years) is

remembered, the broad ideal of a tree of knowledge is seen as little more than a

blind spot; even when only knowledge of the object above is meant. The same

applies to related ideals; for example, of a complete description (as a seed for that

tree).

This ideal is not logically defective, since it is realized impeccably in Peano’s

or Dedekind’s axioms: they relate the objects considered (the number series gen-

erated by the successor, and the fieldR) to all objects in the universe of sets. But,

32For the record, 40 years ago it had seemed to me that people would merely get in each

other’s way in such enterprises.
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by experience, the ideal is sterile here;33 specifically, compared to the alternative

of focusing on suitable incomplete descriptions (that is, abstractions).

The literary forms of mathematical logic are well suited for illustrating diverse

possibilities by memorable examples without necessarily contributing to effective

knowledge, too. For instance: examples of abstractions can be concocted, of

which (as Plato’s translators say) R partakes, but this is best proved by use of

Dedekind’s axioms and recondite properties of sets. (There are corners in the

market for highly touted independence proofs, which establish a logical need for

such properties.) There is also the separate fact of experience that such examples

are not encountered often.

The metaphor of a commerce of ideas would be very weak indeed if trades sup-

plying such properties did not advertize their concoctions, and others not dealing

in them did not huff and puff. Those others need not be established trades; often

they are vendors of other seeds, peddling theirs under labels like ‘cybernetics’ or

‘information theory’ (instead of the more venerable logical variety).

8.8 Appendix. A View of Non-Standard Anal-

ysis ([1974])

Gödel’s view is presented in a little more than half a page, after a lecture by

Abraham Robinson at Princeton in 1974. The aspect of Gödel’s remarks most

pertinent for our agenda, and particularly Section 7, is the following.

The contrast between traditional logical ideal(l)s (generally and, in particular,

applied to mathematics) and scientific experience has become evident, especially

in the second half of this century. It becomes particularly vivid in Gödel’s re-

marks, which focus on the (in 1974 even) narrow(er) area of non-standard anal-

ysis and arithmetic. The contrast concerns both the interpretation of the results

available, and expectations of the future; so to speak, concerning the centre(s) of

gravity of a growing body (here, of analysis). By our refrain, such expectations

will differ if knowledge is taken to grow like a seed from a tree or by accretion.

Gödel was singularly well equipped at the time to present that contrast (in

effect, not necessarily on purpose): he had been out of touch with developments

in mathematics in the preceding quarter of the century, and he had had practice

in presenting logical ideals since the forties. Allowance should be made for strong

language; for example, about non-standard analysis being ‘the analysis of the

future’. But it is certainly no stronger than the fanfares in his essays in the 40s.

Of course there is also (in terms used in note 24) a staggering contrast between,

at least, the literal meaning of what he preaches here and his practice in his

33For any remotely realistic sense of ‘sterile’, the qualification ‘here’ is obviously necessary.

Euclid’s presentation of (his) knowledge of geometry in the form of a tree is not only (eternally!)

legitimate: it also had a market among educated Greeks of his time, and had a good run as a

blue-chip-investment in the commerce of ideas.
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metamathematical papers. But it is no greater than the contrast, for example,

between Hilbert’s peroration about purity of method at the end of his Foundations

of Geometry and his practice in ordinary mathematics.

The following three samples will do.

The tree (of knowledge) of numbers

On Gödel’s view this tree becomes a single branch, filling gaps (from Z to R,

with C regarded as a minor excrescence):

Arithmetic starts with the integers and proceeds by successively en-

larging the number system by rational and negative numbers, irra-

tionals numbers, etc. But the next quite natural step after the reals,

namely the introduction of infinitesimals, has simply been omitted.

Non-standard reals are then the next step, if not the holy grail.

This forgets differences between them and other non-archimedean fields, which

are not even mentioned by Gödel (though certainly significant for effective knowl-

edge). But, by mathematical experience, other omissions are more serious.

For one thing, Gödel blithely disregards the risk of a point of diminishing

returns in the pursuit of any holy grail, here of filling gaps.

More specifically: certainly, as far as number theory goes, branches that are

totally overlooked by Gödel are at least as prominent in mathematical experience;

for example, finite fields or p-adics (the former, like C, differ in not having an

ordering compatible with + and ×). Only the logical order of priority puts these

objects low down.

Ordering theorems by logical implication

Gödel tacitly applies this to theorems (proved at the time by non-standards meth-

ods) about invariant subspaces for (polynomially compact) operators, and disre-

gards the quality of the ‘improvement’ of Robinson’s result:34

Non-standard analysis frequently simplifies substantially the proofs,

not only of elementary theorems, but also of deep results. This is

true, e.g., also for the proof of the existence of invariant subspaces for

compact operators, disregarding the improvement of the result.

Gödel also refers to ‘other’ cases, of which there were few at the time. One

of them involved non-standard notions in the statement itself, since it connects

function fields of basic arithmetic with number fields in (suitable) non-standard

34Tacitly, in Lomonosov [1973]; of course, even without knowing the meaning of the words

used, the later result by Lomonosov is seen to imply Robinson’s, but its quality requires closer

attention.
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models of arithmetic. So, on the surface, it resembles Higman’s gem which (also)

connects logical notions and ordinary mathematics (now, for recursion theory and

the theory of finitely presented groups). But closer inspection of that other case

was summed up by a perceptive mathematician as follows:

No wonder you get such a connection, if you call a lot of strange

objects ‘non-standard integers’.

In other words, as matters stand at the time, knowledge of function fields told

you quite a lot about non-standard models, with precious little in return. The

assumption that one day the balance of trade must be reversed is, by experience

and as in ordinary commerce, touching (at least in the young).

Of course, literally, the connection constitutes new knowledge since it cannot

even be stated without non-standard concepts. It is a new truth, and by the

logical tradition this has priority over choosing among truths.

Concrete numerical problems

In Gödel’s words:

compared to the enormous development of abstract mathematics, the

solution of concrete numerical problems [like Fermat’s conjecture] was

left far behind

(in then-contemporary mathematics). By implication, and again in accordance

with the logical meaning of the words used, concrete and abstract are seen to be

in (would-be fundamental) opposition.

Partly, plain ignorance was involved. In 1970 Baker received a Fields Medal;

exaggerating very little, for bounds, in terms of k ∈ Z, on x, y ∈ Z that satisfy

x2 = y3 + k.

Partly, it was thoughtlessness: what could be more ‘concrete’ than finite fields?

Especially, since metamathematical properties like consistency and other Π0
1 prop-

erties are concrete in Gödel’s sense.

Compared to these oversights it is a minor detail that, even today (with many

memorable contributions, of which one will come up below) Robinson’s logical35

versions of non-standard arithmetic and analysis have not been used to solve

such concrete numerical problems. On the contrary, such well-known results as

Tchebotarov’s theorem have been used imaginatively for work on non-standard

models.

35‘Logical’ must be stressed, since otherwise number fields are also non-standard ‘versions’

of Q. The single most striking difference is, of course, that logical versions express the analogy

involved in terms of logical classifications (of the properties preserved).
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Disclaimer

Ever since the 60s I not only had no qualms about non-standard methods, but

was in the market for information about them; however, not for such traditional

reasons as presented by Gödel.

For example, I realized (and this was comfirmed by people familiar with the

subject) that the problem about invariant subspaces actually solved by Robinson

was simply not a contribution to effective knowledge in that area. But, to me,

it illustrated vividly a particular potential of his method: an efficient represen-

tation by a single (infinite) nonstandard element of iterated limiting processes.

Quite apart from literary talent, I could not possibly have expressed this thought

as compellingly as van den Dries and Wilkie in the 80’s in the introduction to

their [1984]. They had realized this potential by realizing that it contributed to

an unquestionably substantial piece of knowledge: Gromov’s theorem on finitely

generated groups of polynomial growth (a different matter from polynomial com-

pactness of operators).

A report on impressions of non-standard analysis in a dif-

ferent quarter, in the late 60’s

Given my own impression described above, also of Robinson’s other work, it was

natural for me to look for support of my proposal to have him elected a Fellow of

the Royal Society; not even a Foreign Member, since he had British nationality.

It had been already established that there was then no ‘prejudice’ against

logic. By statute, initial support has to come from within the Society. On the

fact of it this seemed easy (to me). Robinson had not worked on, say, large

cardinals or Turing degrees, on which the people involved simply could not be

expected to have informed views (and I for one did not expect support for my

proposal on the basis of uniformed views).

Robinson’s (cl)aims were stated in ordinary mathematical terms; in several

books, at length, and with a good deal of repetition. His style may not have been

everybody’s cup of tea, but then mine (though different) isn’t either. By leafing

through his publications it is certainly possible to get the gist of it, provided at

least a few results catch one’s attention. But the general response to my proposal

was very cool.

Probably, I had underestimated the extent to which would-be advertizing of

Robinson’s invariant subspace theorem had become known. It has to be admitted

that it involved a quite staggering lack of understanding of the subject in question.

Be that as it may, this theorem was brought up, and nobody (in the trade) would

want to ‘disregard the improvement’. I remember the shift of emphasis in the

Disclaimer above (to illustrating potential) so well, because this was acceptable.

But it was pointed out that this point was not to be found in his books.

Somebody with a temperament different from mine might have pursued the
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matter successfully. As I saw it, it was the Society’s loss, not Robinson’s. By

chance, in a review of Robinson’s book on metamathematics [1955] in the mid

fifties, I took the same view of lack of interest in logic: it was their loss, not ours.

For the record, Gödel took a completely different view. Not only his personal,

but his professional loyalty was very strong. I have too little interest in such mat-

ters to speculate sensibly in what way, if any, this played a role in his remarks; let

alone, whether anybody in the audience later helped in the election of Robinson

to the U.S. National Academy of Sciences. If it did, one could learn a lesson

about the way this world works (in terms used repeatedly in this chapter):

It can be useful, even if it is not logically necessary, to be able to say

with a straight face: ‘Non-standard analysis, in some version or other,

will be the analysis of the future’.



Chapter 9

Gödel’s Last Remarks on The

Undecidability Results

Gödel’s three remarks in [1972a] occupy barely 2 pages, and each of them contains:

• (more or less explicitly) some simple point which, for more than 50 years,

has proved to have (what is called in current mathematical jargon) founda-

tional significance, but is not prominent in the literature;

• (more or less implicitly) some mind-boggling assumption which has been

instead prominent in the heroic tradition.

The word ‘undecidability’ applies:

1. In the first two remarks, to particular formulas and their (formal) indepen-

dence (as in Gödel’s [1931])

2. in the third remark, to classes of formulas and their (recursive) unsolvability

(as in Turing [1936]).

The mathematics used in 1 and 2, such as diagonalization, is (exceptionally simple

and) closely related; but the choice of notions and problems in further elaborations

is very different. Also, Gödel’s pearl does not turn up in the ordinary mathemat-

ical literature (cf. Chapter 7), while Turing’s twist has an established place (for

example, through Higman’s theorem, in the subject of finitely generated groups).

The titles of the sections below are Gödel’s own (for his remarks).

0Originally published in Notre Dame Journal of Formal Logic, 31 (1990) , as Appendix I to

‘Gödel’s Collected Works, Volume II’.
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9.1 The Best and Most General Version of the

Unprovability of Consistency in the Same

System

With this would-be dramatic title, the remark itself cannot help being plus se-

rieux. Another (catchy?) title would have been:

How I never had the courage of my convictions expressed at Königs-

berg in 1930 about consistency as an adequacy criterion.

Indeed, Gödel pointed out in [1931a] (tacitly, even in the particular case of

formal systems for arithmetic) that, at best,1 consistency is adequate for ensuring

the validity of (what we now call) formally proved Π0
1 sentences. In current

terminology and notation, this restricted adequacy is:

• Π0
1-reflection: for all formulas F ∈ Π0

1, (�F )⇒ F .

Gödel’s terminology in [1972a] is ‘outer consistency’.2

Gödel incompleteness paper [1931] provides a formula G which is ¬�G.

Pedantically, this is done for the particular system of Principia Mathematica, a

particular coding of syntactic objects, and particular definitions of the syntactic

relations involved. But never mind for the moment the flourish about ‘the most

general version’ (with its innocent disregard of the most elementary conventions

about the definite article).

Theorem 9.1.1 If:

1. the system is consistent

2. �G is provable if G is

then �G→ G is unprovable.

Proof. Since G is ¬�G,

�G→ ¬G
1‘At best’ because some additional condition, such as (what we now call) Σ0

1-completeness

(cf. note 2), is (obviously) required.
2If we define:

• Σ0
1-consistency : for all formulas F ∈ Σ0

1, ¬(�F ∧�¬F )

• Σ0
1-completeness: for all formulas F ∈ Σ0

1, F ⇒ �F .

then Π0
1-reflection follows from Σ0

1-completeness and Σ0
1-consistency , as follows.

If F is Π0
1, then F is equivalent to ¬F ′, where F ′ is Σ0

1. Suppose �F , i.e. �¬F ′. By Σ0
1-

consistency, ¬�F ′ holds. Then, by (the contrapositive of) Σ0
1-completeness, ¬F ′ (i.e. F ) holds.

Thus (�F )⇒ F .
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is provable in the system. So, if

�G→ G

were also provable, we would deduce ¬�G.

Again, since ¬�G is G, G itself would be provable. Now, by 2 (a minimum

condition, used in the incompleteness theorem), we would deduce �G.

Thus ¬�G and �G would both be provable, and the system considered would

be inconsistent, contradicting 1. �

Corollary 9.1.2 (A particular instance of) Π0
1-reflection is unprovable.3

Proof. Gödel’s formula �G is in Σ0
1 form, and thus G (which is the negation of

�G) is, provably in the system, equivalent to a Π0
1 formula. Thus �G→ G is an

instance of Π0
1-reflection. �

This is all; it would have been perfectly compelling in the early 30’s. By

scientific experience, and contrary to the teenage idea(l) implicit in the flourish

about ‘the most general version’, it would have been premature then to try and

establish suitable generalizations; in other words, relatively few that cover rel-

atively many formal systems (in broad experience). If one tries, as people did,

one ends up with inanities about ‘natural’ systems (cf. note 32 of Chapter 7 on

the obvious poverty of all formal systems considered; poor for representing the

phenomena from mathematical experience).

Points to note today

First, by reference to experience with (pretty) provability logic. This uses heavily

not only both:

• closure under modus ponens

• Σ0
1-completeness (cf. note 2) for �G

but also the provability of those properties of the system in itself. (It is an open

secret that the contemporary trade of provability logic would be out of a job

without these two properties.) The particular (unprovability) argument above,

advocated by Gödel [1972a], uses neither property .

Secondly, this need not be the end of the story (at least, not for those prepared

to learn from scientific experience): emphasis is shifted to the significance, if any,

of formal systems that do not have those venerable properties (and thus to the

significance of avoiding the latter for a particular result). Cut-free systems are

(now, not in 1931!) familiar enough, the other kind less so (but cf. the subsection

3By note 2, it follows that Σ0
1-consistency and Σ0

1-completeness are not both provable.
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on p. 148 of Chapter 7). Let there be no mistake: this shift is in conflict with

teenage ideals (especially, of a complete description for the essence of proof).

Thirdly, in terms of the metaphor on pollution (used in Chapters 7 and 8),

since gushing about (Hilbert’s banner) consistency is still around, one may wish

to give it attention and, perhaps, thereby develop immunity. One option is to

dot the i’s and cross the t’s by:

• considering different formulations of consistency (by Hilbert, who was never

tired of emphasizing that they are equivalent; tacitly, for systems S that do

have these two properties);

• listing other S for which the different formulations are not equivalent (a

salutary preparation for Hilbert’s many, tacit or even glib, assumptions in

this area).

All this was done in the 50’s and 60’s, but (in Gödel’s words in [1972a]) ‘it has

not received sufficient notice’.

Gödel’s wilder side: legalistic (debating) points

In [1972a] his concern is to ‘refute’ Hilbert (on the latter’s terms) in a court that

insists on the letter of the law and relies on precedents:4

it [would be] necessary to prove this ‘outer’ consistency of S [that

is, Π0
1-reflection] . . . in order to ‘justify’ the transfinite axioms of a

system S in the sense of Hilbert’s program.

His concern fits the (to the modern reader strange) prominence in the remark

of provability in his equation calculus , say �0, and of the idea(l) of primitive

recursion (in, of all things, a would- be most general version!).

Now, Hilbert had a thing about (formal) derivability. The harmless little

word ‘true’ was banned, and not even applied to purely numerical propositions

P (n). Gödel respects this little whim by a rephrasing, permitted by the following

theorem of Principia: for numerals n,

(∀n ∈ ω)[P (n)⇔ �0P (n)].

Also, in the mid 20’s Hilbert committed himself to Ackermann’s function as

finitist (meaning: privileged for the cheerful tradition, legitimate for the other).

Now, Ackermann’s function enumerates all primitive recursive functions, and so

any attempt to make do with less would be teratological; even for that ‘most

general version’ since, tacitly, it is meant for the refutation in question.

4For the record, I could not bring myself to do this, but I found the spectacle of Gödel at it

simply enchanting.
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Gödel’s style

As mentioned earlier, read with ordinary horse sense, Gödel’s remark is easy

enough to follow. But Gödel’s refusal to use the literary forms of mathematical

logic for the sake of very compressed solemn language interprets Ezra Pound’s

recipe for great literature (as being ‘simply language charged with meaning to

the utmost possible degree’) too innocently. I am not persuaded that the simple

thoughts in Gödel’s remark are rewarding subjects for great literature at all; let

alone, in the particular traditional language favoured by Gödel. That’s the way

the cookie crumbles.

9.2 Another Version of the First Undecidability

Theorem

The wording of this remark, including the title, may be a little strange; at least,

if Gödel’s poor health at the time (1972) is disregarded. But the thoughts (I read

into or) in them have been long familiar to me: the simplest since before I first

met him, the wilder ones from our conversations (even in his good old days).

Ever since the 50’s a little cottage industry has been busy classifying formal

systems (pedantically, the corresponding sets of theorems) according to their

degrees of unsolvability (as in Turing’s meaning of ‘undecidability’).

But, also since that time, this classification has been known to be insignificant

(in the ordinary sense of statistics) for many parts of logic, which were prominent

then (and have become more so). For example, in modern terminology and

notation:

• Σn-induction: induction for all formulas F ∈ Σ0
n

for different n: their theories are all of degree 0′, but differ even with respect

to their Π0
1-theorems (prominent in the last section). This was known then for

n > 2, now even for n ≥ 1.

Last but not least, these differences were established by (more efficient use

of) the ideas in Gödel’s own proof of the first undecidability result. Pedantically,

this would not be called ‘another version’ of the latter. But a suitable version,

which implies those differences as corollaries, is easily formulated by routine use

of the literary forms of mathematical logic, and proved by means of those ideas:

in order to solve all problems of Golbach type [that is, Π0
1] of a certain

degree of complication k one needs a system of axioms whose degree of

complication . . . is ≥ k (where the degree of complication is measured

by the number of symbolds necessary to formulate the problem (or

the system of axioms) . . . ).
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Gödel’s wilder side: understanding

The remainders above emphasize the fact that sometimes classification by degree

is useful, sometimes by inclusion. They distract from the (more demanding)

thoughts needed to determine what significance, if any, either classification has

in a particular area of experience.

Lack of this kind of thought (in the sense of Tractatus 6.21) spoils the wilder

sides of Gödel’s second remark on such matters as understanding (here, of math-

ematical concepts and axioms about them):

all present day mathematics can be derived from a handful of rather

simple axioms about a very few primitive terms. Therefore . . . the

few simple axioms being used today will have to be supplemented by a

great number of new ones or by axioms of great complication. It may

be doubted whether evident axioms in such great number (or of such

great complexity) can exist at all . . . But . . . more (and ever more

complicated) axioms appear during the development of mathematics.

First, readers of Chapter 7 should recall note 32, but also p. 152 on what

one wants to understand, as opposed to Gödel’s preoccupation with the mere

‘existence of mathematical yes or no questions’ with some heroic, traditional

property; like being ‘undecidable for the human mind’.

Secondly, less specifically, the general idea of Gödel’s (second) remark is com-

monplace for ordinary mathematical experience: focusing on formal deductions

from given axioms is by no means obviously a first step toward a realistic view

of mathematical reasoning. Its formal aspects are inadequate not only as far

as discovery is concerned, but also understanding (including checking); both of

theorems and of proofs. Thus formally unnecessary methods can be essential ; for

example, for reliability by cross checks (of numerical calculations by use of gen-

eral theorems; in higher mathematics, of deductions from axioms for real closed

fields, which are formally complete, by means of topological methods, for which

there is no similarly complete formalization).

Thirdly, as so often: though all this is commonplace, it is also in conflict with

heroic perennials (for example, of ‘purity of method’).

Gödel’s remark compounds the conflict by uncritical (and possibly even pre-

mature) precision about the matter above. It pays no explicit attention to what,

if anything, (its) precise meanings for words like ‘understanding’ contribute by

way of effective knowledge.

Gödel’s wilder side: complexity and abstraction

To fix ideas, the samples below concern the systems of Σn-induction mentioned

earlier.
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Gödel trots out familiar (logical) parameters, but now meant as measures .

Thus n itself is for (degree of) abstraction (in other words, determined by count-

ing quantifiers5): the number of symbols occurring in a formal object for (the

complexity of) understanding the thought (theorem or proof) represented by the

formal object. Naturally, there is no limit to elaborating this numerology.

But what we know of those matters (never mind the many things we don’t

know) is enough to show that the measures chosen are at cross purposes to the

meaning(s) for which abstraction does contribute; for example, the passage from

Q to abstract fields.

This is not all.

A solemn assumption and one alternative

The pious assumption is that views should be established or defended on terms

set by the opponents. Here the commonplace view from mathematical experi-

ence is meant, and its opponents are proponents of strong AI (who were called

‘formalists’ 100 years ago). The assumption is enshrined in Turing’s test, which

requires mental capacities to be measured solely by (the sets of) formal results

obtained, not processes (cf. Chapter 7). Accordingly, (pious) defences of the

ordinary view attempt to rely on incompleteness properties. The weakness of

any such attempt spawns (valid) objections, which then attract attention to that

weakness and away from the strength of the (commonplace) conclusion. Except

for the commotion produced in this way, the net result is a step back.

Now, certainly, a most obvious alternative is to look at (if you like, just the

conscious aspects of) mental processes of human computers, where the results

generally do agree with those of the electronic variety! (one simply looks at the

execution of formal rules such as substituting one formal expression for another).

Human computers have additional resources; including, for example, appropriate

(so-called ad hoc) interpretations of formal symbols. If one wants to know about

the (biological) resources available, one will be well advised to look at them;

not merely at possibilities of replacing them for (sufficiently) similar results by

suitable software engineering.

By Sections 6 and 7 of Chapter 8, readers must expect many different things

to come to mind at this stage (and unless they are very unlucky, all of them more

rewarding than logical straws such as the ‘measures’ above):

• Those with a classical background will think of Aristotle advice in Meta-

physics (Γ, 5, 1009a 16–22) on how to treat opponents who object mechan-

ically; perhaps fittingly, if they are proponents of mechanical resoning.

• Those used to ologies (cf. Section 6 of Chapter 8) may have to be remainded

of the common-or-garden varieties of science, where there are lots of familiar

5Another favourite parameter relates abstraction to higher types; not ‘type’ in the ordinary

sense (of ‘sort’ or ‘kind’), but as in ‘functions of higher type’ or in axioms of infinity.
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things to look at (such as conscious aspects of mental processes mentioned

above). Some of them will come up again in Section 3.

Anecdote (about Gödel’s good old days)

Gödel’s own attachment to those (literally superficial) measures came up in our

conversations first at a luncheon at Pennington, in a cottage which I shared with

Dana Scott. (The occasion was Friedberg’s visit to Princeton after solving Post’s

problem.)

Gödel talked with obvious warmth about the little note [1936] he had pub-

lished around 20 years earlier (whose general idea is perfectly clear from the

reminders above). There was an obvious, so to speak solemn, contrast between

his faith in those formal(ist) parameters and his reservations (in particular, at

Königsberg) about Hilbert’s aims (in his program). But this presented itself to

me (then and now) as a kind of aberration or blind spot.

The temperamental side, his attachment ,6 has remained for me much more

vivid, partly because of a coincidence. Less than a year before that luncheon I

had learnt from him his interpretation of Heyting’s arithmetic. For me a principal

attraction of this was as a change from the no-counterexample-interpretation,

with which I had been familiar for barely 10 years (and had used effectively and

repeatedly in the meantime).

9.3 A Philosophical Error in Turing’s Work

By experience with the academic sense of ‘philosophical’, the title gives fair warn-

ing: an elementary blindspot is meant which (like other, even literally superficial,

errors) can have profound consequences. By that same experience, Gödel must

be expected to be solemn where Turing was (by ordinary standards, not those at

Cambridge at the time) particularly breezy.

Turing proposed, in what most readers of his paper [1936] would have regarded

as an aside, a (compactness) argument to ‘establish’ that, at any given moment,

there can be only finitely many states of mind. His rather quaint hypothesis was

that otherwise there would be confusion.7

Granted that at any stage there are only finitely many (conscious or uncon-

scious) states of mind (or, in some equally rough sense, of the brain), Gödel

notices that this leaves open how any sequence of subsequent states continues or

6Incidentally, he remained attached not only to his own discoveries, but also to knowledge

he had got the hard way (for example, from uncongenial literature).
7For the record, I know at least one mind that gave Turing the opportunity (a few years

later) to correct his, let us say, ideal of the human mind, and to remember (from his Tripos

questions on ideal fluids) that idealizations need not be even first steps towards understanding

the phenomena meant.
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(so to speak) grows; especially if the capacity of the mind (which he calls ‘faculty’

in the supplement to [1964]) grows, of course, over and above its memory:

what Turing disregards completely is the fact that mind, in its use, is

not static, but constantly developing . . . Therefore, although at each

stage the number [of distinguishable states of mind ] may be finite, . . .

[it] may converge toward infinity . . .

As a correction to Turing’s breezy (strong) AI Gödel’s reminder remains com-

pelling, however weak his attempts at contributions to effective knowledge of that

faculty may be; cf. note 32 of Chapter 7 on doubts about assuming that the

discovery of (logically) new axioms is a very rewarding function of that (mathe-

matical) faculty.

As matters stand today, Turing’s focus on those functions which the human

mind has in common with (conventional) machines (but perhaps less so with

the minds of animals) has been more rewarding; tacitly, as objects of theoretical

understanding.

Thoughts by association with the topic of finiteness

The additional background here is the, by now, standard material on recursiveness

applied in various parts of mathematics that serve as the languages of theoretical

sciences. As a corollary, so to speak for the analysis of language(s) of this kind, the

notion of mechanistic theory presents itself; for such a theory, all its (scientifically

interpreted) aspects are recursive (for example, solutions of partial differential

equations).

Despite pitfalls in interpretation (for example, of so-called initial conditions,

cf. Kreisel [1982]), the general idea of this mathematical property of theories is

clear enough. A problem comes from the ordinary separation between observa-

tional knowledge and its theoretical interpretation(s):

• on the one hand, data of the observational kind are (hereditarily) finitely

described

• on the other hand, any such (necessarily finite) set of data is recursive.

Evidently, only the most coarse-minded would conclude from this that the math-

ematical property above (of being mechanistic) is without any scientific signifi-

cance. An obvious question is:

where, if anywhere, is such a significance?

In other words, recursiveness is an infinitistic property, and so its interpretation

is more demanding (in imagination).

Vast experience in classical physics (in particular, PDE) can provide some

direction:
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• Some infinitesimal conditions (on solutions being once or twice differen-

tiable) are, often demonstrably, mathematically significant; most simply,

for admitting or excluding a particular PDE as (even) a candidate for a

theory of the phenomena (pedantically, of those aspects of them which are)

considered. But again, every observational set of data is consistent with

those conditions and also with their negation.

• More recently, these infinitesimal conditions have been discovered to have

significance; roughly, when the PDE of continuum mechanics are viewed as

(classical) limits of theories for molecular or quantum phenomena and the

like (cf. Berry [199?]). Not surprisingly, this requires particular attention to

matters that used to be brushed aside by claiming that we understand the

classical phenomena ‘in principle’. Also not surprisingly, the implications

at a miscroscale of the infinitesimal conditions are, as one says, qualitative

(or ‘matters of principle’).

Viewed this way, and in the absence of any corresponding micro theory of the

mind or brain, pedantic elaborations concerning recursiveness are premature; as

it were, a confusion in kind, not only in degree.

Autobiographical digression on effective rules

The topic came up repeatedly in conversations with Gödel during the sixties, but

was not pursued. Whatever the reasons may be, our interests were certainly very

different:

• He was preoccupied with giving a conclusive proof of the difference between

(effectiveness for) mind and matter (cf. p. 126 of Chapter 6).

• My principal (conscious) interest was to give vent to metaphysical anger.

Specifically, both extremes (in current jargon, wide-eyed enthusiasts of AI

or digital intelligence, and indignant critics) never give a thought to the

possibility that we already know enough to refute their rhetoric; but, pre-

sumably, not enough to settle any significant issue. In other words, we may

not have reached the kind of threshold for genuine progress.

During a stay at the Institute for Advanced Study in the sixties, I prepared the

survey article [1965] (about which I spoke very little to Gödel, since he regarded

such activities as a waste of time). Footnote 29 in it mentions the possibility

that, at least, statistical mechanics may be demonstrably non-mechanical.

I returned to the topic (of rules or, equivalently, inputs that are effective

for physical systems for which a theory is available) in [1970] and [1974]. The

former excludes some plausible candidates for systems that have non-recursive



Gödel’s Last Remarks on The Undecidability Results 208

outputs for some recursive inputs, by adding physically relevant conditions to a

simple-minded formulation;8 specifically, in percolation problems .

Since then, also physicists have shown an interest; for example, Geroch and

Hartle [19 ]. The logically more conscientious work on the topic above, by Pour

El and Richards, is however spoilt by lack of respect for the physical meaning;

cf. Kreisel [1982] on their abuse of the notion ‘initial value’. On the positive side,

their work has improved my understanding in two ways:

1. On the formal side, the boring lists at the beginning of [1982] (of recursive

operators that do and do not necessarily have recursive values for recursive

arguments) can be subsumed compactly in terms of boundedness ; cf. Pour

El and Richards [1983], and Turing’s ‘philosophical error’.

2. More generally, Pour El and Richards [1981] refutes the idea (I had for some

time, without mentioning it in print) that people working on a problem (say,

the 3 body problem) might make a tacit assumption: sound solutions must

be recursive in (what are regarded as) the initial data. In this way they

would simply miss non-recursive solutions.

Pour El and Richards show that this was not the case with Kirchhoff’s

solution of the wave equation.9

Before examining the particular rules for the perfect (intuitionistic) mathe-

matician, I looked at another area of formal work with the potential of being

relevant to the matter at issue: the consistency of (suitable formalizations of)

Church’s Thesis CT with intuitionistically interpreted systems, like the theory

of species.

As might be expected, this was more to Gödel’s taste. Actually, even an

inconsistency would only show that CT cannot be proved by methods in the

system considered (it would not necessarily furnish a rule that is effective for the

perfect mathematician, but defines a non-recursive function).

Before I dropped this subject, I summarized my experience in [1972]. Here

are a few points from it:

• If a system has the ∃-property and is formal (that is, the set of theorems is

r.e.), then for any theorem ∀x∃yR(x, y) there is a recursive function f such

that, for each n ∈ ω, R(n, f(n)), is derivable.

8A Markov process with unique asymptotic behaviour, the additional requirement being

non-vanishing probability of that behaviour.
9Non-recursive solutions are often indeed unsatisfactory as they stand. But, once recognized,

they may be explicitly excluded for physical reasons, or they may suggest new questions that

have more manageable solutions.

Cf. the famous example in number theory, where there was only the suspicion that no simple

method decides whether a binary diophantine equation has some integral solution. So Siegel

asked instead if it has infinitely many , and decided that question.
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So, if only formal systems are regarded as ‘precise’, the ∃- property excludes

the most direct refutation of Church’s thesis indicated above; that is, by

a proof of ∀x∃yR(x, y) that is convincing for the perfect mathematician,

while no recursive f satisfies R(n, f(n)) for all n ∈ ω.

Obviously, it would be a petitio principii, in connection with effective rules,

to assume that only formal theories are precise.

• The idea of a creative subject proceeding in an ω-series of steps, and the

‘axioms’ for the property `n A (A is proved at stage n) implying Kripke’s

principle are found to be implausible. Roughly speaking, ω is too easily

grasped.

• An opposite extreme, as it were, is the idea of transfinite progressions (orig-

inally called ‘ordinal logic’ by Turing). In fact, the title of Kreisel [1972],

which refers to this topic, is related to conversations with Gödel that are

not mentioned in the paper.

In the early seventies, at a very difficult time in his life, he made several very

long, mildly frantic transcontinental telephone calls (from Princeton to Los

Altos Hills, where I lived at the time) about the present topic. He felt sure

that, for every path through O, some non-recursive predicate is computable

(on any transfinite progression of the kind studied by Feferman). Gödel

regarded this as a refutation of CT .

It was not necessary to go into his idea, since it was practically apparent

from Feferman and Spector [1962] that Gödel was simply wrong: no non-

recursive predicate can be computed on any Π1
1-path. He insisted that this

should be published, and I simply did not have the heart to refuse. He

agreed that, since the proof was so close to published material, and the

result so inconclusive, it would be out of place to describe it as a refutation

of a conjecture of his.

I had done such a thing in [1958], partly through carelessness, partly for

reasons explained on p. 265 of Chapter 11. Actually, Gödels’ offhand habit

(of making conjectures to visiting members at the Institute, who would

then spend hours doubting their own, often completely trivial, proofs or

refutations of those ‘conjectures’) was only brought home to me a few years

later, by reports of a victim who spent a year at the Institute.

My compromise, some 15 years later, was to do what he wanted in (the

short) Part I of [1972], with an appropriate title, but use Part II for what

I wanted to do myself.

Both Kreisel [1972] and Gödel [1972a] mention Turing’s errors (or better, tacit

assumptions). Of course, they are trivial compared to Turing’s contribution: his



Gödel’s Last Remarks on The Undecidability Results 210

focus on rules effective for computing machines had raised the level of the discus-

sion not only far above the drivel about equivalent definitions of recursiveness,

but also above Gödel’s discovery of absoluteness of the latter (in [1946]). Here

are a few additional details:

1. Gödel had surely noticed the petitio principii mentioned above (of assuming

that only formal rules are precise) that struck me so forcibly, but I am not

sure (since, at least in my experience, he never mentioned his independent

discoveries, let alone priorities); cf. Kreisel [1972] for references to other

instances of that petitio.

2. In [1972a] Gödel is particularly critical of Turing’s assumption that we do

not have enough room in our heads (as it were) for our mental processes to

be governed by an unbounded operator. This neglects growth of our (tacitly,

finite) intellectual equipment. In other words, Turing’s and Gödel’s remarks

may be regarded as jeux d’esprit corresponding to the sober distinction

between (the behaviour of) bounded and unbounded operators; cf. 1 on p.

208.

3. When Gödel mentioned 2 to me in the 60’s, I brought up the more radical

objection, mentioned in Kreisel [1972]: the operators themselves may be

non-recursive. His (I believe considered, not offhand) view was that we

know so little about the details that only very simple assumptions can be

convincing. But he rejected the thought that we may know too little for

anything convincing . He had no gratitude for small mercies like 1 and 2 on

p. 208.

In the mid 70’s (of course, after the aberration Kreisel [1972]) Gödel drew

my attention to Hilbert’s musings in lectures, not in print, on (what is called in

Chapter 8) a market for his kind of axiomatic analysis , especially of elementary

geometry. He proposed it as a substitute for pursuing sterile (cl)aims of con-

tributing knowledge of the nature (or, in modern jargon, the concept) of space;

for example, by sterile traditional logic chopping.

At the time Hilbert did not (and could not very well) estimate the (obvi-

ous) risk : of such axiomatic exercises distracting attention from more rewarding

aspects of (something more or less like) space.

But by another fluke, which strikes the (mind’s) eye if you keep it open,

Hilbert himself had a chance to reassure us about that risk. He was among the

first to take up Einstein’s shift of emphasis : from space and time separately to

space-time. (Nothing could be further removed from all that axiomatic analysis,

some of which no doubt prettier than Einstein’s mathematics.)

In short, for those with a modicum of negative capability, the axiomatic anal-

ysis is harmless enough; as somebody put it: this side of the pale.
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For the record, I have always regarded exercises around Church’s Thesis as

similar substitutes. But before learning of Hilbert’s musings, it was tedious to

talk about this. Now I just tell the story above.



Chapter 10

Gödel’s Excursions into

Intuitionistic Logic

The topic of intuitionistic logic spans Gödel’s working life, and was the main

subject of our frequent conversations over some 15 years. It was neglected in

Chapter 6, where effective contributions to scientific knowledge were given priority

over reflections about the latter. In that chapter formal systems and sets were

stressed, with some attention to various kinds of definability, since they have

turned out to be more effective scientific tools than the intuitionistic notions;

even for purposes that the latter have been claimed to serve.

Specifically, in connection with constructivity , the principal element of intu-

itionistic logic (of applying this requirement to proofs, and not only to definitions)

is highly dubious; cf. Kreisel and MacIntyre [1982], and the following quotation

from Gödel [1964]:

In fact, in the 40’s Gödel emphasized definitions ; both in connection with

the ramified hierarchy (of the constructible sets) and with logic-free, essentially

equational systems discussed in Section 5 (incorporating his successful experience

with higher types, cf. p. 104 of Chapter 6).

In contrast, in the early 30’s, as developed in Section 2, Gödel looked at

typically intuitionistic, logical aspects of constructivity , and (as in other areas)

returned to these interests in the 70’s, albeit in a different style (not the early free

display of sound intellectual reflexes, but reverent attachment to the tradition of

academic philosophy).

It turns out that intuitionistic logic generally, and Gödel’s contributions to it

just mentioned can be used very effectively for a part of knowledge that is outside

science, and incidentally quite close to the popular meaning of ‘philosophy’ (cf.

Kreisel [1986] for more details). Roughly speaking, as elaborated in Section 1

0Originally published in Gödel remembered , Weingartner and Schmettered eds., Bibliopolis,

1987, pp. 77–120.

212
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below, here the primary object is not merely to pursue traditional ideologies, and

problems fundamental to them, but to examine them. And intuitionistic logic

provides so to speak chemically pure specimens of such ideologies.

The text below is organized accordingly.

Advice to readers . It is probably best to leaf through the text below, letting

the eye pause on titles, and to make selections for further reading. It is in the

nature of the case that the range of interests, even within intuitionistic logic,

of an exceptionally gifted person like Gödel will be exceptionally broad, and so

selection is advisable.

10.1 Background and a Manifesto

Looking back at the early 30’s, when Gödel did his best known work on intuitionis-

tic logic, the first order of business was to help clean up the logical pollution spread

by Brouwer and his epigones (comparable to Hilbert’s logical atrocities with his

claims for consistency). Gödel’s distant, sometimes almost offhand (hochnäsig)

style still seems fitting (cf. [1931a] on consistency). Time, if not Gödel’s style,

has dispelled the pollution, and it is appropriate to look at another side of intu-

itionistic logic

To put first things first, intuitionistic logic is most memorable as a reaction

to an earlier, also would-be revolutionary [∞] enterprise: so-called logistic foun-

dations . Among other things, the latter were said (for example, by Russell) to

have exhibited the concepts implicit in our ordinary logical reasoning. Granted,

logistic (that is, truth functional) logic may be better (for example, for reason-

ing well) than the logical notions of natural language. But they are certainly

different! For example:

• In the propositional domain, (p→ q)∨ (q → p) is not a law on any ordinary

reading of → and ∨.

• In large domains of natural mathematical language, ∃ is taken to mean that

an instance can be defined (tacitly, in terms used in that domain).

For better or for worse, ∃ is not regarded as an abbreviation for ¬∀¬.

Without exaggeration, intuitionistic logic wanted to approximate natural usage

better, and succeeded.

So much is clear, though not often stressed. Much more interesting for the

kind of philosophy adumbrated already (and explained in Kreisel [1986]) are early

impressions (alias convictions) about intuitionistic logic. They were particularly

off the mark where all sides agreed ; specifically, about:

• some intrinsic complexity of intuitionistic logic
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• (what we should now call) its proof-theoretic weakness .1

The faithful were prepared to pay this price for the sake of the Truth; critics saw

this as a reason for ignoring intuitionistic logic, generally without investigating

further (and, as we shall see in Section 2, some of those who did investigate,

did not pause to reflect on the implications). For an examination of ideologies,

as at the outset of this Chapter, systematic oversights are just relevant as any

successes.

Implications for formal languages

The implications (or, as one says in mathematics, the corollaries) are obtained

from formal investigations by one-liners. Nevertheless, experience shows that very

often the investigations are not demanding (being done independently by different

people), and it takes years before the implications are noted. In Hilbert’s terms,

here the latter are the building (Bau), and the formal work is the scaffolding

(Gerüst).

As a logical implication of the principal point above, where intuitionistic logic

is presented as a better approximation to (the logical features of a dialect, as it

were, of) natural mathematical language, intuitionistic logic becomes a standard

of reference for studies of other parts of other natural languages.

Generally, a look at the sophistication and elegance of intuitionistic logic

during the last half century allows one to see that threshold where its study

began to touch essentials; both regarding its relevance and its limitations. In

the light of intuitionistic logic, other linguistic studies can be viewed realistically,

and not as alleged pioneer work (for which only quite lax standards would be

appropriate).

More particularly, the main limitation of intuitionistic logic is not, contrary

to what is often claimed, the ‘internal’ difficulty of a formalization or of find-

ing adequate (intended or contrived) meanings, but the superiority (again, for

intended or discovered purposes) of paraphrases . (This is quite consistent with

intuitionistic logic being elegant and satisfying, a virtue of all successful jeux

d’esprit.)

Last but not least, intuitionistic logic provides a lively reminder of the fiasco of

natural history , which studies phenomena that strike our untutored attention; in

contrast to the now dominant scientific tradition, which relies heavily on ‘artifi-

cial’ constraints imposed by experiments. Here phenomena are isolated that lend

themselves to rewarding study (as always, by something like available means).

1Incidentally, history repeated here the experience with ramified types during the first decade

of this century, when all sides agreed on complexity (of course), and on the axiom of reducibility

as its chief embarrassment. The latter turned out to be true for cardinal levels; cf. p. 105 of

Chapter 6.
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The last point above is developed at some length in Section 3, after a closer

look at some classes of propositions (and operations on them) for which intu-

itionistic (but not classical) logic holds. In terms used above, they are kinds of

propositions that strike our untutored attention, and incidentally have done so

since Aristotle.2

Conversely, as it were, general considerations on natural languages throw light

(in an obvious, but neglected way) on the so-called creative subject , a central

element of the intuitionistic enterprise (see Section 4).

Intuitionistic rhetoric: some impressions and reminiscences

The presentation above of intuitionistic logic (as a modest correction of syntactic

- that is, purely external - defects in the logistic scheme) may be sounder than the

popular intuitionistic rhetoric, but it is less memorable. The orthodox rhetoric

associates the difference between classical and intuitionistic logic with general

philosophical ‘positions’ on the nature of mathematics (or of the world itself, if

you want to go the whole hog): the key words are objective and subjective. They

are familiar (in fact, hackneyed), and hence all the more memorable (even if one

does not know too well what one remembers).

a) Diverse reactions to the rhetoric

One extreme is Bourbaki’s, reflecting undoubtedly the view of the silent majority:

intuitionistic logic is an historical curiosity (tacitly, to be ignored). This is a view

of the rhetoric, and not of the details of intuitionistic logic, because these never

got known.

An opposite extreme is the dramatic thrill of a conflict , even though already

Georg Lichtengerb put the orthodox ‘issue’ above in perspective in his Aphoris-

men.3 But also the deeper thrill of indignation is to be remembered here, which

was triggereed by the ‘menace’ of intuitionistic logic.

2However, the classification cuts across such familiar grammatical categories as declarative

sentences, etc.
3Kantische Philosophie ist die gewiss wahre Betrachtung, dass wir ja auch so gut etwas

sind als die Gegenstände ausser uns. Wenn also etwas auf uns wirkt, so hängt die Wirkung

nicht allein von den wirkenden Dingen, sondern auch von dem ab, auf welches gewirkt wird . . .

Kantischer Geist . . . die Verhältnisse unseres Wesens . . . gegen die Dinge [,die wir] ausser uns

[nennen,] ausfindig zu machen; das heisst, die Verhältnisse des Subjektiven gegen das Objektive

zu bestimmen. Dieses ist freilich immer der Zweck aller gründlichen Naturforscher gewesen, aber

die Frage ist, ob sie es je so wahrhaft philosophisch angefangen haben wie Herr Kant.

If the parts in square brackets are kept one merely has relations between different parts

of so-called subjective experience; not an equally clean separation. Whatever else wahrhaft

philosophisch may mean, it is pretty certain that no natural scientist has succeeded in spreading

out Kant’s Bethrachtung over 700 pages. In particular, nobody before him has succeeded in

giving comparable weight to Kant’s reminder, a matter not to be despised.
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At another opposite extreme there are studies that can be seen as investigating

the rhetoric, even if the authors had different principal or at least additional

interests (cf. the rest of this section). For example, for philosophy in the sense

above, one may wish to put the rhetoric in its place; or one may wish to see if

anything of any sober interest can be extracted from the rhetoric at all (as I tried

from 1958–1963), or even something wonderful (as vendors of sheaf models seem

to suggest).

b) Gödel’s overt reactions

Whatever Gödel’s research interests may have been, the styles of his early and

later presentations differ sharply, as already mentioned at the beginning of this

Chapter. As elaborated in Section 2, the early notes are concise and cavalier, ap-

parently scoffing at the antics of the rhetoric. Later on, even where he disagreed,

his comments on any kind of traditional philosophical concerns were respectful

to the point of reverence.4

Though later Gödel used crude, hackneyed formulations that had proved to

have popular appeal (and had put me off), in his very early writings he was more

austere. For example, in the introduction to his dissertation [1929] he scoffed

at the Grundlagenstreit (which Einstein had called a cat-and-mouse game), and

soon afterwards, in [1931a], he treated (Hilbert’s) claims that consistency was a

sufficient condition for soundness similarly.

Towards the end of his life he is quoted to have said:

intuitionistic logic is bad for mathematics, but important for founda-

tions.

Before 1970 he never made such unbusinesslike remarks to me (at least, not in

logic). The following twist is in line with this chapter:

Intuitionistic logic has not so far proved to be a useful tool in the

arsenal of mathematics, though it has been a quite rewarding object

of (meta)mathematical analysis (cf. p. 220).

On the other hand, it is a gold mine for foundations in the sense of

Section 1; that is, for examining extreme ideologies.

4In the introduction to his dissertation he used the notion of validity as a matter of course,

and later truth of arithmetic statements. This is very different from a non-constructivist posi-

tion, which makes an issue out of accepting those notions; as indeed Gödel himself did in his

later popular writings. (Chapter 11 contains more about Gödel’s ‘non-constructivism’.)

For the record it may be mentioned that, when Gödel said the word ‘philosophy’ with a trace

of awe in his voice, his wife reminded him of his habit, back in Vienna, of stressing that he was a

mathematician (incidentally, imitating his voice quite successfully). Actually, this habit would

have served a good purpose of keeping philosophical pests at a distance; cf. p. 60 of Chapter 6.
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This was not Gödel’s sense; above all, not towards the end of his life, when he

confided to me that he expected foundations (and philosophy generally) to tell

us what the world is really like; as if science did not have this goal, too.

c) Reactions to Brouwer’s style

At least in the 50’s Brouwer’s personal style, of haranguing his audience for hours,

did not suit Gödel at all. Gödel complained about having to play the host; also,

if I remember correctly, in one of his letters to his mother. Gödel was utterly

bored by Brouwer, unlike several logicians and mathematicians who, being dry

themselves, were buoyed by Brouwer’s probably genuine exuberance (cf. p. 59 of

Chapter 6 on Gödel’s reaction to exuberance).

I never asked if he attended Brouwer’s lectures at Vienna at the end of the

twenties (as he presumably did). If he did, his reaction would certainly not have

been very different.5

I do not suggest that these personal matters could be decisive. But if one’s

confidence in an enterprise like intuitionistic logic is shaky to start with, the

performance of its chief exponent can give one the final push. I have a relevant

anecdote myself.

My first encounters with Brouwer’s style were in the late 40’s, at the first

of his lectures at Cambridge, and then at his (invited) lectures at University

College in London. I was utterly bored by his exaggerations, and asked him after

a lecture if he meant all he said. He quoted George Bernard Shaw on having to

exaggerate to make an impression, in a style that made me feel he had used the

quotation repeatedly. I pointed out, as innocently as I could, that Shaw had not

promised him that he’d make a good impression. Incidentally, Brouwer was not

amused. Apparently, he did not like to be interrupted anyway; fittingly, for a

good solipsist.

Now, I certainly was sceptical of intuitionistic logic before I ever met Brouwer.

For example, I am on record stressing the appeal of the more radical restriction to

quantifier-free (in particular, finitist) schemes, if and when it is appropriate to be

constructive in mathematics at all. And I had never taken seriously the principal

preoccupation of foundations alluded to above, of exhibiting the logical laws

implicit in ordinary reasoning. (Philosophers, who have this preoccupation and

are interested in constructive aspects, feel obliged to be interested in intuitionistic

logic simply because logical words occur in that reasoning.)

Sure, there wasn’t much for Brouwer to spoil in my case. But I do remember

that a phrase I used quite often in later writings, occurred to me during one of

Brouwer’s lectures: those iterated implications make my head spin (as they still

do; just like higher types, their counterpart in logic-free mathematics).6

5Gödel (incidentally, like Brouwer himself) did not change his tastes, and was proud of it;

he called any change of taste: Mangel an beständigen Gefühlen.
6The formal theory of those things, even in ramified set theory, is however quite elegant (as
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10.2 Early Metamathematics of Systems for In-

tuitionistic Logic ([1932a], [1933], [1933b])

In the early 30’s Gödel published a few notes on intuitionistic logic. As is to

be expected, the results are superseded; incidentally, some of them were not de-

manding even at the time, inasmuch as they were found by others independently.

The style is refreshingly concise, almost offhand; in obvious contrast to the

then prevalent heavy rhetoric of intuitionistic logic.

Less trivially, the notes are widely accessible; they (incidentally, like most of

Gödel’s publications) require little mathematical background. The price is high:

the notes provide little indication of any domains where the result might by really

relevant.

His comments, right or wrong, are almost uniformly rewarding as a reliable

record of first impressions (on intuitionistic logic).

Below, most results are stated for the propositional part, which illustrates

very well many properties of intuitionistic logic (cf. the very successful Chapter 1

of Chang and Keisler [1973] for classical logic). In intuitionistic logic the propo-

sitional part becomes particularly rewarding when its quantifiers are included.7

Negative fragments ([1933])

The negative fragment consists of the operators ¬ and ∧ (with ∀ in predicate

logic) applied to negated atomic formulas. By [1933], the same formulas of this

fragment are derivable in (the usual systems of) classical and intuitionistic logic.

Further, there is a quite efficient transformation of any classical derivation into a

(generally different) intuitionistic one (with the same end formula).

Since the negative fragment is a so-called reduction class for the full classical

fragment, the latter is thus embedded in intuitionistic logic (preserving most

relations prominent in metamathematics). However, interpretation and scope of

this kind of embedding are a delicate matter. Above all, there is the question:

What is gained by having an intuitionistic (rather than only a classi-

cal) proof of a negative formula?

Evidently, granted intuitionistic ideology, the answer is trivial: now one has a

valid proof. For philosophy in the sense of Section 1, this answer is worse then

useless. It stops one from even looking for a convincing answer; for example, in

terms of functional interpretations of formal derivations.8

long as one does not think of instances).
7Propositional quantifiers bring little in the classical case. At least, generally; there are some

exceptions in so-called complexity theory.
8Derivations in intuitionistic logic are usually realized by operations that are continuous in

some suitable sense, and so the translation ensures that an arbitrary realization can be replaced
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Gödel’s early notes do not touch the question above. But they raise quite a

number of less delicate points that are still of interest. As already noted, Gödel’s

own answers usually reflect only first impressions; not only his, but (as shown,

for example, by Skolem’s review [1933] of Gödel [1933]) also by distinguished

contemporaries.

a) Differences in meaning

Concerning differences in meaning between classical and intuitionistic operators,

Gödel thought they were mild (gering abweichende Interpretation). This is like

saying that the notions of countable and uncountable structures differ mildly

because the same first order formulas are valid classically for both classes of

structures.

If one wants to dismiss intuitionistic logic, one has to find a less hackneyed

(metamathematical) property than conservation of classical logic over intuitionis-

tic logic for the negative fragment. Incidentally, later Gödel became supersensitive

about differences in meaning (cf. Chapter 12).

b) Proof-theoretical strength

Concerning the scope of his result, Gödel said at the end of his note that it might

fail for so-called impredicative systems . This is doubly wrong.

First, the proof extends almost verbatim to the theory of species and, with

a little care in choosing (among classically equivalent) formulations, also to set

theory .

More subtly, as Gödel had observed himself, the result extends to formal

classical number theory , though the latter isn’t all that predicative either (at least,

in the strict sense). Specifically, an object may be defined by a quantified property

A (that is, for which ∃!xA is derivable) without there being a numeral n for

which A[x/n] is derivable (where numerals are typical of definitions ‘independent

of the totality of all natural numbers’). This is a corollary to the incompleteness

phenomena.

But much more significant is the following oversight. Gödel had swallowed

the then (and, incidentally, still) widespread superstition, mentioned in Section

1, about intuitionistic logic lacking proof-theoretic strength. Accordingly, he

never noticed that this superstition was refuted by his embedding! It was a

bewitchment, but not primarily by (clumsy?) language.

c) (Weak) completeness

As a corollary of the embedding:

by a continuous one. Cf. first-order formulas about real closed fields, where any realization can

be ‘replaced’ by an algebraic one.
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• propositional logic is complete for the negative fragment

• predicate logic is weakly complete (that is, the double negation of complete-

ness holds).

The proof needs nothing beyond the embedding, except the realization that only

very special kinds of propositions and predicates are relevant (cf. Chapter 4).

Yet, the corollary was not observed for a quarter of a century after Gödel’s

note on the embedding. This is fitting for somebody who, like young Gödel,

regards the intended intuitionistic meaning as illegitimate or at least as sterile,

and does not want to sanctify it by proving completeness for it.9

Beyond the negative fragment (optional)

On the principle:

What do they know of England who only England know?

the heart of intuitionistic logic, as already noted in Section 1, is outside the nega-

tive fragment: even intuitionistic rhetoric is dominated by talk about ∃ together

with ∨.

a) Disjunction and existence properties

By now it is fairly generally recognized that these properties are not (or, at least,

not generally) required by intuitionistic validity.

On the formal side, there are systems that do not have them; some were

manufactured for the purpose, some introduced for other purposes were discovered

not to have them.10

More instructive are the following reminders:

9Twenty-five years later Gödel pointed out that Markov’s principle (in note 12, for x ∈ N
and A primitive recursive, possibly with additional parameters) implies the incompleteness of

Heyting’s predicate calculus.
10Friedman has shown that all formal extensions of HA with the numerical disjunction prop-

erty, also have the existence property ; the converse being obvious, since

(A ∨B)↔ ∃x[(x = 0→ A) ∧ (x 6= 0→ B)].

Gödel eventually submitted Friedman’s paper for publication, but only after worrying whether

the result was really completely general. He had to be reminded of the (good) reasons for his

worry! They go back to the widespread belief that the properties in question are needed for

intuitionistic validity. Given this blindspot, there was suspicion that some tacit assumption

had slipped into Friedman’s proof and restricted the systems from the start, thus trivializing

the result. In fact, when the paper was published, several outsiders were ill at ease about the

paper just because of the blindspot. The paper is of particular interest precisely because those

properties are not needed for intuitionistic validity; in short, it is not a mere curiosity, contrary

to the impression conveyed by Nerode and Harrington [1984].
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• In the case of logic, where propositional and predicate symbols are inter-

preted as variables (when a formula is called ‘valid’), A ∨ B is prima facie

comparable to a = 0 ∨ a 6= 0 in number theory. The latter is true for all a,

but neither ∀a(a = 0) nor ∀a(a 6= 0) are.

The obvious difference is that, in the case of general validity (tacitly, for a

wild stock of propositions or of domains and predicates in predicate logic)

too little is known about these things to use their structure in associating

effectively either A or B with each value of the variables. In that case,

either A can be asserted outright or B; cf. the impossibility of separating the

continuum ‘continuously’, where the characteristic property of continuity is

that only very limited information about arguments is used.

• For (arithmetic) formal systems with a specific interpretation, incomplete-

ness intervenes. So, if a closed formula A ∨ B is derivable and the systems

is sound, either A holds or B; but, by incompleteness this does not ensure

that either A is derivable or B. So, if a system has the disjunction prop-

erty, its incompleteness with respect to disjunctions balances (as it were)

its incompleteness with respect to the disjuncts.

Gödel probably noticed quite early the facts just discussed, but I am not sure.

As it happened, I noticed them before I met him, and mentioned them to him

soon afterwards. He took pleasure, as always when somebody else spotted a point

that he liked himself (without, as usual, mentioning an independent discovery).

On several occasions Kleene has referred to a ‘well know logician’, evidently

meaning Gödel, and his doubts the disjunction and existence properties. But he

never elaborated just what was being doubted; neither the general distinction

made above, nor the specific fact that Gödel had doubts about the existence

property for HA (cf. p. 241).

b) Markov’s rule and principle

In connection with (b) on p. 219, Gödel’s result fails for systems with function

symbols , which involve so to speak ‘hidden’ ∃-symbols.11

The most fruitful exception concerns ∀∃-theorems ,12 to which the conservation

result for the negative fragment has been extended, in various ways, over the

11Various forms of the axiom of choice are quite weak when added to systems of intuitionistic

logic, but their negative translations are not (for example, in Spector [1962]).
12The results are also known under the proprietory names:

• Markov’s rule: if ∀x(A ∨ ¬A) and ¬∀x¬A are derivable then so is ∃xA

• Markov’s principle: [∀x(A ∨ ¬A) ∧ ¬∀x¬A]→ ∃xA.

Their validity depends on the kind of predicate A considered; for example, neither holds for A

with lawless parameters.

Incidentally, in accordance with the introduction to Section 2, there is a neat propositional

analogue:
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last 30 years. These theorems are, without exaggeration, typical of algorithmic

propositions , prominent in intuitionistic rhetoric. Once again, the interpretation

of the results is more demanding than the proofs, the latter having often been

found independently by several people.

There were two stages in the interpretation:

• adequacy-in-principle

Following the preoccupation with proof-theoretic strength, in (b) above,

there was emphasis on the ‘adequacy’ of intuitionistic logic; in particular,

for proving that a program is totally defined.13

For classical and intuitionistic systems that ‘correspond’ in a natural and

precise sense, the same programs are provably total. This establishes ade-

quacy of intuitionistic logic as understood in the foundational tradition.

• inadequacy-in-fact

More recently, and in line with the manifesto of Section 1, it was realized

that adequacy in the foundational sense ensures algorithmic inadequacy.

In fact, there are relatively simple proofs d of ∀∃ theorems ∀x∃yR(x, y)

(for example, of definition by transfinite recursion < ε0) that are hard to

unwind. In other words, it is costly to extract or execute a program πd such

that ∀xR(x, πdx): this is algorithmic inadequacy.

More formally, and more neatly, recent proofs of Markov’s rule by Dragalin

and Friedman show quite generally how easily any classical proof of a ∀∃
theorem can be converted into an intuitionistic one; so intuitionistic logic

is algorithmically no better than classical reasoning (for typical algorithmic

problems); cf. Appendix 4 of Kreisel [1985b] for more details.

Above, in accordance with Section 1, the recent efficient transformations:

d 7→ di (of a classical proof of ∀x∃yR or of an intuitionistic proof of ∀x¬∀y¬R
into an intuitionistic proof of ∀x∃yR) are used for a critique of foundational aims.

Within the foundational tradition, the advantage of the recent proofs of

Markov’s rule over earlier proofs would be seen in the use of more elementary

metamathematical methods.

According to Section 1, this traditional view is itself distinctly problematic as

long as there are no realistic doubts about the old methods, restrictions being as

good candidates for justification as extensions.

1. if (P ∨ ¬P ) ∧ (Q ∨ ¬Q) and ¬(¬P ∧ ¬Q) are derivable then so is P ∨Q

2. [(P ∨ ¬P ) ∧ (Q ∨ ¬Q) ∧ ¬(¬P ∧ ¬Q)]→ (P ∨Q)

The principle 2 is not generally valid. Closure under the rule 1 follows by (an ad hoc) use of

the disjunction property or, at the other extreme, by specializing some general fancy proof of

the kind discussed in the next paragraph but one.
13Cf. Section 4 on effective rules for the perfect digital computer, and the distinction between

(equational) programs with number e for which ∀x∃yT (e, x, y) can be proved classically or,

respectively, intuitionistically (here Kleene’s T -predicate is meant).
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This remark brings us to a venerable general worry: a seesaw in interpretations

or shifts of emphasis (Akzentverschiebung in psychoanalytic jargon). Just now,

two stages in the interpretation of closure under Markov’s rule were mentioned.

Where will it all end?

After all, the first interpretation as establishing adequacy (or stability of the

notion of provably total recursive function) had a comforting look of finality

about it.

The problem is genuine, and perfectly well recognized under such code words

as ‘dialectics’. But all these dialectical fireworks draw attention away from the

facts of scientific experience. Time and again interpretations have settled down,

just as expositions of various branches of science quite often reach a stable form;

to be enriched, occasionally, by a more sophisticated vocabulary.

For example, already Goursat’s Cours d’Analyse grouped the elementary parts

of the subject in more or less the current order, except that today we give names

to those groups: theorems valid in all Frechet spaces, topological spaces, metric

spaces and so forth; realizing as it were the biblical idea of paradise (in Genesis

2, 19), where God brought Adam the objects He had created, and Adam gave

them names; presumably, thus coding (his knowledge of) the principal properties

of those objects.

Incidentally, Gödel himself had a horror of shifts of emphasis (which he would

have called ‘shifting one’s ground’, if the question had arisen), and saw in them

a principal reason why philosophy made so little progress. Without exaggera-

tion, it is more likely that attachment to a few (sterile) interpretations and to

problems fundamental for them, has hampered the progress of philosophy than

too many or too imaginative shifts of emphasis. (At least occasionally, the silent

majority’s practice of ignoring those interpretations is tantamount to attachment

by - benevolent - neglect.)

General provability and formal derivability ([1933b])

Gödel’s note [1933b] contains a translation of intuitionistic propositional logic

into one of the systems of (classical) modal logic. The additional operator � is

variously interpreted as some kind of necessity or provability; cf. (c) below.

As it stands, the note does not go far. Gödel had simply focused on one item

in the rhetoric of intuitionistic logic; in particular, on the alleged opposition be-

tween truth and provability or, in modern jargon, between truth and assertability

conditions. He then tried out the first formalism at hand with the smell of that

opposition. Later, the note was refined by others who showed that the translation

was faithful . Gödel’s own result was enough to establish simple metamathemati-

cal properties of intuitionistic logic (for example, the underivability of p ∨ ¬p by

Heyting’s rules).
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But the note is a good peg on which to hand various observations of more

permanent interest.

a) Soundness and incompleteness

Gödel himself used � to improve his original formulation of the first incomplete-

ness theorem. Instead of talk about the Liar, which sounds merely frivolous to

most of us, Gödel here interprets his independent sentence as an instance of the

most natural property in the world, soundness (also called reflection principle):

(�F )⇒ F,

where � is now formal derivability in Principia Mathematica (and related sys-

tems).

This form establishes incompleteness for intuitionistic systems of arithmetic

too, in the sense that some valid sentence is not formally derivable; evidently,

here it is not enough that some sentence be formally independent.

The formulation is also superior to the second incompleteness theorem (about

consistency), in the following respects:

• First, in being applicable to a broader class of systems; for example, not

requiring demonstrable completeness with respect to Σ0
1 sentences.14

• Secondly, by referring directly to (�F )→ F (for F ∈ Π0
1); this is ensured by

consistency (modulo Σ0
1-completeness), and is the only reason for regarding

consistency as sufficient for any kind of soundness.15

14At this point, completeness is not required for all Σ0
1 sentences, but only those expressing

formal derivability. As Visser has pointed out to me, and contrary to (my) first impression: not

all Σ0
1 sentences are demonstrably equivalent to some �A. In fact, for any R (not necessarily

Σ0
1):

if �R→ �⊥ is derivable, then (�A)→ R is not derivable. (10.1)

If it were, by the properties of �:

��A→ �R,

and by the assumption on R:

��A→ �⊥.

Then

��⊥ → �⊥

would follow from

��⊥ → ��A,

which holds generally.

The letter ‘R’ is chosen because (the Σ0
1 version of) Rosser’s sentence satisfies the hypothesis

of 10.1, and thus is not demonstrably (implied by, and in particular) equivalent to �A. But cf.

(e) below.
15This is implicit in Gödel’s [1972a], under the embarrassing heading ‘The best and most
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b) Formal derivability and general provability

In a different vein, Gödel’s note remains of interest because it isolates a property

(in the elementary formalism of modal propositional logic) that distinguishes

between formal derivability and general provability ; most elegantly, by use of

Löb’s theorem. Not only is some instance of �p→ p underivable, but one has

�(�p→ p)→ �p. (10.2)

This is an opposite extreme, as it were, of the property �(�p → p) of general

provability since the latter, together with 10.2, implies �p.

c) Truth and general provability

At least so far, this is a distinction without much difference. Formally, all axioms

of the modal logic considered by Gödel (in other words, all properties of general

provability formulated there) remain valid if ‘�’ is dropped altogether.

Admittedly, ‘�’ cannot generally be introduced (for example, in the conclusion

of p→ p) and preserve validity. But nothing is explicitly formulated about general

provability that does not also hold for truth; in contrast, for example, to:

• 10.2 in (b) above for formal derivability �

• a language with propositional quantifiers, since evidently ¬∀p(p → �p)
holds, but not ¬∀p(p→ p).

In fact, it seems to be open whether anything can be said about general provability

in the language considered that does not hold for truth. Of course this will not

be (mis)interpreted as showing that the two notions have the same meaning! (cf.

(a) on p. 219).

It was a genuine discovery of the 70’s to recognize that formal derivability

admits a neat theory at all. This was philosophical progress, correcting the simple-

minded view that general provability ‘ought’ to be studied.

Incidentally, the kind of general provability meant here is not likely to be

concerned with the outer limits of provability. The latter grow, and so it would

be prima facie inappropriate to apply classical logic to statements containing �
(which is not to say that therefore intuitionistic logic is appropriate!).

general version of the unprovability of consistency in the same system’ (cf. Section 1 of Chapter

9); ‘embarrassing’ because:

– it refers to formal systems, and so is obviously not most general (cf. Mostowski [1952])

– it gives no hint under which conditions this version (that is, (�F ) → F for F ∈ Π0
1) is

equivalent to consistency.

So, far from being best, it is not even good. The best that could be said is that it is the version

most directly relevant to Hilbert’s program, where Π0
1 sentences are privileged. So it should be

noted that, for formal derivability �, (�F )→ F is Π0
1 if F is.



Gödel’s Excursions into Intuitionistic Logic 226

The selection of rewarding phenomena among those that present themselves

to out untutored attention (here, of formal derivability within general provability)

is a recurrent theme of this chapter.

d) A blindspot

This concerns the thoughtless (and by now largely forgotten) literature against

mixing object language and metalanguage; as if the union of two sets were not a

set. Gödel gave sensible examples in [1944] (about every sentence containing a

relational word, and the like), but none is as memorable as the modal language

considered above; particularly, when � is interpreted as formal derivability.

Naturally, as with other unions of two sets (for example, of cabbages and

kings), there is a genuine problem of finding non-trivial laws that hold for the

union (in the particular language considered).

e) Some technical remarks

They concern the elegant theories of formal derivability.

It is an undoubtedly memorable fact that the three axioms expressing:

• the (distinctive) theorem of Löb

• closure under modus ponens

• completeness (at least) for those Σ0
1 sentences that express formal derivabil-

ity

should axiomatize all valid theorems of the language; and uniformly for a broad

class of (formal and some other) systems, at that.

But, at least so far, this axiomatization has not helped to find new memorable

theorems in the language itself comparable, for example, to earlier observations

about the negation of consistency being conservative for Π0
1 sentences (which can

be done in the language for those expressing underivability; cf. note 14).

One would have hoped that, by completeness, a property established for some

cunningly chosen system could then be generalized to all formal systems consid-

ered; as properties of the field of real numbers are generalized to all real closed

fields.

The second technical remark is a reminder. Though cut-free systems have

been recognized to be significant for current logic and, by Kreisel and Takeuti

[1974], to have memorable properties in the language considered, little is known

about formal theories for cut-free derivability.16

16A titbit: without recognizing the general significance of cut-free derivations, von Neumann

is on record as having seen the principal difference between his and Gödel’s proofs of the second

theorem in these terms.
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Infinitely many monadic propositional operators ([1932a])

Gödel’s half-forgotten note [1932a] states that Heyting’s calculus for (¬,∧,∨,→)

does not have an adequate finite truth table. Now, infinite truth tables, such as

Boolean algebras, are just as good or better (for example for decision procedures,

the most prominent purpose of truth tables fifty years ago). Here there is no

particular virtue in a finite truth table for the whole language; success requires

an efficient way of first finding one for any given formula, and then evaluating it.

So the result stated in [1932a] is obsolete.

Of more lasting interest is a step in the proof that provides a sequence An of

pairwise (formally) inequivalent formulas with just one propositional variable p.

In other words, there are infinitely many monadic operators : p 7→ An. Or, more

pedantically, they are different for all classes of propositions and interpretations

of the operators (¬,∧,∨,→) for which the calculus is complete.

As a memorable corollary, there is a sharp contrast with the classical case

where there are just four monadic operators: the two constants > and ⊥, p and

¬p.
Viewed as above, Gödel’s proof suggests immediately the operator ◦:

p 7−→
∨
{An : An not equivalent to >};

cf. Goad [1978] on the wide spectrum of meanings for which ◦ is not equivalent

to any operator built up (finitely) from ¬,∧,∨,→.

The remainder of this subsection attempts to give some perspective on new

propositional operators; in line with the manifesto in Section 1, not only as a

topic of logical research, but for examining ideologies. Naturally, we begin with

what is known.

a) New propositional fragments

By Wojtylak [1984], the fragment (¬,∧,∨,→, ◦) has a respectable metamathe-

matical theory. Wojtylak [1982] provides references to other work on monadic

operators of intuitionistic logic (defined by infinitary conjunctions and disjunc-

tions, or by propositional quantification). As far as mere legitimacy is concerned,

(¬,∧,∨,→) is seen to be just one fragment of (the propositional part of) intu-

itionistic logic among many others.

The result of de Jongh [1980] on the unbounded totality of binary operators

is naturally interpreted by a metaphor from set theory. While a fragment is a

subject for research (to be compared to a set which can be grasped as a unity),

its complement (that is, the totality of new operators) is not.

b) Experience in classical logic (for a proper perspective)

The functional completeness of its propositional part is a quite exceptional phe-

nomenon in classical logic. Thus, already when applied to sets and relations, the
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question arises which properties distinguish the Boolean operations (say, inter-

section and complementation) among all operations on the collection of subsets

of a given set (or some Cartesian power of it); cf. Craig’s attempt in [1965].

The obvious parallel in intuitionistic logic comes up in the so-called topological

interpretations, with operations on open sets.

The following points, concerning classical predicate logic, are in keeping with

the familiar fact that the propositional part of intuitionistic logic exhibits many

of the formal complexities of classical predicate logic. So the reference below to

so-called abstract model theory is not dragged in out of the blue.17

The best known result here is Lindstrom’s maximality property of the classi-

cal fragment (¬,∧,∀), to be compared to attempts of sanctifying the fragment

(¬,∧,∨,→) in intuitionistic logic. The comedy involved has been described often

enough; perhaps, most recently in Kreisel [1985]. It need not be repeated here,

except perhaps for this. Relevant extensions of experience such as considering

new quantifiers or fragments of Lω1ω (and remembering those extensions!) have

been more rewarding than the kind of brooding common in the so-called theory

of meaning.18

Last but not least, there is a broad parallel suggested by the (general) view

of intuitionistic logic [∞] as being concerned with a class of propositions beyond

those of classical logic; following Aristotle (cf. Metaphysics Γ, 5, 1009a, 16–22

or Γ, 7, 1012a, 21–24). Incidentally, a compact formal expression of this view

is found in old-fashioned systems of intuitionistic logic, with modus ponens as

its only rule of inference, and literally a subset of the axioms for classical logic.

This then evidently allows for more interpretations with larger ranges for the

(propositional) variables.

c) Propositions and numbers: some parallels (for orientation)

Leaving aside pretentious drivel about the origin of ‘the’ concept of number (at

least till somebody has as imaginative an idea, mutatis mutandis, as Darwin),

one may think quite reasonably of various kinds of numbers that populated the

intellectual life of the 18th or 19th century; including mildly embarrassing names

like ‘real’ and ‘imaginary’, resurrected in Hilbert’s terminology of real and ideal

elements. The traditional perennials about existence, subsistence or what have

you of those numbers simply draw attention away from the work that has been

done about them. Nothing comparably imaginative has so far been done with

propositions. So, to convey the parallel in question, it is best to begin with some

reminders about numbers; specifically, about successful choices of particular kinds

17Incidentally, another fact of experience, namely how quickly abstract model theory rose

and fell in the 70’s, is in keeping with (a) above about it not being a subject at all.
18For examples of such sterile brooding readers may look at Goldfarb [1979] on the meaning

of the quantifier in the 20’s and, in case of intuitionistic logic, at Sundholm [1983] and Weinstein

[1983].
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of numbers.

Most familiar is the series of so-called extensions (of the number system)

by means of closure properties required for solving larger classes of problems;

for example, from natural to whole to rational to algebraic to real and complex

numbers, and so forth. ‘So-called’ because, if numbers are thought of in connec-

tion with length (as they were in Euclid, not counting), something like the real

numbers comes very early; to be paraphrased later in terms of suitable sets or

sequences of rational numbers.

So to speak in the opposite direction, there was work on limits to such ‘ex-

tensions’ ; for example, in terms of division algebras with the magic numbers (for

the dimensions): 1, 2, 4, 8. Success depends on a proper selection of the proper-

ties (here, of + and ×) to be preserved in the extension. Before bandying about

words like ‘fundamental’, it is a salutary exercise to remember situations where

it is relevant to think of commutative division algebras (over the reals) with a√
−1, and where the geometric representation (x, y) with the familiar laws for +

and × provides effective knowledge.

Trivially, there are many more kinds of numbers than can possibly be used

for effective knowledge. Selection requires thought on what we need to ‘do’ with

them. Certainly, one thing we ‘do’ with them is to operate on them; in short, the

choice of new operations (that is, functions) is an integral part of the extension.

Briefly,

we should not introduce new numbers without doing anything new

with them.

For example, the passage from the algebraic to all real numbers would simply

not be exploited well if all operations were still required to be algebraic (even in

the weak sense of having algebraic values at algebraic arguments). This would

exclude the exponential and trigonometric functions (since, for example, 0 is the

only algebraic α for which sinα is algebraic).

In the parallel meant above, the collection of logical operations (¬,∧,∨,→)

corresponds to some familiar collection of, say, rational or algebraic functions (or

literally to number-theoretic functions mod 2 : 1− x, x · y, etc.).

For the view of intuitionistic logic here considered, as concerning larger classes

of propositions (for example, about choice sequences), the parallel has an evident

implication:

If we cannot think of anything to do with new operators, the chances

are that: either there is not much of interest to be done with the ex-

tended class of propositions, or we have not even begun to understand

the possibilities.

Informed readers will remember here that till the 30’s most logicians had not even

begun to understand the possibilities of intuitionistic logic beyond finitist math-

ematics . For philosophy in the sense of Section 1 this fact is relevant, but also



Gödel’s Excursions into Intuitionistic Logic 230

the obvious attraction of sanctifying the familiar fragment (parallel to the use of

Lindstrom’s theorem for classical predicate logic discussed above); cf. Schroeder-

Heister [1984] on ‘completeness’ and ‘strength’ of the fragment. But the meta-

mathematical properties involved in those notions are so hackneyed that they do

not constitute any test of (the relevance of) the fragment; rather an expression

of attachment; cf. p. 223.

d) Another view of intuitionistic logic: proof analysis by abstraction

Here one does not think of a literal generalization (in particular, of a larger domain

of objects), but views an axiomatic analysis as identifying abstract properties

that are relevant to given theorems (about a specific domain); with additional

information as pay-off for eliminating some axioms.

For example, many elementary results about the rationals use only the field

properties of Q (not even that Q is a number field). Then any Σ1-theorem ∃xA
allows a sharpening to∨

1≤i≤N A[x/ti], for ti depending rationally on the parameters of A.

If the proof of ∃xA uses only intuitionistic logic, a further sharpening is possible:

a single t will do (N = 1); recall (a) on p. 220

But after nearly thirty years of experience with this kind of search for addi-

tional information, also by others using sheaf-theoretic models (a fancy way of

talking about the continuous dependence of y on x in combinations like ∀x∃y), I

am sceptical. At least so far, one has fallen between two stools:

• On the one hand, when this sort of additional information is really needed,

intuitionistic logic is not refined enough (recall p. 222 on its algorithmic

inadequacy).

And, to come from the sublime to the ridiculous, there is nothing in the or-

dinary mathematical tradition to stop one from recording such information

if one has it.

• On the other hand, the ritual of intuitionistic logic prevents one from testing

its ideology which, as emphasized at the outset, requires not only explicit

definitions, but a constructive proof that they do their job.

So (by comparison, and for the time being) the view of intuitionistic logic as

dealing with a larger class of propositions seems more rewarding; at least, for the

following object lessons in Section 1.
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10.3 Natural Languages (With Some Reminders

on Natural History)

By Section 1, intuitionistic logic is a successful study of (the logical features of)

a popular dialect of natural mathematical language.

Relevance in terms of survival value

Reference to natural mathematical language (for assessing methods of studying

other linguistic phenomena) is at any rate plausible; provided of course it is

remembered that such things as the language of texts on axiomatic set theory in

the 50’s are artifacts.

Perhaps the single most significant point here is survival value since, by experi-

ence, this has been a successful guide in biological studies (and natural languages

are certainly a biological phenomenon). Judged by survival value, mathemati-

cal language (at least, of elementary mathematics) is more convincing than talk

about cats doing something or other on mats.

Universal semantical schemes and small arsenals of mean-

ings

As to the success of intuitionistic logic, it applies not only to the syntactic aspects

adumbrated in Section 1, but also to various meanings (associated with them or,

more precisely, appropriate) in various situations . As above, a couple of provisoes

have to be remembered.

At the present stage, a realistic measure of success is to

find relatively few meanings that are appropriate in relatively many

situations;

in contrast to talk about a necessarily amorphous family of meanings.19 Some of

these meanings can be thought of as corresponding to other external ‘parameters’

besides the words used; such as the tone of voice, expression of face, gestures.

But readers should beware of the (most simpleminded, and) superficial ‘al-

ternative’ to the small arsenals of meanings above, namely the introduction of

an additional variable for situations (or, for that matter, tone of voice and the

other external parameters mentioned earlier). This remains empty unless some-

thing substantial can be said about the situations that arise; cf. p. 225 on general

provability, or the so-called abstract theory of constructions (which introduces a

variable for proofs but nothing less banal about them than the relation between a

19All this does not exclude the possibility of much more sharply defined specifications in

completely different terms; comparable to those in molecular biology of family likenesses (such

as the Bourbons’ nose, or Habsburgs’ hare lip), so central to Schrodinger’s What is Life.
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proof and the assertion proved [∞]). This is as sterile as the business of situations

twenty years later.

The weakness of those general schemes is underlined by the occasional partic-

ular problems that do benefit from attention to proofs (for example, q- and fp-

realizability) or to situations (in which, for example, a counterfactual conditional

is satisfied). This is so because the schemes do not help spot those problems,

but may distract from the fact that the latter are the exception rather than the

rule.20

General lessons from intuitionistic logic

It is an illusion (surely, not wilful deception) to present studies on natural lan-

guages as pioneer work, to which correspondingly lax standards are to be ap-

plied. This simply overlooks the fact that, realistically speaking, such subjects

as intuitionistic logic are also studies of natural languages, and their level of

sophistication provides more appropriate standards.

More specifically, experience in intuitionistic logic underlines the need for

selecting rewarding aspects of linguistic phenomena. For example, such classes

of propositions as considered in intuitionistic logic certainly turn up in natural

languages, and many more besides. But (by (c) on p. 228) already those classes

are suspect, as being too diffuse for rewarding theory.

This point is elaborated below in the broader context of natural history su-

perseded by the scientific tradition, after the next brief digression for general

perspective.

Natural and logical sense: a neglected distinction

The most obvious instance is that of closure under the usual logical operations .

If the propositions p and q have logical sense, so has p ∨ q; in classical logic in

terms of truth values, in intuitionistic logic in terms of proof conditions. But, as

a matter of simple experience, this is not so for natural sense; for example if

20Digression about the skills needed to use (any) theory . No phenomenon that presents itself

naturaliter (in contrast to experiments, which are set up to exclude forces not treated in the

theory at issue) comes with a label telling us which theory (if any) applies or, equivalently,

which forces dominate it. So, clearly, some skill beyond knowledge of the theory itself is

required; even in the case of planetary astronomy Tycho Brahe had to shift from the observed

(also called ‘apparent’) motion to its ‘correction’ (for parallax), since only the latter lends itself

to theoretical analysis.

It may be common to assume that linguistic phenomena (and others of the so-called human

sciences) are very different in this respect, because we have conscious beings speak to us (and

not dumb planets). But, if common, it is simply a common piece of scientific immaturity.

Viewed in these terms, the business of situations is a step back from the small arsenal of

meanings above. The latter reduce the additional skills to a proper choice from that arsenal,

while mere mention of ‘situations’ says nothing about their particular aspects that may be

relevant.



Gödel’s Excursions into Intuitionistic Logic 233

p = this glass is 5 cm high and q = this glass is transparent.

Trivially, combinations of propositions that have logical but not natural sense can

be given logical sense (even uniquely). The question is: at what price?

As in (c) on p. 228, experience in mathematics seems relevant; only now propo-

sitions are not compared to numbers, but to sets of points ; as in the topological

interpretation on p. 228. Logical sense concerns brutal existence; natural sense,

for sets of points , involves geometry. It is a common place that not all sets of

points are geometrically significant (cf. note 18 of Chapter 8).

Readers may try out other parallels; for example, between logical sense and

measurability in the sense of Riemann or Lebesgue. Incidentally, geometric sense

is then not altogether irrelevant to logical sense! If sets topologically equivalent

to a disc are regarded as geometrically significant, more can be said about their

measure-theoretic properties than about the class of all measurable sets.

Though the word ‘natural sense’ is not used in the literature I know, the idea

is clearly implicit in a good deal of work on partial predicates and functions.21

Natural history

This is barely mentioned nowadays, except by historians of science. Yet it presents

a style of thought (or, as one says, an ideal of understanding) which was once

dominant, and still has great appeal. It relies on regularities in nature that strike

our untutored attention, most often in the visual sphere. The world we see is

determined by forms and colours; we recognize things in this way. For centuries,

zoology, botany, but also mineralogy consisted of painstaking descriptions, and

later classifications; always in these terms.

It is a fact that forms and colours are particularly unrewarding (or, at least,

demanding) subjects of theoretical study. For example, the relation between (the

chemical composition of) a thing and its colour involves quantum theory. Data

that strike us less or not at all (for example, mass and its centre of gravity or

electric charge, not to speak of atomic structure) are more amenable theoretically

or, as one says, are physically more important. Obviously, one can use a metaphor

like Plato’s cave for almost anything; but it is not too farfetched to see it as a

21Gödel himself touches questions of sense towards the end of the introduction to [1940],

when explaining the relation between abstract set theory and the cumulative theory of types:

if an atomic formula (that is, a formula a ∈ b) has no type-theoretic sense, it is declared to be

‘abstractly’ false, and compound formulas are then evaluated in the usual way.

What he does not touch is where the convention goes wrong; this happens if p has no sense,

t is the truth set, and so neither p ∈ t nor ¬p ∈ t has natural sense, but nevertheless the

‘adequacy’ condition of Tarski

(¬p) ∈ t⇔ ¬(p ∈ t)

is imposed. Evidently, if such simple and familiar points are overlooked in the manufacture

of paradoxes, there is good reason to doubt Gödel’s high expectations from a solution of the

paradoxes [∞].
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reminder of the need for looking at informative data, and not just those (shadows)

that happen to dance before one’s eyes.

As for appeal, it is just wonderful if, for a particular question, those things in

front of us are enough; cf. also the simple-minded cult of the black box , and the

more inspired view of the world advocated by René Thom.

It is not claimed here that there are no areas of experience where the tradition

of natural history is effective. What is disturbing (at least, to me) is the scientific

innocence of the linguistic fraternity. By and large, they simply do not have a clue

about the relation between their style and a well known (if obsolete) tradition.

A similar kind of innocence is behind the Faith in using mathematical methods.

It is not this literary form which distinguishes natural history from the nat-

ural sciences, but the selection of phenomena treated. After all, there are some

pretty mathematical formulas in natural history, from d’Arcy Thompson to René

Thom. On the other hand early chemistry, in its search for chemically pure sub-

stances (and eventually culminating in the atomic view of matter), used very

little mathematics.

Last but not least, natural history has an up-hill fight; it competes with our

(immense) ordinary knowledge of just those aspects of the phenomena that it

considers; for example, in the case of linguistics , with the works of literate people

who have a genuine feeling for language.

Concerning possible uses for computer languages ,22 p. 222 on algorithmic in-

adequacy provides an obvious warning. More generally, failure on two counts is

to be expected:

• bad science, because human and digital data processing (‘hidden’ in black

boxes) are different

22On a couple of occasions Gödel mentioned computer languages, presumably after the subject

had come up in conversations with others. It has been reported (for example, by Zemanek)

that Gödel more or less advocated predicate calculus as a programming language. He never

suggested anything like that to me. But he did say (of course, expressing a mere feeling, without

any basis in experience of the subject) that programming was Sache der Geschicklichkeit (in

other words, a skill), and not likely to benefit from theory at all; let alone, logical theory. The

word ‘skill’ jars, since practically everything needs some skill in his sense.

Actually, one can be more specific here, by reference to Prolog (short for: programming in

logic). It is successful; not because it uses predicate logic, but because it does not use all of it.

This is verified by studies of various attempts to add negation (to the Horn sentences used).

Be that as it may, Gödel certainly did not expect programming to benefit from theoretical

studies of natural languages; or, more pedantically, from realistic theories. A bad theory (so to

speak, how der kleine Moritz imagines natural languages to function) may well contain a bright

idea that has some use for some program for some hardware for some computational problem.

As somebody once said in a paper on the nervous system, with a far-fetched theory of r.e.m.

dreams:

if Nature does not use our idea, perhaps it can be used somewhere in AI .
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• bad technology, because details of the hardware are not exploited efficiently.

While ten years ago such references to hardware were dismissed as red herrings,

today it is (almost) universally recognized that a good use of many processors

working in parallel requires new programs. Parodying p. 231 about ‘situations’,

one could introduce a variable for ‘hardware’ instead of looking for a small ar-

senal of programming languages which is suitable for relatively many varieties

of hardware (incorporating subroutines), and for relatively many computational

problems.

10.4 Effective Rules ([1934a], [1936], [1972a])

For the present it is enough to consider rules that define functions whose argu-

ments and values are natural numbers (or even only numerals n built from a

constant 0 and a successor function s; or other words over a finite alphabet, such

as formulas or derivations). The case of so-called higher types is reserved for the

next section.

The topic of effective rules occupied Gödel throughout his life; with increased

sophistication, at least in his formulations (except of course for the lapses in the

70’s). Thus (to judge by footnote 18 of Church [1936]) in the mid 30’s Gödel was

simply ill at ease with loose talk about effectiveness, while thirty years later he

was ready to make explicit distinctions (cf. Section 3 of Chapter 9). Today we

can be more explicit still.

Effectiveness involves reference to the systems for which a rule is meant; or,

perhaps more correctly, to our idea(lization)s of them; as always, preferably with

a few kinds of such systems being adequate to many situations. A by now familiar,

particularly elementary kind is (our idea of) a so-called real time digital computer.

Gödel’s own interests lay elsewhere.

They will be examined below under three headings:

1. equational rules

2. computation in formal systems

3. rules effective for the perfect mathematician (a particular subspecies is per-

fect in intuitionistic eyes, and called ‘creative subject’ in the literature).

It should be noted straightaway that intuitionistic logic enters in a quite trivial

way into 1 and 2, via the difference between classical and intuitionistic proofs of

the ∀∃ theorems expressing the termination of formal computation procedures;

cf. p. 221.

But 3 is absolutely pivotal for anything remotely like the original intuitionis-

tic enterprise; not, as is sometimes thought, a marginal aberration of the aging

Brouwer. As a corollary, any reservations about the business of the creative

subject put ipso facto anything like the intended enterprise in question.
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Equational rules ([1934a])

Define a, say, monadic function f by use of auxiliary functions ~g = (g1, . . . , gp)

and numerical variables ~x = (x1, . . . , xq) (together with the constant 0, and the

successor s) in the form of a finite system of equations E(f,~g, ~x).

One familiar sense of E ‘determining’ a function f requires only that, for some

auxiliary functions ~g, f is the unique solution of the system E:

∃!f∃~g ∀~xE(f,~g, ~x). (10.3)

This is generally not enough to compute a value f(n) = m from finitely many

substitution instances of E(f,~g, ~x); that is, from a conjunction∧
0≤i≤N E(f,~g,~xi) (10.4)

for a suitable N (depending on n), where a denotes the numeral with value a,

and ~xi an appropriate sequence of numerals in place of ~x.

For example, if E is

f(x) = 2f(s(x)),

only the constant function f(x) = 0 satisfies ∀xE, where x ∈ ω and f : ω → ω.

But each finite set of substitution instances∧
0≤x≤N

E(f, x)

is satisfied by any f such that f(x) = 2M−x for M ≥ N .

One thus considers only effective systems E for which, for every n, a value

f(n) = m can be derived from finitely many substitution instances (10.3 ensures

that such a value in uniquely determined):

∀n∃m∃N∃~x1 · · · ∃~xN∀f ∀~g [10.4 ⇒ f(n) = m]. (10.5)

This notion describes the class of functions computable from equations without

reference to any computation rules:23

• Gödel [1934a] appealed to a more or less arbitrary calculus to derive f(n) =

m from 10.4.

• For the tradition of so-called informal rigour, it is more satisfactory to note

that (for given n,m,N, ~x1, . . . , ~xN)

∀f ∀~g [10.4 ⇒ f(n) = m] (10.6)

is relatively easily decidable, and to construct accordingly an equation cal-

culus that is demonstrably complete for it; cf. Kreisel and Tait [1961], with

refinements in Robinson [1968] and Statman [1977] (concerning, respec-

tively, the use of monadic ~g and quantitative properties of the calculus).

23Instead of ‘computable’, finitely determined recommends itself; cf. ‘validity’ in logic in place

of ‘provability’.
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Since the requirement 10.5 on effective E is Π0
2 in 10.624 and 10.6 is decidable,

the f defined by such E are recursive (pedantically, for some other usual definition

of ‘recursive’). The converse is read off from Kleene’s normal form. Thus one has

an equivalent presentation of recursiveness .

There are also refinements of this kind of equivalence, in the literature on

(what has been called) Church’s superthesis; cf. Kreisel [1971]. Gödel himself

avoided such matters (from his point of view, wisely). Once one begins to look at

particular sets of rules, one inevitably sees how little one knows of the totality of

possible rules (or even of what one wants to know about them); no matter how

nicely the particular sets considered behave.

Formal computability ([1936])

We consider now computability by use of so-called entscheidungsdefinite (or, more

simply, invariant) expressions; originally, with respect to Principia Mathematica

and related systems.

For (characteristic functions of) predicates, the expressions considered are

formulas F with a single free variable such that, for each n ∈ ω,

either F (n) is derivable or ¬F (n) is derivable,

with an obvious variant for functions (from ω to ω).

Two novelties, compared to the previous approach, should be noted:

• Before the 30’s, formal rules of inference were thought of primarily as means

for checking (rather than generating) derivations; let alone, computations.

Understandably, since the procedure involved in this kind of formal com-

putation is quite unrealistic: all derivations are thought of as laid out in

ω-order, and the computation consists in looking for the first derivation

whose end formula is F (n) or ¬F (n).

• Compared to the specific equation calculus above, the notion of formal

computation has a glamorously general look ; even if one considers only

(consistent) finite (but otherwise arbitrary) extensions of some given formal

system like Principia.

Gödel’s afterthought in [1936] on absoluteness should be viewed in this light.

The general idea is an Aha-Erlebnis for all of us;25 and the property is most

24The string of quantifiers ∃N∃~x1 · · · ∃~xN (with variable length N + 1) is actually a single

existential quantifier over the set of (codes of) finite sequences of possible values for ~x.
25Indeed, so is the idea of speed-up by use of new ‘abstract’ axioms (in the logical sense of

involving higher types). But Gödel’s early formulation in [1936] is simply clumsy.

For one thing, the speed-up is illustrated most simply by any undecided formula (∀x ∈
ω)[f(x) = 0]. Computation of f according to its defining equation is slow. If, by use of new

axioms, we know (∀x ∈ ω)[f(x) = 0], we have the unsurpassably fast computation: x 7→ 0.
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impressive, by comparison with the embarrassing drivel about the ‘evidence’ for

Church’s Thesis allegedly provided by the equivalence between different defini-

tions of effectiveness; without a thought of any safeguard against a systematic

oversight.26 (If each juror has a chance 1/2 of judging correctly, why are verdicts

wrong more often than once in 212 cases?)

In contrast, absoluteness constitutes a striking closure property of the class

of formally computable functions; actually, not only for finite extensions (of, say,

Principia), but for all those enumerated by functions that are invariantly defined

in a system already recognized as formal. This ‘raw’ attraction of absoluteness

goes well with the use made of it later by Tarski to transfer recursive undecid-

ability results to large classes of systems; cf. Tarski, Mostowski and Robinson

[1953].

On the other hand, Gödel let his enthusiasm run away with him when he

claimed (in [1936] and, especially, [1946]), that formal computability was unique

among epistemologically interesting notions by being absolute (in the sense of

being independent of the language considered). What else is the word functional

completeness (as applied, for example, to classical propositional logic) about?27

Of course, in conversation Gödel agreed that he had had a blind spot. But he is

not alone in having forgotten the great impression (at least, on logically sensitive

people) when we first learn such an easy and convincing answer to the question:

What is a propositional operator?

but cf. p. 189 of Chapter 8 on worries about this answer being so easy that it is

liable to be singular.

The perfect mathematician ([1972a])

This is usually presented as an immensely subtle idea, and rules effective for

that animal (but, tacitly, not for digital computers) are sought in the outermost

reaches of Higher Thought.

In fact, practically none of the rules used every day (and thus stated in some

natural language) is literally effective for any digital computer. The discovery that

The more elaborate formal exercises of [1936] fall between two stools; they are superfluous

for the general point, and they do not help to discover realistic possibilities of speed-up. (Of

course, the exercises are more ‘weighty’ than the aside above.)
26The drivel about ‘evidence’ for Church’s Thesis obscures a genuine virtue of having many

equivalent definitions or, more simply, descriptions of the same notion (whether or not they

define the originally intended matter). When solving problems about the notion, use can be

made of knowledge of the different concepts involved in those descriptions; cf. also p. 40 of

Chapter 4. It is an object of research to discover which descriptions suit particular problems,

even though it may well be that other descriptions tend to force themselves on us. Intensional

logic, which is preoccupied with those other descriptions, is thus not an illusion, but often

simply sterile.
27Cf. the subsection on p. 227 for the contrast in the case of intuitionistic logic.
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many can be replaced by different rules so as still to define the same function

(generally, without preserving the computation processes even approximately)

was the sensation of formalization a hundred years ago, and is an essential ingre-

dient of the computer business. Programmers are paid, sometimes handsomely,

to find suitable replacements.

The idea that those rules in natural language including natural mathematical

language are defective for brutal reasons, such as lack of precision or some other

unreliability, is sheer dogma. Of course, they are not formally precise. But how

adequate is this idea(lization) of precision for a realistic view of reliability?28

The problem is elsewhere, and readers of this chapter have been prepared for

it:

What of interest can be said about the perfect mathematician?

The choice of concepts or ‘language’ in which this information is to be expressed

is part of the problem.

Here is some background, necessarily less banal than the business of cats on

mats on p. 231, including some of Gödel’s own ideas. Reminiscences of conversa-

tion with him on and around the topic are at the end of Chapter 9.

a) The intuitionistic version

For the intuitionistic idea of the perfect mathematician, the so-called creative

subject , the following type of non-mechanical rule has become standard since the

end of the 60’s: the map from

formal derivations d of existential formulas ∃xA (possibly with param-

eters) built up according to some intuitionistically interpreted (possi-

bly formal) systems

to

terms t such that t defines the object (or family of objects) x satisfying

A, supplied by the proof d represented by d.

Certainly, no digital computer accepts this rule as it stands, since it requires an

understanding of the maps d 7→ d and d 7→ x, supplied by the interpretation of the

system considered. Digital computers do not handle this kind of understanding

or interpretation. So, already the question:

is the rule equivalent to some computer program: d 7→ t?

goes beyond the domain of digital computing. Twenty-five years ago it was

conjectured that some such rule might define a non-recursive function.

28Cf. p. 210 of Chapter 9 for a striking petitio principii in this connection.
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There is an obvious formal parallel to the question above, involving the arsenal

of functional and realizability interpretations of various systems of intuitionistic

logic, but also transformations in the style of cut elimination. Each such operation

O supplies a map µO : d 7→ t though, of course, not generally a definition of the

object supplied by d itself (for example, if t is simply the smallest numeral n for

which A[x/n] is derivable in the system considered).

Here it was conjectured (twenty-five years ago) that most of the µO are (even)

extensionally different , because the various interpretations are well known to sat-

isfy laws not generally valid for intuitionistic logic; for example, the interpretation

discussed in the next section satisfies Markov’s rule, recursive realizability satisfies

Church’s Thesis, and so forth.

However, those conjectures were refuted during the 70’s. The operations µO
were shown to be equivalent even up to conversion, mainly by Mints. Further-

more, the map: d 7→ d could be examined by use of so-called theories of abstract

constructions (of little use for anything else), with the result that the µO were

seen to be equivalent to the rule stated above in terms of the (intended) intu-

itionistic interpretation. This is the kind of safeguard against the possibility of

a systematic error that is lacking in the so-called evidence for Church’s Thesis

considered on p. 238.

Perhaps the single most memorable corollary to all this prima facie satisfac-

tory work (on the stability, as it were, of the idea of the perfect mathematician)

is this. Once one looks closely at the map: d 7→ t, one sees how marginal the la-

belg4map algorithmic aspects of proofs are; mathematically quite trivial changes

in d lead to algorithmically wild changes in t, cf. Kreisel [1985b]. This fact is

clearly embarrassing for several variants of the intuitionistic ideology. From their

point of view it supports Gödel’s worry (reported on p. 237) about leaving well

enough alone; but not for philosophy in the sense of Section 1.

b) Gödel’s own version

Evidently, (a) imposes what appear to be gratuitous restrictions on the perfect

mathematician, by requiring perfection in intuitionistic eyes.

In [1972a] (cf. Section 3 of Chapter 9) Gödel goes to the opposite extreme

(under the motto: Wenn schon, denn schon, i.e. you might as well be hanged for

a sheep as for a lamb), and considers rules of the form:

compute the characteristic function of `2 An for a suitable sequence

of formulas An (where `2 means second order validity, and `2 An is

to be decided by suitable axioms of infinity).

Gödel assumes familiarity with the subject, relying (in effect, though not in so

many words) that St. Thomas’ adaequatio et rei et intellectu would furnish the

required axioms.
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Gödel enlarges on that adaequatio, by pointing out that the intellect grows

(when familiarizing itself with the material at issue). However, this does not add

much; not that it grows, but how is the crux.

It is doubtful whether our knowledge of the possibilities of the mathematical

imagination has reached the threshold for pursuing any idea(lization) of the per-

fect mathematician. Or, to put it in current jargon, there is nothing sufficiently

specific that we know about biological data processing (nothing like Planck’s dis-

covery about black body radiation in another domain) to have confidence in such

ideas.

The same applies, of course, to earlier jeux d’esprit in this area, now known

as autonomous progressions .

10.5 Effective Rules of Finite Type

This matter was the principal topic of my conversation with Gödel, which is

reflected in the style of the present section.

Gödel’s own account in October 1955 of early background

In the first 20 minutes of our first meeting, in October 1955, he sketched some

formal work he had done in the forties, and later incorporated in the so-called

Dialectica interpretation (with a total shift of emphasis).

He was familiar with my own interest, also since the forties, in what I called

functional interpretations . They rely on a kind of ∃∀ normal form where (in

contrast to Skolem’s normal forms) the quantifiers need range only over recursive

objects, albeit of higher type.

Gödel’s interest in the forties, as described to me (but also in his notes for a

lecture at Yale on the occasion of his honorary doctorate), was quite different: he

wanted to fill the superficially principal gap left by his negative translation (cf.

p. 221). In his own words in his notes in the Nachlass, he wanted to find out to

what extent intuitionistic logic was really constructive. He dropped the project

after he learnt of recursive realizability , that Kleene found soon afterwards.

Today the relations between the two schemes are summarized by the general

facts about the existence property in (a) on p. 220, extended in the points below

(which, for convenience, repeat some of the general material).

a) ∃-theorems

By the end of the 30’s Gödel had doubts not only about the existence property

of Heyting’s formal arithmetic HA (cf. p. 221), but this:

Does a formal derivation d in HA of ∃xA ensure some term td, defining
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a number xd, such that xd satisfies A (without A[x/td] being neces-

sarily derivable in HA)?

This was the main problem that the material in the 40’s that later developed

into the Dialectica interpretation was said to solve (in the relevant notes for the

lecture at Yale).

As originally presented, neither of Gödel’s and Kleene’s schemes achieves quite

what Gödel intended. For any derivation d of ∃xA in the system HA of arithmetic

considered, both obtain terms tGd and tKd (where Kleene’s tKd is simply the number

of a partial recursive function depending on the parameters of ∃xA) such that:

• A[x/tGd ] holds for the Dialectica interpretation

• A[x/tKd ] holds for the realizability interpretation

• neither holds necessarily for the interpretation intended by Brouwer and

Heyting.

In particular, the original work left open whether (for appropriate translations

of tGd and tKd into the language of arithmetic) A[x/tGD] or A[x/tKd ] or both are

formally derivable, which would of course ensure that they hold for the intended

meaning.

Incidentally, the formulation above gives a concrete purpose to Gödel’s warn-

ing in [1958] against confusing his interpretation and the orthodox meaning. The

warning serves also, at least indirectly, as a correction of his blunder about eine

gering abweichende Interpretation in [1933] (cf. p. 219).

b) A variant of realizability

Without emphasizing the issue in (a), Kleene soon found a variant (so-called

q-realizability , with associated terms tqKd ) such that:

• A[x/tqKd ] is not only q-realized, but formally derivable.

The translation of tqKd into arithmetic language depends essentially on the par-

ticular coding of partial recursive functions used (in q-realization).

Gödel’s scheme has not been modified equally simply, least of all by him (who

saw in such work only Kleinarbeit, even when done by others).

Since the work reported in (a) on p. 239 (on the stability of ∃-theorems, i.e.

on the equivalence of the various operators µO), the whole matter is moot:

tG, tKd , t
qK
d and many more are equal up to conversion

(tacitly, by suitable rules, and for suitable numberings of the partial recursive

functions in the case of realizabilities).
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c) Provably total recursive functions

Gödels’ scheme remains more convenient than Kleene’s if not merely some real-

ization of provable ∃xA, but an idea of the class of so- called provably (total)

recursive functions is wanted. Gödel’s schemata for primitive recursive functions

provide an elegant description of the class of recursive functions provably total

in Heyting’s (or classical) arithmetic, and thus a mathematically memorable (not

only accessible) instance of a formally undecided ∀∃ sentence (expressing the

computability of primitive recursive terms).

However, at least so far, the description of the class (of recursive functions

provably total in arithmetic) extracted from Gentzen’s analysis (in terms of α-

recursion for α < ε0) has been far more useful, for combinatorial and number-

theoretic problems about rapidly growing bounding functions, than Gödel’s scheme

of higher types.

Less trivially, there seems to be a genuine obstacle to modifying Kleene’s

scheme for the purpose: the use of partial functions (as opposed to using all total

recursive functions) is necessary for realizing the laws of intuitionistic logic, even

of its propositional part. Where does one find suitable proper subclasses of the

class of partial recursive functions, retaining their most highly advertized virtue:

a universal element that enumerates the subclass from a few initial functions?29

d) Realizability for negative formulas

A most striking difference between Gödel’s scheme and Kleene’s realizability con-

cerns negative formulas F− (except for ∀ formulas, which are left uninterpreted

by both):

• The version of realizability on p. 214 of Troelstra [1973] has, literally, noth-

ing as the only possible realization for any such F−, and so extracts no

information (except realizability); neither from F− alone, nor from a proof

of F−.

• In contrast, for elementary A and B, Gödel’s scheme treats the (incidentally,

very common) negative formulas

∀xA→ ∀y¬∀z¬B and ∀y¬∀x∀z¬(A→ B)

like

∀y∃x∃z(A→ B),

29All this applies to functions and functionals of lowest type. Now, Kleene’s scheme S9 ex-

presses auto- enumeration, but S1-S9 do not generate all partial recursive objects when applied

to the principal classes of operations of higher type; for example, the countable functionals

(beyond the lowest type).

Other, comparably elusive differences between the lowest and higher types will come up on

p. 252, in connection with bar recursion.
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thus contributing to a principal concern of mathematics: of unwinding

prima facie non-constructive proofs of ∀∃ theorems.

Naturally, often the additional information supplied by Gödel’s scheme is not

needed; for example, for many crude provability results or, as mentioned repeat-

edly in this chapter, for ∃-theorems (of intuitionistic systems). Then realizability

is more efficient than Gödel’s scheme or the no-counterexample interpretation (let

alone, proof-theoretic methods).

e) Interpreting terms of higher type

Gödel made a point of warning me that he had not given any thought to the

objects meant by (his) terms of finite type. The only interpretation he had in

mind was formal , as computation rules obtained when the equations are read

from left to right. Gödel had the impression, in 1955, that ordinals < ε0 could be

assigned to those terms so that each computation step reduced the ordinal. But

this was done only much later by Howard (first in [1970], then more elegantly in

[1980]).

For reference in Chapter 12, concerning a comedy of errors: at the time I did

not listen to Gödel’s warning, since I knew how I was going to understand his

terms. The key words are: recursiveness and continuity, the two pillars of the

constructive part (as understood in the mathematical tradition) of algebra and

topology.

Gödel’s scepticism in 1955 about logic

A few minutes after that first conversation on p. 241, we found ourselves waiting

for the Institute bus that took us to the other end of Princeton where Gödel (and,

at the time, also I) lived. He added a caveat emptor about the

Aussichtslosigkeit (that is, hopelessness) of doing anything decisive in

foundations by means of mathematical logic

generally, and by use of the ideas he had just talked about in particular. (One

might trick intuitionists into believing that his scheme was constructive.)

Again I did not pay much attention, in accordance with my expectations

of foundations already at that time. In 1954, at a congress, I had described

foundational ‘issues’ (there, in connection with finitist proofs) by:

one man’s meat is another man’s poison.30

And soon I was going to describe (my) interests in such matters as a ‘calculated

risk’. My reservations differed from the more familiar variety, since I saw no logical

30From the French: poisson (fish), poison (poison).
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defects such as intrinsic lack of precision (cf. the introduction to Benacerraf and

Putnam [1964] for a different formulation of an equivalent view of my interests).

As for decisiveness, there are two complementary points:

• Unlike Gödel I never expected foundations to do better than ordinary science

with questions like (his favorite):

What is the world really like?

• What I have always expected (and continue to expect) from logic is a cor-

rection of various naive conceptions or aims , partly enshrined in the foun-

dational literature.

There need be nothing indecisive about such corrections; for example, to

take a familiar parallel, about correcting the aim of astrology to predict

human destiny from the position of the planets (rather than predict their

orbits).

In fact, no ordinary scientific result can be quite as decisive or final; even

if it is right as it stands, there are usually better new questions.

And when the refuted aims have popular appeal, as they often do, the

refutations have a wide market; cf. the peroration of Chapter 6.

I believe, the main lesson I have learnt in the last thirty years (incidentally,

after having tried the opposite scheme of pursuing pedantic distinctions, as in

the appendices of Kreisel and Krivine [1966]) is this:

Remarkably often, the defects are so elementary that a bon mot can

be the appropriate literary form of a refutation.

In such cases (not in all! Cf. the end of Chapter 6) the ritual of (the literary

forms of) mathematical logic simply distorts the ‘epistemological situation’.

Principal progress during the years 1955–1957

All the results listed below are stated in (or are corollaries of) Troelstra’s com-

pendium [1973]. But a selection is needed to present [1958] as the gem it still

seems (to me). By p. 254, this is not Gödel’s own selection.

a) Hereditarily effective and continuous operations

Various classes of functions of finite types were described, that both fit the gen-

eral idea of constructivity and satisfy the axioms in [1958] for primitive recursive

functions. No ‘reduction’ is involved, since those functions are defined in arith-

metic terms; for example, in the case of HEO , or of the countable functions, in
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the language of second order arithmetic. But the axioms needed to prove closure

under primitive recursion are conservative over first order arithmetic.

This kind of work was enough for various formal independence results , and for

describing the functions and functionals defined by Gödel’s schemata in familiar,

ordinal-theoretic terms.

b) Extension of first-order arithmetic to all finite orders

To avoid the impression of absurdity created by using functions of finite type

to interpret mere arithmetic (parallel to proving consistency of ω-induction by

ε0-induction),31 the emphasis was shifted from Heyting’s arithmetic HA in [1958]

to HAω, its by now familiar extension to finite types, with or without various

forms of choice (cf. note 11).

The most memorable result, described as ‘principal’ from the start, is the

classical equivalence

A⇔ ∃s∀tA0 (10.7)

where A is formulated in the fragment (¬,∧,∀), ∃s∀tA0 is its interpretation

according to Gödel’s scheme, s and t range over the countable functionals, and s

may be required to be recursive. The proof uses so little that it applies literally

also to arithmetic A, with s and t ranging over HEO .

c) Inadequacies

Practically all crude questions about (b) were settled. For example, functions

s and t of bounded type are not enough. Also, for A in the language of second

order arithmetic, 10.7 need not hold when s and t range over HEO ; nor when

s is defined by Kleene’s schemata S1-S9, and t ranges (as required originally by

Kleene) over arbitrary functions.32

d) Sharpenings and omissions

As to theorems A of some formal system or other, two points were clearly recog-

nized:

• By general theory, 10.7 can be sharpened; the range of s can be restricted

to some r.e. subset of the range in 10.7 (cf. the subsection on p. 251).

31Cf. p. 272 of Chapter 12 for an example of that impression, and its cure, in the case of

Spector.
32Berger has observed that, since the schemata define dense bases for each countable type,

10.7 can be sharpened: for countable t, an s is defined by S1-S9 applied to countable arguments.

Actually, S9 can here be replaced by µ-recursion (in A0).
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• By inspection of mathematical practice, most analytic theorems can be

proved in ‘weak’ systems that are conservative over arithmetic anyway, and

interpretable by use of primitive recursive functions together with a few

auxiliaries (such as the so-called fan theorem functional in (c) below).

Admittedly, no really striking new uses of the interpretation were found, compara-

ble to those that the (formally much less appealing) no-counterexample interpre-

tation, which uses only functionals of lowest type, had provided in the preceding

decade.

Principal omission: by a fluke, HRO (which is the analogue to HEO when

extensionality is dropped) was overlooked.

I reported on these matters in 1957, both at Cornell and at Amsterdam. There

was evident, fairly general interest.

Gödel’s last full-fledged paper ([1958])

In 1958 an opportunity presented itself to Gödel to give his own exposition,

including second thought about the work he had started in the forties.

• In effect, but perhaps also by intention, there was remarkably little overlap

with what I had said in my talks and with what others (for example, Kleene)

had said about realizability.

• In particular, and in contrast to Gödel’s original work, a main stress was

on a primitive notion of effective rule of finite type without extensionality.

Under Church’s Thesis this reduces to HRO , the object that had been

overlooked.

The opportunity referred to above was a Festschrift for Bernays’ 70th birth-

day. Bernays had been associated with Hilbert’s program on finitist foundations,

and it might be added that Hilbert himself had already introduced schemata of

which Gödel’s are a special case; incidentally, without discussion, as if they were

obviously finitist in the sense he meant.33 It is hard to think of a better stage for

33Cf. the sketch for a collection of sets that satisfy CH, at the end of Hilbert [1926]. Hilbert’s

ground type consists of all constructive (not only the finite) ordinals.

Presumably, the subject of finitist rules (and possibly even of proofs) would become a little

more rewarding, if the following distinction adumbrated in [1958] were pursued (cf. the progress

in Section 4, by distinguishing between three kinds of systems for which rules are intended to

be effective).

The finitist literature refers both to finiteness and to visualization (Anschauung):

• The idea of a hereditary finite operation (without restriction on proofs) is developed

successfully in recursion theory.

• The idea of visualization derives from geometry, and is (without exaggeration) at the op-

posite extreme from finite (tacitly, discrete) mathematics; at least, as these things present

themselves. (This may change when more is known about human data processing.)
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Gödel’s exposition.

We shall here concentrate on the principal novelty, both absolutely speaking,

and to me personally when I saw [1958]: the primitive notion of effective rule

mentioned above. Gödel had never breathed a word to me about his project of

exploiting such a notion.

In retrospect, Gödel’s step is seen to fit very well his philosophy in set theory,

where he expected wonders from (working with and) brooding over the (primi-

tive) notion: ‘subset-of’. Similar wonders could then be expected in the area of

constructive mathematics, from similar attention to the notion of effective rule.

And the emphasis on higher types here fits his faith in higher types in set theory

expressed in axioms of infinity (cf. Section 10 of Chapter 6).

As to the formal details of [1958], most of them are superseded by the later

literature, which had to correct some oversights.

For the record, I still find the paper agreeable to read. When this came up in

conversation, Gödel replied: No wonder (kein Kunststück), there are no proofs.

But this alone would not make a gem.

Today, after more than 25 years, I regard [1958] as a most artistic package of

a jumble of ideas, some of which will now be explained.

a) Asymmetry between rules and (the ranges of) their arguments

One feature that Gödel emphasized increasingly in conversations during the

decade after [1958] appeared, was the possibility of exploiting the amorphous

character (or, if preferred, our ignorance) of the totality of all effective rules .

More fully, a rule is accepted only if it is understood to be well defined for all

effective arguments (of appropriate type), even though little is (or can be) known

about this possibly growing totality. This situation is only superficially paradox-

ical, to adapt the wording of footnote 5 of [1958] about propositional and other

logical operators (for the class of propositions) meant by Brouwer and Heyting.

There are two obvious illustrations from related areas.

First, ignorance-in-principle is an effective source of knowledge in the theory

of lawless sequences:

• ¬∀x¬[α(x) = 0] is an immediate consequence of α being given by a finite

initial segment.

• Also ∀α∀β[∀x(αx = βx) ∨ ¬∀x(αx = βx)] is seen this way; α and β are

either given as identical objects, or it is impossible to prove ∀x(αx = βx).

Secondly, literal models of the asymmetry envisaged34 are used in:

34The existence of these literal models in familiar terms evidently reduces one’s expectations

of miracles from the primitive notion; cf. note 21.
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• That version of recursive analysis which requires its recursive operations to

be defined on arbitrary reals , and not only (in the Russian tradition) on the

recursive reals.

• Closer to home, the recursively countable functions of type σ → τ are

defined on arbitrary countable functions of type σ (cf. also (c) on p. 254 on

the relevance of all this to bar recursion).

It will not have escaped the reader’s notice that quantifier free systems like

Gödel’s T in [1958] have two obvious, obviously different interpretations: the

variables may range over:

• all effective rules

• the rules that have been recognized-in-principle as effective (in other words,

over the closure under various elementary operations of the class of those

that have been literally recognized as effective).

A more delicate point concerning the constants will come up in (b) below.

b) Definitional and demonstrable equality between terms, possibly con-

taining parameters

There is no mystery here; at least, for those familiar with the literature on normal

forms (and equality up to renaming variables) in the λ-calculus: definitional

equality is equality of normal forms of those λx. fx and λx. gx that happen to

have normal forms. Though

λx. gx = λx. gx ⇒ ∀x(fx = gx),

the converse is not generally valid (except, of course, in specially concocted ex-

tensional models).

The transfer of those ideas to typed systems like T is evident, especially if

one goes back to Gödel’s original formal interpretation (in (e) on p. 244) in terms

of computation rules. This minimal definitional equality relation for models of T

was examined by Tait [1967]. Here every term has a normal form (in contrast to

the λ-calculus), and the equality relation is recursive (but not provably recursive

in formal arithmetic). Tait’s proof uses the machinery of arithmetic (and more)

in his definition of hereditary computability, and not inspection of any primitive

notion of effective rule of finite type;35 cf. Gödel’s expectations from the primitive

notion of effective rules [∞].

The literature seems to have neglected non-minimal equality relations , where

the constants are interpreted by rules that permit other reduction or computation

35In sharp contrast to sets where, for example, Zermelo’s axioms are verified on sight for all

limit ordinals from a description of segments of the cumulative hierarchy.
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steps besides those explicitly included among the (equational) axioms (when read

as computation rules from left to right). This is the ‘delicate point’ at the end of

(a).

In [1958] Gödel mentions definitional equality between terms of type different

from 0, but does not get to grips with it. The context of [1958], a functional

interpretation of arithmetic, is not very suitable: the interpretation does not

contain such equations. Of course, the matter arises if HAω is extended by

equations with a corresponding functional interpretation [∞].

In contrast, axioms of extensionality can be formulated already in the old

context, but require rather different functionals for their interpretation; in a sense

made precise by Howard [1973].

A further contrast is found in this area between the axiom and the rule of

extensionality, the latter being satisfied by the primitive recursive functions and

many other such classes.

c) The Fan Theorem functional

The last sentence of [1958] states, without comment, that the fan theorem is

interpretable. This requires the so-called fan theorem functional; or, more simply,

a modulus of continuity for all functionals Φ of lowest type, that is (0→ 0)→ 0,

applied to all functions bounded by f (of type 0→ 0).

The fan theorem is certainly evidently interpretable by a recursively countable

functional, and equally evidently not interpretable in HEO or HRO . An argument

is needed to show that it is not interpretable by an object generated from the

countable functionals by Kleene’s schemata S1-S9; cf. Gandy and Hyland [1977].

However, it is not at all evident that the fan theorem is interpreted by an

effective rule of the kind considered in [1958]; equivalently: whether there is an

effective modulus of uniform continuity for effective Φ and f . Under Church’s

Thesis it is not so interpretable, since then the effective rules are those of HRO .

In terms of (a) above, ignorance could be a source of knowledge. Specifically,

if we know sufficiently little about the totality of effective functions (of type

0 → 0) then Φ can be recognized to be effective only if it is also recognized to

be continuous (for the product topology). And then we also have a modulus of

uniform continuity.36

A good deal more was said on related matters in conversations with Gödel.

But it is better left for the digression in the next subsection.

36The schemata of Gödel’s T are not explicitly required to be continuous (nor to be applied

only to continuous arguments). But, for any primitive recursive Φ, there is also a primitive

recursive MΦ of type (0 → 0) → 0 that satisfies demonstrably the requirements of a uniform

modulus of continuity

∀g∀h{[∀x ≤MΦ(f)][g(x) = h(x)] ∧ ∀x[g(x) ≤ f(x) ∧ h(x) ≤ f(x))]⇒ Φ(g) = Φ(h).
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What was not said, partly because I had not cottoned on to the parallel

between the primitive notions of set and of effective rule, is more interesting.

As matters stand, the parallel holds out little hope for effective rules. The last

twenty years have shown that our knowledge of sets in segments of the cumulative

hierarchy (for example, as expressed in current axioms of set theory) is simply

more rewarding when applied to suitably defined structures, in particular models

of set theory that satisfy additional conditions. We literally know more about

the constructible sets: they demonstrably satisfy the current axioms, but also

GCH while we do not know whether the cumulative hierarchy satisfies CH, nor

even whether their second order version decides GCH; cf. p. 98 of Chapter 6.

Exaggerating very little, the primitive notion of set serves to answer the question

(if one insists on an answer):

from which stock of sets are the constructible sets defined?

Practically, most problems about the constructible sets are not very sensitive to

the answer (but depend only on the stock satisfying certain closure conditions).

But if one wants to commit oneself to some universe of objects, the primitive

notion gives one the means at a small price.37

Similarly, in the constructive theory of functionals we have Brouwer’s induc-

tive definitions of the type (0 → 0) → 0; cf. the introduction and the appendix

of Kreisel and Troelstra [1970].

From which stock of functions of that type are they selected?

Gödel’s primitive notion advertized in [1958] is a good choice. In conclusion, there

is no mystery about definitional equality ; but there also is not much prospect

for any spectacular uses of that notion.

A sequel to [1958] by Spector

Bar recursion (or, more soberly, recursion on well -founded trees) became promi-

nent when Spector [1962] used it to describe the provably recursive functions and

functionals of lowest type for formal classical analysis. This sharpens not only

10.7 on p. 246, but also note 32 (since Spector’s bar recursion is definable by

S1-S9 on the countable functionals).

As will be recalled, Spector’s version formally extends Brouwer’s original bar

recursion for decidable trees labelled by objects of a decidable species (for exam-

ple, the natural numbers) to trees labelled by objects of higher type.

• At the time, the burning question was: Which objects?

• Starting with Gödel’s [1958], the answer is: effective rules.38

37This responds to the worries at the end of Appendix 2A of Kreisel and Krivine [1966].
38As is obvious from my footnotes to Spector [1962], written some three years after [1958]

had appeared, I had remained attached to the countable functionals (as labels).
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Independently of all ideology of intuitionistic logic concerning the evidence

of bar recursion (for example, in Gödel’s banter reported on Chapter 12 [∞]),

there is a question of ‘raw’ interest (broached already in note 29 about differences

between functionals of lowest and higher types; specifically, between (0→ 0)→ 0

and (0 → σ) → 0 for σ 6= 0). More pedantically, it concerns contexts in which

rewarding differences occur, and concepts in terms of which they can be stated.

There is certainly no lack of candidates! For example:

• 0 → 0 is not isomorphic to 0 (unless the functions 0 → 0 considered are

effectively enumerable), while 0→ σ is isomorphic to σ.

• Decidability of the type 0 (in other words, of natural numbers) is not prob-

lematic, while that of σ is.

• Perhaps most pertinent to what Brouwer first called a proof of the bar

theorem, is the possibility of an inductive definition of the species of well-

founded trees labelled by objects of type 0 (and, admittedly, 0→ 0) at the

end of the previous subsection; that species is demonstrably closed with

respect to all operations that come to mind.

The literal analogue is simply not true for higher types; at the very least, one

would need some new idea about the notion of freely chosen path involved

in well-foundedness.

This digression will now be concluded by odd formal facts that seem to me

relevant here, as I mentioned to Gödel when the occasion arose. He explicitly

rejected them; it might be added: fully in accordance with his expectations of

wonders to be seen by looking at the primitive notion of effective rule (undis-

tracted by the Kleinarbeit that goes into (a)-(c) below).39

39Provided non-ideological differences between functionals of lowest and higher types are

formulated imaginatively, their examination need not be mere Kleinarbeit.

On the contrary, it could provide an exception to a general philosophical insight (and would

thus be an insight, too). Specifically, at least usually, formal differences between instances of

the same scheme (differing in logical or type complexity) falsify the epistemological situation.

For example, as proof theory has shown, instances of induction of different logical complexity

have different proof-theoretic strengths, even though they all derive their evidence from one

and the same principle. Without exaggeration, the whole matter of proof-theoretic strength is

an artifact with respect to the evidence of proofs.

However, while generally valid, the insight leaves open the possibility of discovering situations

where the formal differences are relevant, in which case the latter may fairly be said to have

helped in the discovery.

In the particular cases of bar induction of lowest and all finite types, we start with the formal

knowledge of their different proof-theoretic strengths; roughly, of Π1
1-CA and Π1

∞-CA. There is

a chance of a reinterpretation in non-ideological terms [∞]; by reference to proofs (which are

constructions, even when the proofs are non-constructive). In any case, some reinterpretation

is needed to get away from the so-called consistency problem of classical analysis, which rests

on highly dubious doubts.
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a) Brouwer’s fully analyzed proofs, and cut-free proofs

This item concerns the passage to higher types in the case of the bar theorem.

Realistically speaking, Brouwer’s idea of a fully analysed proof (without detour

via complicated terms) of a Π1
1 theorem (specifically, of ∀α∃xR(α, x) for decidable

R) is not compelling when taken literally: if R is α[α(0)] = x then ∀α∃xR(α, x)

is evident without further analysis, but not fully analysed in his sense.

However, there is a perfectly good formal analogue, Gentzen’s notion of (in-

finitary) cut-free proof (without detour via logically complicated formulas); at

least one of its versions specializes to Brouwer’s notions for the proofs consid-

ered. As already Aristotle knew, proofs using modus ponens need not be further

‘analysed’ (by cut elimination) to be convincing.

When passing to higher types ασ (of type 0→ σ) the question is:

• What is now the appropriate notion of cut-free proof?

• Do at least the usual principles admit cut elimination?

If the ασ are defined objects (say, neighbourhood functions α of countable ασ,

thus satisfying a suitable - analytic - condition Cσ) then it seems open whether

a cut-free proof of

∀α[Cσ(α)→ ∃xR(α, x)]

will generally look at all like Brouwer’s fully analysed proofs.

Here it is understood that the ‘usual’ principles are meant to include not only

continuity, but also other mathematical axioms; especially those that concern the

generally lawlike data for the choice sequences considered.

In summary, of course the formal analogues do not settle Brouwer’s claims

about arbitrary (convincing) proofs. But (in view of experience in set theory

already cited) arbitrary proofs of ∀α∃xR(ασ, x) may be less rewarding. Trivially,

all this applies mutatis mutandis to the primitive notion of effective rule and

defined models more or less inspired by it;40 cf. the end of the previous subsection

[∞].

b) Howard’s neglected alternative to Spector’s proof

This item concerns a surely noteworthy (if not often noted) aspect of Spector’s

proof, quite independent of agonizing re-appraisals of the principles used. The

proof has obvious mathematical wit, and so there is surely something behind it.

True enough; but certainly not the result stated.

For example, by Howard and Kreisel [1966], classical analysis has easy refor-

mulations in terms of bar induction; specifically:

40Recently, several more models have appeared (for example, by Bezem [1985]) that seem

rewarding, even if not necessarily for the properties generally emphasized (by logicians). After

all, Gödel’s incompleteness theorem is rewarding enough, though certainly not for what logicians

consider to be the great ‘mathematical’ discovery of the fix-point ‘lemma’.
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• of type 0 for analysis without any choice

• of type 1 for analysis with the axiom of dependent choices.

Howard [1968] has given straightforward interpretations of those reformula-

tions by use of bar recursion of Spector’s type.

So, it is a problem to discover a context where the combinatorial wit in Spec-

tor’s original proof is actually relevant.

c) Gödel’s oversight concerning the role of higher types

This last item again involves a parallel with (Gödel’s experience in) set theory,41

but a more formal oversight. It is the role of higher types, with the first few steps

illustrated already in [1958]: from primitive recursive functions of lowest type to

all finite types (equivalently, in ordinal-theoretic terms, from ω to ε0). There are

two points:

• For the general context of intuitionistic logic, as already mentioned, (this

kind of) proof theoretic strength goes with algorithmic inadequacy.

• But even judged only for such strength, the parallel is deceptive, because in

set theory higher types derive their strength from closure under the power

set construction; for example, without the latter, models of replacement

(which pushes up the types) can be defined by use of comprehension.

In the context of intuitionistic logic (that Gödel had in mind), one does not

have any analogue for the power set.

Traditional philosophy ([1972])

‘Not with a bang’ describes Gödel’s last attempt (in [1972]) to squeeze out results

of cosmic significance from [1958]. Two droplets will convey the flavour.

a) Analytic axioms and proofs

In [1972] proofs represented in T are claimed to be analytic in the sense of Kant;

in other words, they

use only (properties of) concepts implicit in those used to state the

theorem proved.

41For ‘straight’ limitations of higher types in intuitionistic logic (not relying on analogies

with set theory), cf. the autonomous progression in Problem 3 of Kreisel [1968], and Friedman’s

models in Π1
1-CA that serve to solve it.
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Now, proofs of Π0
1 theorems, expressing the insolubility of diophantine equations,

demonstrably may contain (equational) axioms for primitive recursive functions

of unbounded type. If the latter are implicit in + and ×, what is not?

In [1972a] axioms (of infinity in set theory) are explicitly regarded as analytic

in the sense of

‘explicating’ the concepts occurring in them;

as if not every property of a concept contributed to its ‘explication’. In this

case logical deductions from analytic axioms (for example, of the insolubility of a

diophantine equation from axioms of infinity), are not generally analytic proofs

(respecting purity of method).

Overlooking the distinction between analytic proofs and analytic axioms may

have been a mere oversight. The philosophical sin (of omission) is that Gödel

does not even begin to examine the relevance of Kant’s ideal or, more generally,

his question:

How are proofs possible?

cf. p. 64 of Chapter 6. Incidentally, as has often been observed, Kant’s ethereal

ideal corresponds to the venerable tradition of purity of method in mathematics

(cf. p. 64 of Chapter 6; in agriculture such purity is required already in the Old

Testament, Deutoronomy 22, 9-11).

The last paragraph is not merely irreverent. It suggests an examination of

Kant’s ideal by reference to the whole body of mathematical experience, where

purity of method has been pursued since the Greeks, and its defects especially,

the notorious loss of Beziehungsreichtum, have become apparent. Without ex-

aggeration, the problem is to discover corners where the principle of purity of

method is appropriate (for example, in connection with the extraction of algo-

rithmic information from proofs of ∀∃ theorems); cf. the marginal character of

algorithmic aspects of proofs [∞].

b) Demonstrable and definitional equality

This item involves, I believe, only an oversight.

In [1972] Gödel suggests that some kind of reduction is achieved by the decid-

ability of definitional equality. Though the words are vague, the meaning seems

plain enough. He apparently forgot that the converse to

λx. fx = λx. gx ⇒ ∀x(fx = gx)

is not valid; cf. (b) on p. 249. But even if this particular impression is wrong, the

following is surely generally right.

The wish to draw conclusions of cosmic significance is as sure a way to make

mistakes as the kind of lack of interest that Chapter 12 sees behind the error in

the last sentence of [1933a] about adding equality to the so-called Gödel case of

∀n∃2∀m formulas.
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A final, sober view of [1958]

Even without considering all the work that refers to it, [1958] is a memorable

reminder, using a minimum of scientific experience, of the potential of higher types

in constructive mathematics . As its title stresses, this aspect had been neglected.

Of course, the no-counterexample interpretation also used higher types (and a

paper, Kreisel [1952], was devoted to the need for something of this sort). But

the role is not nearly as memorable as in the scheme of [1958], where the only

formal difference from ordinary primitive recursive arithmetic is the use of higher

types.

In line with all this, computability of (even the purely numerical) terms is not

derivable in formal arithmetic. Since the rules of T are memorable (not merely

accessible), [1958] provides a memorable formally independent sentence in the

mathematics of computation, comparable to soundness in metamathematics, or

Gentzen’s ε0-induction in the area of infinite descent. And it is useful, if regarded

as a warning concerning the algorithmic inefficiency of such schemes as that of

[1958]; cf. p. 244 on Gödel’s concern in 1955 about ‘tricking’ intuitionists. Admit-

tedly, it is not as memorable as his second theorem in the branch of mathematics

called ‘metamathematics’.

Whatever its scientific value, the notion of effective rule with definitional

equality is so close to the surface of our logical subconscious that, as a matter

of logical hygiene, it is salutary to take a look at it. [1958], so it still seems to

me, helps us do this in a remarkably painless way (compared, for example, to

generalized recursion theory of the seventies; cf. Kreisel [1985a]).



Chapter 11

Constructive Aspects of Gödel’s

Main Results

Gödel gave increasing attention to intuitionistic (or, more precisely, to the even

stricter finitistic) requirements on metamathematical methods; specifically, in

connection with:

1. the completeness of predicate logic

2. the incompleteness of formal systems for arithmetic

3. the consistency of the axiom of choice and the generalized continuum hy-

pothesis relative to the usual axioms of set theory.

Our concern here is only the extent to which those requirements are reward-

ing for 1–3; both in the long run, and for short term effects. The latter were

always Gödel’s main concern, at least, in conversations on titles of papers and

on terminology (cf. Chapter 13). It is beyond the scope of this chapter to go

into the delicate relations between the facts of Gödel’s style here considered, and

his later views or memories of them. Of course, those relations are fascinating,

and may even be rewarding when treated in an inspired way. But only the most

coarse-minded among us could be tempted to speculate on such matters in terms

of ordinary knowledge above them (cf. the end of Chapter 4).

In summary:

• Gödel’s discussion of 1 (especially in his dissertation) was remarkably pen-

etrating and explicit, albeit a little clumsy by current standards.

• He was much less explicit about 2 at the start, but added pertinent im-

provements later (cf. Chapter 10 [∞]).

• He was almost perversely pointless with 3, with comic consequences (related

on p. 104 of Chapter 6).
0Originally published in Gödel remembered , Weingartner and Schmettered eds., Bibliopolis,

1987, pp. 121–131, as Appendix I to ‘Gödel’s excursions into intuitionistic logic’.

257
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11.1 Completeness

The question of completeness of (Frege’s) rules for predicate logic is as old as the

hills; it asks whether, for all logical formulas F ,

(|= F ) ⇒ (` F ) (11.1)

where |= means (classical) validity in arbitrary structures, and ` means formal

derivability .

Brouwer raised it in his dissertation, without however stopping to paraphrase

11.1 so that it becomes even a candidate for being settled by methods of intu-

itionistic logic. Hilbert’s paraphrase is described on p. 81 of Chapter 6.

In the introduction to his dissertation Gödel considers

(` F ) ∨ ¬(|= F ), (11.2)

which is classically equivalent to 11.1, and derives decidability of ` from any

proof of (tacitly, a paraphrase of) 11.2 in intuitionistic logic.1 It was a brave

attempt. But the intuitionistically invalid switch from 11.1 to 11.2 would exclude

also intuitionistic completeness proofs for undecidable systems of intuitionistic

logic (such as the negative fragment, cf. p. 218 of Chapter 10).

However, by Chapter 6 [∞], the idea above is enough to derive decidability

of ` for Hilbert’s paraphrase of |= F .

An historical titbit: an objection not foreseen in the dis-

sertation

According to Mostowski, in a conversation in Tarski’s presence, the latter and his

students had no confidence in Gödel’s paper when they saw the relevant issue of

the Monatshefte in Warsaw. Why? Gödel had not formally defined validity!

Anybody who is surprised by this, knows ipso facto that he simply has no

feeling for the subject. I had the good luck, more than a quarter of a century

later, to experience the similar reactions of clever people to completeness proofs

for intuitionistic logic in the fifties, and incompleteness proofs in the sixties,

1Here the logical symbols ∨ and ¬ mean disjunction and negation of intuitionistic logic, and

|= F is ‘soundly’ paraphrased by, say, Val (F ); in particular,

(` F ) ⇒ Val (F ).

The basic observation here is that, ` being r.e., a proof of

(` F ) ∨ ¬Val (F )

in intuitionistic logic would provide, for each F , an object dF which is a proof of either ` F
(i.e. a formal derivation of F , a decidable matter) or of ¬Val (F ) and hence, by soundness, of

¬ ` F .
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also without formal definition of (here, intuitionistic) validity (key word: basis

results).

Of course, when Tarski met Gödel in Vienna soon afterwards, confidence was

established. In my case, personal explanations (sometimes repeated, verbatim,

half a dozen times) also helped to establish confidence (of some people); cf. also

Chapter 4.

Evolution of a perspective on the completeness theorem

On p. 61 of Chapter 6 we have discussed the relative glamour that the complete-

ness theorem had when it appeared, and would have had 50 years earlier. Here

we do not go into such a general perspective, but only into aspects to which in-

tuitionistic logic is relevant; both for the wider meaning of ‘constructive’ in the

sense of definable, and the stricter intuitionistic (or even finitist) sense concerned

with provability.2 A broader perspective, especially on paraphrases, is developed

in Chapter 4.

First, Gödel’s result that the most popular paraphrase of completeness around

1930 (Hilbert’s) is false, has some anti-ideological consequences. The require-

ments of intuitionistic logic are sterile in connection with 11.1 because the con-

jectures, expressed by paraphrases that come to mind easily, are simply false. In

the meantime there has been a shift of emphasis, in terms of (the absence of)

recursive models3 [∞].

Secondly, the particular rules set down by Frege are simply not adequate for

the study of delicate aspects of logical proofs; consequently, claims about such

aspects in terms of those particular rules are merely pretentious (cf. p. 92 of

Chapter 6). So it is (philosophical!) progress to discover questions with answers

that are less out of proportion with what we know of logical phenomena. The shift

in the previous paragraph leads to such questions in terms of recursion-theoretic

complexity of models and, more generally, of sets of valid theorems. This is a

definability property, and thus a concern of intuitionistic logic, at least in the

weak sense.

Thirdly, as a refinement, we have that distinctions between total and semiva-

lutations and their recursion-theoretic complexities lead to analysis of different

proofs of completeness.

Bibliographical remarks

Shoenfield’s term ‘characterization’ instead of ‘completeness’ theorem is obviously

intended to convey the second point, but has not caught on.

2The two senses were elaborated at the beginning of Chapter 10.
3Incidentally, the Chapter related to this subject was written without my having seen Gödel’s

dissertation [∞]. And, as usual, he never told me about his anticipation of the general idea 30

years earlier.
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Hasenjäger [1953] used the third point to analyse convincing differences be-

tween Gödel’s and Henkin’s proofs of completeness.

Both points are elaborated in Kreisel, Mints and Simpson [1975] and, more

recently, in Kreisel [1985].

11.2 Incompleteness

Naturally, also for intuitionistic logic the formulation of incompleteness with re-

spect to sentences expressing the soundness of Π0
1-theorems4 is superior to Gödel’s

original (Hilbert-style) formulation in terms of consistency.

Also, the purely ‘syntactic’ reformulation of completeness for arithmetic favoured

by Hilbert, namely:

for all closed formula A, (` A) ∨ (` ¬A), (11.3)

would not be expected in intuitionistic logic

In connection with Hilbert’s program it was necessary to prove incompleteness

by finitistically acceptable methods, and Gödel emphasized that he had done so.

(This is almost, but not quite true; see below.) Inasmuch as he achieved this, his

metamathematical methods are valid for intuitionistic logic, too.

Today it seems appropriate to go into some fine points he (and others) ne-

glected at the time.

Weakness of negation in intuitionistic logic

This aspect is notorious. For example, a refutation of the Π0
1 statement 11.3

above need not furnish a counterexample AG such that:

¬(` AG) ∧ ¬(` ¬AG).

On the other hand, since 11.3 is not required by completeness, it is not immediate

that a counterexample implies incompleteness. But this follows from a little

Exercise 11.2.1 Write Comp (A) (completeness for A) for:

A→ (` A),

Then a counterexample AG implies:

¬[Comp (AG) ∧ Comp (¬AG)].

(Hint: Since

[¬(` A) ∧ Comp (A)]→ ¬A,
4Cf. p. 142 of Chapter 7, p. 199 of Chapter 9 and Chapter 10 [∞].
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a counterexample together with

[Comp (AG) ∧ Comp (¬AG)]

implies

[(¬AG) ∧ (¬¬AG)],

which is absurd.)

The matter simplifies for the usual systems, which are demonstrably complete

for Σ0
1 (but not generally for ¬¬Σ0

1) formulas, if a variant A∗G is used that expresses

literally:

¬A∗G is derivable.

Then A∗G is Σ0
1, and so ` Comp (A∗G). Since A∗G is ` ¬A∗G, Comp (¬A∗G) reduces

to ¬¬A∗G, which is false, but not formally refutable (if the system considered is

consistent). Since ¬A∗G (like AG) is formally equivalent to consistency , the usual

formulation in terms of AG can be recovered (see below).

Gödel’s work was explicit enough not to need the exercise. In fact, ¬Comp (AG)

was proved from the consistency of the system considered. The proof of the impli-

cation is even finitist because, for any (proposed) derivation of Comp (AG), not

only the inconsistency of the whole system is concluded, but a specific derivation

of an inconsistency.5

Independence of Gödel’s sentence

This is more delicate, because of the assumption of ω-consistency. Is the proof of

(ω-consistency) ⇒ ¬ ` (¬AG)

valid for intuitionistic logic? It is, for example, by a straight application of the

negative translation (cf. p. 218 of Chapter 10). But at the time Gödel overlooked

the question.

When I met him in 1955, he brought up the matter. It had bothered him

until he noticed a footnote in my paper on the no-counterexample interpretation

that gave an explicit finitist interpretation of ω- consistency. Actually, all this

is a bit superfluous: for establishing underivability of ¬AG, the most immediate

requirement is

soundness of derivable negations of Π0
1-formulas.

At the time I talked of 1-consistency ; cf. Smorynsky’s detailed obituary of this

notion in his [1977].6

5This is a case of the familiar sharpening, for quantifier-free A and B, of ∀xA → ∀yB to

∀y[(∀x ≤ f(y))A→ B] for suitable f .
6For the record, my silly terminology never came up in conversation with Gödel on such

matters; cf. Chapter 13.
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Improvements in formulating incompleteness

In the introduction to his paper on formal incompleteness, Gödel related his first

theorem to (one version of) the program of Frege and Russell about the structure

of mathematical concepts; specifically, in terms of formal systems (as opposed,

for example, to second order axiomatization; cf. Section 3 of Chapter 6):

One might . . . conjecture that these axioms and rules of inference

are sufficient to decide any mathematical questions that can at all be

formally expressed in these systems. It will be shown . . . that this is

not the case . . .

Near the end of the paper he warned against relating the second theorem to

(again, one version of) Hilbert’s program; specifically, concerning the possibili-

ties of purity of method for finitistically formulated problems (as opposed, for

example, to the business of a final solution for all foundational problems, which

is convincingly refuted already by the first theorem):

I wish to note expressly that . . . [the second theorem does] not contra-

dict Hilbert’s formalistic viewpoint. For this viewpoint presupposes

only the existence of a consistency proof in which nothing but finitary

means of proofs is used, and it is conceivable that there exist finitary

proofs that cannot be expressed in the formalism [considered here] . . .

Contrary to a would-be sophisticated view, these matters are not of ‘purely

historical interest’ (every bright teenager being interested in them). But they do

not constitute a principal interest of the incompleteness theorems. This has been

compared to Pythagoras’ program expressed in the slogan:

(rational) numbers are the measure of all things,

and the irrationality of
√

2. The latter remains of interest, but not primarily

because it refutes such an exaggerated (and, therefore, simpleminded) program.7

As matters stand today, the incompleteness theorems are not literally fun-

damental discoveries rewarding unlimited elaboration or analysis, but samples ;

to be compared to the irrationality of
√

2 (that is, n2 6= 2m2) as a sample of

diophantine problems.

1. The first theorem is a corollary to (recursive) undecidability results about

arbitrary Π0
1 sentences . This was later improved by a variety of incompa-

rable results: on word problems in group theory, on diophantine equations

in number theory, and in many other branches of mathematics (cf. Davis,

Matyasevic and Robinson [1976], and Kreisel [1985a]).

7Incidentally, ‘purely historical interest’ is probably better suited to the more difficult works

of Archimedes and the bulk of all the excellent mathematics in the 19th century; they are

inaccessible to the outsider, and superseded by later results for the specialist. Cf. the end of

Chapter 4 on historical matters.
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2. The first theorem is also a special case of incompleteness of not neces-

sarily formal systems ; for example, of such systems extended by all true

Π0
1-sentences (cf. Mostowski [1952], and p. 75 of Chapter 6 on implications

for the rate of growth of bounding functions in the case of Π0
2 theorems that

are formally independent of all true Π0
1-sentences).

3. Apart from the improved formulations (quoted at the beginning of this

section), the second theorem has not only been appropriately extended

to non formal systems in 2, but also to cut-free systems that have been

developed since Gödel’s original paper (cf. Kreisel and Takeuti [1974]).

4. As stressed on p. 79 of Chapter 6, the second theorem serves as a cross

check on proposed consistency proofs. This is more useful than it seems,

just because consistency is so weak (too weak, for example, as a soundness

property). Consequently, many metamathematical results (for example,

various kinds of normalization), imply consistency formally. Thus the sec-

ond theorem serves as a cross check on proposed proofs of such results,

too.

5. The second theorem has been sharpened to conservation results . Thus,

while the theorem only implies that the addition of (the false formula)

¬ConS to a consistent system S is consistent, in fact no new Π0
1 sentences

can be proved in the extended system (cf. p. 79 of Chapter 6).8

6. The single most satisfactory way available today for highlighting the second

theorem uses so-called (propositional) provability logic, as follows. The

second theorem is the special case of Löb’s theorem:

�(�p→ p)→ �p

when p = ⊥, and Löb’s theorem for a system S follows from that special

case applied to S ∪ {p} (which is consistent if ¬�p, and would prove its

own consistency if �(�p→ p) held for formal derivability � in S).

Now, as shown by Solovay, together with a couple of pedestrian proper-

ties of �, Löb’s theorem axiomatizes completely its propositional theory.

In this sense the second theorem is (as it were, demonstrably) central for

the subject of formal derivability in the usual systems, which have those

pedestrian properties.

Certainly, none of 1–6 is as exciting as (Gödel’s) claims about the signifi-

cance of the incompleteness theorems for the nature of mind and/or matter, or

8Philosophical corollary . The interest of this reformulation of the second theorem is inde-

pendent of dubious (that is, ideological) doubts about the legitimacy of current principles S.

On the contrary, for such S and the usually interpretation of the formalism, ¬ConS is false and

so the consistency of S ∪ {¬ConS} is genuinely problematic.
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as the even more remarkable claims (of, say, Hofstadter) in connection with dig-

ital intelligence; ‘remarkable’ because a theorem that states what (even perfect)

computers cannot do, is supposed to provide evidence for the unlimited potential

of AI , which relies on what real time computers can do.

Of course, the incompleteness theorems do tell us something of interest about

(limitations of) human minds; in particular, how exceptionally gifted people (cf.

p. 50 of Chapter 6) who talked about the topic (endlessly) could miss such sim-

ple proofs. More specifically (cf. the subsection on p. 62 of Chapter 6), how

grand models for the structure of mathematics and the laws of thought could be

proposed without any check on the mathematical properties of those models.

Incidentally, this is the way young Gödel saw matters himself. As he once

told me, when he submitted the announcement [1930a] he was prepared (but not

hoping) for a publication of those theorems by somebody else before his appeared.

In other words, he did not think of them as far beneath the surface (cf. p. 55 of

Chapter 6, with his brother’s phrase of Gödel ‘hiding’ his light under a bushel;

another way, as it were, of expressing Gödel’s own view that he had to work very

little for those results).

Gödel’s use of the Chinese remainder theorem

Viewed within the context of his incompleteness paper, the attention paid to the

language of rings (+ and ×) appears disproportionate; too much for the general

problem, not enough for Hilbert’s 10th problem (cf. the parallel between formal

derivability and solvability of diophantine equations at the beginning of Section

4 of Chapter 6).

But viewed as part of Gödel’s mathematical education, his use is most sat-

isfaisant pour l’esprit. As emphasized by Taussky [1987], Gödel followed

Furtwängler’s lectures on class field theory, where the Chinese remainder theo-

rem is used for the very same purpose as in Gödel’s paper: to code sequences of

elements by a single element.

Forty years later this part of Gödel’s paper can be seen as a step towards

Matyasevic’s result (alluded to in 1 above) about diophantine equations that did

solve Hilbert’s 10th problem.

11.3 Relative Consistency

The introduction to Gödel’s monograph [1940] on the consistency of the axiom

of choice and the continuum hypothesis relative to the remaining axioms of set

theory gives pride of place to the strictly finitist character of the proof. Several

expositions dutifully repeated this emphasis. Objectively, this is surely le côté le

moins intéressant.
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Given the potential of [1940] and the delay in further work on it, the intro-

duction was hardly effective. For Gödel himself, the stress on consistency had

comic consequences (cf. p. 104 of Chapter 6 and Section 1 of Chapter 8).

Finitist proofs of relative consistency

Around 15 years after [1940] first appeared, Gödel himself felt ill at ease, and

asked me one of his offhand9 questions about it:

If S ⊆ S ′ and ConS → ConS′ (in other words, if the consistency of S ′

relative to S) is proved in S itself, is there also a finitist consistency

proof?

The trivial answer is: No. For example, if S1 is consistent and S = S1∪{¬ConS1},
S is consistent by Gödel’s second theorem, and ConS → ConS′ can be proved in

S for arbitrary S ′ (since ¬ConS is provable in S). But ConS′ need not even be

true.

I did not agonize over the proof, and normally I should not have published it.

But at the time I was preoccupied with establishing the notion of conservation,

which I found better adapted to summarizing the interest of then current relative

consistency proofs. And the temptation to ask such questions as Gödel’s seemed

an additional weakness of the notion of relative consistency. So I published [1958].

Almost 20 years later, [∞], I found a better wording of Gödel’s question. But

first some reminders:10

• Even finitist relative consistency proofs do not assure conservation: if RS

is a Rosser sentence, both

ConS → ConS∪{RS} and ConS → ConS∪{¬RS}

have quite elementary proofs )basically, because both RS and ¬RS have a

simple form; respectively, Π0
1 and Σ0

1). So the bare fact of relative consis-

tency (and even of its elementary provability) gives no information about

conservation.

In contrast, the inner model constructions of Gödel or Cohen (preserving

∈, ω etc.) do give useful conservation results.

• Interpretations11 (at least, for one finitely axiomatized system in another)

immediately yield a finitist relative consistency proof . For example, in

9Cf. p. 209 of Chapter 9.
10The only property of ‘finitist’ used below is that, say, primitive recursive arithmetic is

finitist.
11In the terminology of Tarski, Mostowski and Robinson [1953].
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Gödel’s case of GB and GB ∪ {V = L}. This was, in fact, the point

of the introduction of GB.

The converse is false.12

Sharpening relative consistency quantitatively

There is a rewording of Gödel’s question, with an additional quantitative condi-

tion on the relative ‘lengths’ of hypothetical proofs13 of an inconsistency (say, ⊥)

in S and S ′:

∀d′[ProvS′(d′,⊥)→ (∃d ≤ f(d′))ProvS(d,⊥)], (11.4)

where ProvS and ProvS′ are the proof predicates of S and S ′. 11.4 has the

advantage of being Π0
1 (for an elementary f), while the unrestricted assertion of

relative consistency

ConS → ConS′

is only Π0
2. I then noticed that [∞]:

if 11.4 (of course, not merely relative consistency) is proved in S for an

elementary f , then (11.4 and hence) ConS → ConS′ has an elementary

proof.

This simply because 11.4 is Π0
1, and a Π0

1 theorem of S can be deduced from ConS
by elementary means.

At the time, 11.4 was intended as answer to the question which summarized

what (I thought I or, with luck) we have learnt from Hilbert’s second problem

[∞]:

What more do we know if we have an elementary proof of relative

consistency?

Again, it turns out that a restriction on the function f in 11.4 is critical; less so

the method of proof, a proof in S being enough (for an elementary proof).

12If not only relative consistency has a finitist proof, but ConS′ itself is proved in S, then

(by the formalization of the completeness theorem) appropriate interpretations for S′ can be

defined in S.
13Warning . These results involving so-called lengths of derivations should be interpreted

as giving significance to the parameters called ‘length’; at least, in one of the usual senses of

significance: the parameters are used to state consequences we want to know about.

However, the parameters do not provide any measure of complexity; for example, in the sense

of intelligibility of the proofs ‘represented’ by the derivations. This is so because the ‘represen-

tation’ is far too crude to serve for any analysis of such delicate phenomena as intelligibility.

Specifically, a (possibly quite short) description of a (possibly quite long) formal derivation is

at least as convincing as the latter, and so the ‘length’ of the latter used above is an artifact in

connection with intelligibility.
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What more do we know from 11.4 if we restrict f even further?

Harvey Friedman has given a satisfying answer:

if 11.4 is proved in S for an elementary recursive f (of course, not

merely elementary in the sense of finitist, in Gödel’s off hand question)

then an interpretation for S ′ can be defined in S; with variants when

the class of f is extended.14

Naturally, Friedman’s result adds nothing to the monograph [1940] which, being

an inner construction, produces directly a model with particularly useful conser-

vation properties.

Philosophical assessment of relative consistency

Far from being fundamental (except in the sense of being familiar to us since

our teens) relative consistency is, on the face of things, even less compelling than

consistency:

• As cannot be repeated too often, consistency is justified by the observation

that it is sufficient for the truth of Π0
1 sentences. (Otherwise, one thinks of

consistent liars.)

• In the case of finitist consistency proofs of S ′ relative to a dubious S, one

thinks of a passage in Mr. Midshipmen Easy , where a virtuous wet nurse

was to be hired. A girl applied, who turned out to be unmarried. Did she

not have a child? Yes, but only a very little one.

S ′ is so little more dubious than S!

Friedman’s theorem need not be presented as pursuing mindlessly the ideology

of finitist relative consistency proofs. It is also a contribution to philosophy ,

establishing some significance (that is, some consequence) of elementary relative

consistency proofs for a sensible purpose; specifically, with a proper meaning of

elementary , and for the purpose of defining interpretations for S ′ in S. (His

interpretations may be rewarding!) Here, finitist would simply be too crude.

As for Gödel’s increased attention to requirements of intuitionistic logic on

metamathematical methods: it was not misplaced in the previous section, but

simply fell between two stools in the present one. The emphasis on finitist proofs

of relative consistency is a philosophical error : the requirement is either too

strong (since only the fact, not the method of proof is relevant to uses of conser-

vation) or too weak (since for the quantitative version 11.4 of relative consistency,

subdivisions within finitist mathematics are critical).

14Roughly speaking, S is replaced by the ramified hierarchy over S of level α, where α is the

ordinal usually associated with S; for example, ωω when S is primitive recursive arithmetic.



Chapter 12

Last Sentences of

Gödel’s Publications

In this (but also throughout previous) chapter(s), problematic points in Gödel’s

work are given prominence. This is unusual, but I see it as a corollary of a

specific and of a quite general fact. By and large, Gödel’s expositions have been

so effective that his unproblematic contributions have found their way into texts,

and (this is the general point) usually in improved form.

At least statistically, the tradition of going back to the sources, so often ap-

propriate in literature and the arts, cannot be expected to be equally effective

in the sciences, including mathematical logic, where ‘progress’ has a pretty clear

meaning (cf. the early part of Section 2 of Chapter 10). In view of differences

between subject matter, not to speak of authors, only the short sighted would

expect to rely equally on ‘digging’ painstakingly into sources for all aspects of

all intellectual activities; even in connection with their history (cf. the end of

Chapter 4), let alone, their exposition.

On a more specific (even personal) level, what is conventionally regarded as a

sin (and, quite objectively, can indeed cause trouble for many people concerned)

often does not trouble me at all. For example, as I see the long list of defects,

not only in this chapter, I am particularly impressed by their quality. Even today

they continue to suggest worthwhile reflections, and much more so than many a

tame perfectly sound contemporary publication. (Of course, Gödel’s defects are

not recommended to the rest of us: they separate the men from the boys.)

Besides, at least to me, those defects related to his carelessness present a

most welcome relief from that would-be philosophical constipated ‘precision’ (out

of all proportion to background knowledge) that had always repelled me in some

of Gödel’s popular writings; for example, in [1944] and [1947].1 Specifically, it is

0Originally published in Gödel remembered , Weingartner and Schmettered eds., Bibliopolis,

1987, pp. 157–161, as Note 5 to ‘Gödel’s excursions into intuitionistic logic’.
1The oversight in the latter mentioned on p. 104 of Chapter 6, about judging CH by its

(non existent) arithmetic fruits, is not exactly in a last sentence. It was certainly not offhand,
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a relief to think of that style as a pose to impress philosophers, even if in fact it

only attracted philosophical cripples; rather than as coming from the heart or, in

one of his favourite phrases, employed mit Lust and Liebe.

To judge by past experience, I am obviously disturbed by seeing a picture of

somebody I knew well that conflicts with my own memories.2 In Gödel’s case,

such things as [1958] (which, by Section 5 of Chapter 10, I continue to regard as a

gem) are, of course, central to my picture of him; but such lists as the one below

belong to it, too. Together they do a little, at least for me, towards balancing

the singularly mediocre recent Gödeliana.

A final word on ‘straight’ (in other words, formal) errors such as the first

one below. Sure, a more cautious person than Gödel would either not have been

tempted to put into print an ill-considered answer to a (as it has turned out)

unexpectedly interesting question, or would have employed one of the standard

academic conventions for avoiding offhand (formal) mistakes; by making equally

ill-considered conjectures or, most simply, by asking a question.3

But, objectively speaking, not without loss! Just think of the joy that our

fellow brethren, who perhaps do not have many other joys in life, derive from

having discovered an ‘actual’ error by Gödel. Again, making such errors cannot

be recommended to the rest of us: their discovery would give less joy.

Summary

Remarkably many of the last sentences of Gödel’s publications are defective. Here

they are used mainly as pegs on which to hang sundry observations. But some

will serve also as memorable object lessons; for example, about reading too much

into the printed word, or about the way a whole story can be lost when things

get into print. It is relatively rare that impressions of such things can be checked

against fuller details, and some readers may wish to do so. The digressions at the

end of this chapter are directed to such readers too.

but the result of an ingrained blind spot, as explained there.
2For example, when I first saw the selection by Wittgenstein’s literary heirs among his

remarks on the foundations of mathematics I described it as ‘a surprisingly insignificant product

of a sparkling mind’ [∞]. More than 20 years later I had the good luck to find a documentary

correction [∞].
3In this connection it should be remembered that thoughtful mathematicians are sensitive

to the abuse of the word conjecture (for off-hand questions); for example, A. Weil (cf. p. 454

in Volume III of his Collected Works). The degree of thoughtlessness involved in this abuse (in

particular, with respect to evidence for such ‘conjectures’) is as staggering as anything (I know)

in the philosophical literature, albeit in less pretentious language. Thus ‘evidence’ is bandied

about, without a moment’s hesitation over the warnings (in elementary texts on statistics)

about minimal precautions needed before such talk is profitable at all.
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Gödel’s prefix class ([1933a])

The best known example concerns [1933a], with a decision procedure for (the

validity of) ∀n∃2∀m formulas of predicate calculus. Goldfarb [1984] has shown

that, contrary to the last sentence of [1933a], the addition of equality makes this

prefix class undecidable (and thus somewhat exceptional).

When doubts were raised in the 60’s, I had no view about the truth of the

matter, but suggested the following recipe for making a mistake: note that the

full equality axioms follow from the atomic cases, and thus from universal axioms,

and absorb them in one of the blocks ∀n or ∀m above (in other words, forget that

a universal premise becomes existential in prenex normal form).

I once even began to speak to Gödel about this, but got sidetracked by (my

own) speculations on the circumstances that favour such mistakes.

The Finiteness Theorem ([1930])

The finiteness (nowadays called compactness) theorem at the end of [1930]4 is

formally correct, but defective in being unnecessarily restricted to countable sets

of formulas. It came up in conversations with Gödel on two occasions.

I was struck by the fact that soon after [1930], in the note [1932] on proposi-

tional logic, Gödel stated its result explicitly for arbitrary sets. Also, I knew that

he often took the opportunity of improving earlier formulations in later notes,

even if they were only tenuously related.5 As he himself described the matter, he

had first stated the propositional result for countable sets of formulas too, but

found, on rereading the fortunately short note attentively, that the proof nowhere

used countability. So he reworded the theorem, but was not interested enough in

the generalization to look for parallels.

Here it is to be remarked that (at the time) the general formulation might

well have clouded the issue, with worries about writing down uncountable sets of

formulas (even though, realistically speaking, arbitrary countable - not necessarily

r.e. - sets are not very different in this respect). So the generalization might have

limited the market for [1930].

By contrast Malcev, who used the finiteness theorem in algebra, was not liable

to trouble his public. The finiteness theorem for arbitrary sets was needed to get

his algebraic conclusions in the (unrestricted) form usual in algebra.

Before I met Gödel I had simply assumed (cf. Kreisel [1956]) that the finiteness

theorem was consciously intended to answer the question:

Given that the formal rules of Frege are complete for validity, what

about consequence?

4Incidentally, the finiteness theorem was an afterthought that did not appear in Gödel’s

dissertation.
5For example, he put his undecidable sentence into the form �p→ p in [1933b], and stated

the absoluteness of formal computability in a note on speed up ([1936]).
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the latter being defined for all sets of formulas (that one cares to consider). It

certainly was not quite clear what a formal correlative might be. The finiteness

theorem avoids any agonizing on this score. Gödel agreed of course, but did not

remember thinking in these terms at the time.

The Constructibility Axiom ([1938])

At the end of [1938], V = L (there called ‘A’) is described as ‘a completion’ of

current axioms of set theory. Evidently this was out of tune with Gödel’s song

(and dance), starting a few years later, about the search for axioms valid for

the full cumulative hierarchy (or, at least, for far-out segments). If one has a

particular notion in mind, one speaks neither of ‘a’ nor of ‘the’ completion.

What he did have in mind was coded in the terminology ‘L’ for: lawlike.

At the time he toyed with the idea that L contained all legitimate definitions

of sets. And he clearly changed his mind before he gave his lecture [1946] at

the bicentennial celebration at Princeton (though he was always reluctant to

recognize, let alone, to enjoy any change of mind).

Incidentally, the worry in [1938] about the ‘vagueness’ of the notion of arbi-

trary set is removed in [1947] by a reminder about the clarity of the notion subset

of .

The Fan Theorem ([1972])

In one of the later versions of the English translation of [1958], Gödel attributes

the last sentence (stating that the fan theorem is interpretable) to me. The details

are more entertaining than the fact (reported, with background, in Section 5 of

Chapter 10).

At the time, I ignored his warning that he had treated his terms of higher

type purely formally because I had already decided on an interpretation, for

which the fan theorem was obviously valid; and I told him so a few days later.

He remembered the remark when he came to write [1958], but forgot to check

whether it applied to his interpretation too. We spoke briefly about this. I

pointed out in print, probably on several occasions, that the last sentence was

not evident (without, however, mentioning the background), and there the matter

rested.

During his final illness he brought it up, apparently worrying how to draw

attention to my ‘contribution’. The way he saw (or, at least, put) it was this.

He regarded Spector’s posthumous [1962] as an important contribution (as he

had already said in a postscriptum). In his view, given Spector’s background (in

particular, all he had learnt from Kleene’s lectures about ordinary bar recursion

and its relation to the fan theorem, and of course the idea of passing to all finite

types in [1958]) that last sentence was enough to trigger Spector’s result.
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As we will see immediately, Gödel’s view about Spector’s education was wrong.

But on this view, the next order of business was to find an appropriate wording for

my ‘contribution’. He first proposed to add ‘for a slightly different interpretation’.

The sequel was predictable. I asked if this was supposed to be a translation of

eine gering abweichende Interpretation; meaning of course his blunder discussed

on p. 219 of Chapter 10. The allusion had to be explained to him, and he was

not amused. Obviously, it was not the person I had known for 15 years. I never

asked him what wording he chose in the end.

Here is a sketch of some things I know about Spector’s background, before

he embarked on [1962]. When we first met at Cornell in 1957, [∞], he told me

he was sick of Turing degrees, but also told me of his difficulties with the no-

counterexample-interpretation, which he had once presented in Kleene’s seminar.

At that time he concluded (without being contradicted) that it must be nonsense,

since it reduced arithmetic to Π1
1 statements. Well, Gödel’s finite types (namely,

Π∞1 ) sounded worse still. I reminded him that it’s not what you do, but the way

that you do it, that counts; in particular, not the mere mention of the language

of higher types, but the particular properties (or axioms) used, and we looked

together at some striking examples. We kept in touch, and he visited me in 1959

at Los Altos near Stanford.

In the meantime, it had occurred to me that I had derived the no-counterexample-

interpretation from Ackermann’s version of Hilbert’s ε-substitution method, in-

volving in an essential way an order of priority. One had thus a relation to a

principal element of Spector’s logical background, Friedberg’s priority method.

Also, the popular article on Hilbert’s program [∞] had appeared, with a

reference to some lurking lemma in Ackermann’s work. The phrase took Spector’s

fancy. In fact, he had studied the matter before the visit, and thought that he saw

a lurking lemma (without putting it into words; in fact, till his death he said that

he had employed that lemma as a principal trick in his functional interpretation

of the negative translation of the axiom of choice; cf. [1962]).

In short, his work grew out of a great deal of familiarity with ideas and results

surrounding functional interpretations, helped perhaps by a few hints stemming

from my own experience in this area; not least, the central place I had given to

continuous functionals in my presentation at Cornell.

Ambiguities in Gödel’s conversations and writings

The present digression, on Gödel’s (incidentally, to me very congenial) literary

taste will now be introduced (and concluded) by reference to Spector’s paper. But

it is a fluke that this kind of transition is possible, since the matter is general.

At the beginning of [1962], Spector quotes Gödel and Bernays as saying that

bar recursion of higher type is just as evident as Brouwer’s bar recursion (of lowest
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type). Spector himself felt encouraged, and (cf. footnote 2 of [1962]) so was I.6

I remember Gödel’s glee when he pointed out that it could also be interpreted

as follows: Brouwer’s bar recursion is no more evident than Spector’s generaliza-

tion (cf. p. 60 of Chapter 6, with a reference to de Gaulle). I did not bother to

ask Gödel how he had intended the remark originally, in line with the view of in-

telligent literary critics about the ‘life’ of a literary product being (best regarded

as) independent of its author’s thoughts.

Actually, Gödel’s conversations were full of such ambiguities and, once sensi-

tized to this, one finds them also in his writings. For example, the parenthetical

qualification in inhaltliche (intuitionistische) Überlegungen of his lecture [1931a]

at Königsberg will mean to the intuitionistically indoctrinated reader ‘and, hence,

intuitionistic’, but to the seasoned logician ‘here, for once, intuitionistic’. Granted

those intellectual reflexes attributed to young Gödel throughout previous chap-

ters, it is in the cards that this splendid ambiguity just came to him without any

brooding.

Personal remarks

The first concerns ambiguities in my references to Gödel’s intervention in choosing

the title for Spector’s paper.7 Here is the full story. In accordance with the views

we had come to share about the consistency business, Spector’s simple title was:

Provably recursive functionals of analysis . Gödel did not find this exciting, and

proposed the addition: a consistency proof of analysis . If at the time I had known

his Konigsberg lecture (in which he scoffed at Hilbert’s claims that consistency

was a sufficient condition for soundness), I should have quoted it back to him. But

I didn’t. Of course, I appreciated his flair for attracting attention, but my views

about the sham of the consistency business have remained uncompromising. So,

to water down his addition, I proposed the further qualification: by an extension

of principles formulated in current intuitionistic mathematics , to which Gödel

agreed (albeit reluctantly).

The second remark is more speculative. Presumably, all of us who have a

liking for (hearing or making up) ambiguities view them as a spontaneous game

of hid-and-seek as it were; as in cache-cache, and Talleyrand’s or Fouché’s La

parole a été donnée a l’homme pour cacher sa pensée. (In contrast, for de Gaulle,

cited above, it was not only a game.) But sometimes it seems to me there is

a darker side to it, especially for those of us who have to do with foundational

fundamentalists, notorious for their (cult of) literal-mindedness. The reaction

to them is an almost inhuman coldness, viewing them as a different species,

although one knows that many of them are worthy people. The game can be a

6See p. 251 of Chapter 10 for my later reservations.
7In line 8 of footnote 1 of Spector [1962] the printer omitted the words ‘by adding:’ after

the semi colon (not colon!), and I did not correct it. This puzzled at least one reader of p. 78

of Chapter 6.
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relief, engendering an illusion of complicité with our own species somewhere out

there.



Chapter 13

On Some Conversations With

Gödel

These notes contain reminiscences of Gödel, starting in the mid fifties. They may

balance the picture of him provided by recent Gödeliana, badly weighed down by

material from the seventies, when he had become (in the words of a secretary) less

‘formidable’. Readers familiar with this stuff will notice that some of its silliest

items are debunked by immediate corollaries to observations in this and previous

chapters (cf. also the end of Chapter 4). Charity forbids my giving chapter and

verse; anyway, in most cases I have forgotten them.

13.1 On the Proper Order of Priority in Logical

Research

In the 70’s Gödel spoke and wrote rather freely of this matter, and not particularly

convincingly.

He spoke to me about it mainly after I had demonstrated my own interest

spontaneously. Specifically, my statement in support of his election to the Foreign

Membership of the Royal Society (on p. 44 of Chapter 5) pointed out how Gödel’s

principal results were related to simple philosophical distinctions that others had

ignored. Gödel’s comments on that statement (on p. 46 of Chapter 5) express the

kind of pleasure he felt when others had, by themselves, come to views similar to

his own.

The following reminiscences give some idea of the way Gödel liked to muse

about such matters in the mid sixties.

0Originally published in Gödel remembered , Weingartner and Schmettered eds., Bibliopolis,

1987, pp. 161–169, as Notes 6 and 7 to ‘Gödel’s excursions into intuitionistic logic’.
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Formal results by inspection of informal notions

Gödel was of course much impressed by Cohen’s results. And not only because,

as people often say, Cohen ‘beat’ him (after all, Gödel is on record as having

been interested in the problem itself; in fact, as having considered the continuum

problem fundamental; cf. [1947]).

At least as he put it to me, there was more to it. He had thought that with a

problem as fundamental as (he regarded) CH, the proper strategy was to reflect

on the answer for the (or an) intended meaning, and then to translate it into

formal terms.

This had been his way for the constructible sets; in more traditional terms: the

transfinite extension of the ramified hierarchy, with simple types being replaced

by cumulative types in the style of Zermelo. Already as a student Gödel had felt

sure that Skolem’s argument for defining elementary submodels of any infinite

cardinality would establish the axiom of reducibility (cf. p. 105 of Chapter 6).

The formal paraphernalia for converting this into a relative consistency proof

was heavy only as long as he wanted to avoid the use of replacement, his first

contact with axioms of infinity (cf. p. 178 of Chapter 8).

Since Gödel had come to believe that CH was false for the full cumulative

hierarchy, the proper strategy would be to reflect on the latter, and to convert

this reflection into a relative consistency proof for ¬CH. No general method of

constructing models would be needed. Cohen had provided such a method (cf.

p. 109 of Chapter 6).1

Contrast between philosophical ‘positions’ and logical prac-

tice

Gödel’s early exercises on intuitionistic logic (described in Section 2 of Chapter

10) are at the opposite extreme to the order of priority above, that he had come

to advocate later. The style of [1958], and especially of the notes that he added

for the English translation [1972], serves as a foil.

Gödel was quite aware that also his own attempts in the forties to prove the

independence of the axiom of choice did not employ the strategy above, but a

reinterpretation of the logical particles, in clumsy syntactic terms to boot. It is

fair to say that the idea behind it is very well expressed by means of Boolean-

valued models.

The see-saw continued into the fifties, with his encouragement of work on

intermediate r.e. Turing degrees for new ideas on CH (cf. p. 60 of Chapter 6).2

1Gödel knew what a mathematical method was! He never used (at least, not when I used

to see him) this word for the fixed point lemma, nor for the enumeration of formal objects

(that is, for the idea of Gödel numberings), nor even for the formal definition of the arithmetic

operations derived by that enumeration from those on the formal objects.
2This suggests at least a couple of thoughts.
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In the opposite direction, as it were, Cohen professed in [1971] to be a for-

malist , after he had used models in his independence proofs successfully, and had

given a feeble relative consistency proof at the end of [1964].

Gödel’s way is more congenial to me; he bandied platonism about after trou-

bles with the syntactic methods alluded to, and with interpreting his primitive

recursive terms of finite type purely formally .

Effects of ‘ad hoc’ solutions for fruitful problems

This item is touching, but seems to have a moral too. On one occasion Gödel

mused about not having published those syntactic reinterpretations; people might

have misunderstood him to mean that those were the right interpretations. I never

misinterpreted his remark to concern his conscious reason at the time, but rather

abstract possibilities; in particular, situations where attention is drawn away from

a potentially fruitful problem by an ad hoc or otherwise unsatisfactory (albeit

correct) solution. (A formal error often draws attention to the problem; cf. p.

268 of Chapter 12.)

Individuals of a certain temperament do, in fact, worry that a better solution

may not be so widely acclaimed as a first solution of problem. Other tempera-

ments derive confidence from knowing the answer, or like the idea of doing better

than a well known author (especially if the latter has taken the trouble to treat

the problem in print), and so forth. With current mass activity, Gödel’s simple

view of triggering chains of events may well apply to somebody , though not in

the cases to which he applied it specifically.

For example, by p. 272 of Chapter 12, not to Spector. Nor to the (published)

monograph [1940], with an introduction preoccupied with legalistic precautions:

it is quite remarkable how little work was done on the constructible sets in the

40’s and 50’s though, as Jensen has shown, there was a lot more to discover about

them.

Personal remark . Partly because of the musings above, I began to record my

expectations of various projects, especially in periods of consolidation; by p. 140

of [1971], with the explicit purpose of checking them against later experience. As

so often (in accordance with T.S. Eliot’s memorable phrase), the temperamental

preferences above have pertinent objective correlatives.

On the positive side, there are certainly objective relations between (perfect set) forcing and,

say, some (of Spector’s) methods in the theory of Turing degrees.

On the negative side, and perhaps more interestingly, Turing degrees of r.e. sets require at

least a certain measure of symmetry between (the complexities of) the sets and the mappings

considered; in contrast to CH for the full cumulative hierarchy; cf. p. 122 of Chapter 6 (‘certain

measure’ because, as some of us sensitive souls have complained, r.e. sets and their complements

are severely asymmetric with respect to proof of membership, while Turing reducibility is not).
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13.2 On Titles, Terminology and Other Expos-

itory Devices

Our ordinary view of human nature (as described at the end of Chapter 4) requires

a kind of causal interpretation of the anecdotes below; involving motives (rather

than ‘mere’ reasons). I do not often find the view compelling; certainly not here.

And I have nothing to contribute to such interpretations.

Gödel often spoke of expository tricks to be found in his publications, and

I never bothered to ask if he had had them consciously in mind at the time or

meant their general relevance (to repeat: not cause and effect, just as one does

not ask for cause and effect when relating equilateral and equiangular triangles).

The anecdotes below will be used to enrich the usual view of Gödel’s work,

and also of its relation to later work in logic. The section proceeds by easy stages

from the sublime to the ridiculous, with a digression at the end.

The meaning of a theorem is its proof

This slogan was current in Gödel’s student days, and it fits well the boring state-

ments of theorems in the constructivist literature (and, of course, its interpreta-

tion of the logical particles as, literally, operating on proofs).

Gödel had a strong dislike of it. At least in conversation with me he insisted

that only results be mentioned, since their pattern might be obscured by the

proofs (not only mine, but also by nice ones done by others).

What about information contained in proofs, but not stated in the theorem?

For Gödel the first order of business was to state elegant and memorable theorems.

Afterwards people can look at the proofs for additional information of interest to

them.

His practice followed this principle, very much in contrast to Herbrand and

Gentzen who (before and after the completeness and incompleteness theorems)

used all purpose expressions (Verlegenheitsausdrücke) like thèoréme fondamental

and Hauptsatz, without any explicit indication of what made those theorems so

‘basic’.

Some 10-20 years after them, I attempted to find concepts more adequate

for expressing at least some of the additional information provided by their kind

of metamathematics; for example, functional interpretations rather than consis-

tency, conservation rather than relative consistency, and many more besides. I

do not think that Gödel felt comfortable with those concepts, though by now

they are familiar enough to be considered memorable.

A blind spot . During the period of our frequent conversations I had not yet

realized clearly enough (for a rewarding discussion) that contemporary mathe-

matics has its own response to the slogan above:
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Find the concepts needed to state theorems that express the meaning

of (in the sense of what is called, crudely, essential in) a proof.

Generalizations (tacitly, in terms of skillfully chosen concepts) often do just that;

cf. Kreisel [1985a]. This is philosophical progress (for the kind of philosophy

meant in Section 1 of Chapter 10); not least, for the face-saving powers of the

low-keyed mathematical style. Nobody feels ashamed about having to search for

some (or even a particular kind of) generalization. But many feel ill at ease when

they do not know what is essential about a proof, or what it means.

My titles and terminology

The following specific conversations on titles and terminology touching topics of

‘constructivity’ seem pretty typical.

Soon after we first met, Gödel made fun of the title of [1950]. The content

appealed to him; a twist on his incompleteness theorem that would have been

perfectly accessible in 1930, with an undecided sentence U in ∆0
2, but described

in [1950] in terms close to what would today be called: of degree ≤ 0′. The

proof leaves open the parameters (systems and/or codings considered) determin-

ing whether U is true or false (cf. Manewitz and Stavi [1980] for partial results).

As noted later, the twist yields what is still the most ‘logical’ model-theoretic

proof of Gödel’s second theorem (cf. Smorynski [1977a]).

Gödel found it odd that one could be clever enough to find the results, but

not a sensible title. Obviously, one does not spoil such a remark in conversation

by boring analyses of the circumstances. But here it seems worth adding that

(I thought) I had not achieved one of my aims in [1950]; specifically, of a con-

sistent formula without any recursive model (in fact, even without any recursive

valuation for its atomic properties). What I had actually proved was that GB

including the axiom of infinity (or, more pedantically, its Skolem normal form)

had no such model. And at the time I did not know that GB had any model at

all! I did not know the cumulative hierarchy; [∞]. Nor did I have the experience

needed to find the words appropriate in such circumstances.

Gödel complained, equal pertinently, about basis in ‘basis theorem’. The

notion is popular enough, at least, after Kleene’s exposition [1955], but probably

not the way I have always looked at it. It was to extract the sensible side of

Ockham’s razor without the absurdity of supposing that things do not exist when

they are not needed (to handle the phenomena and problems that have so far

struck us).

After he saw the properties of absolutely free (choice) sequences in Kreisel

[1965], Gödel proposed the term lawless . (Neither of us knew at the time

Brouwer’s earlier analysis.) In choosing between the two terms one faces the

familiar issue between freedom and license (lawlessness). In the late 50’s I cer-

tainly felt that even the thought of restraint, e.g. the possibility of a diet, was a
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restriction of freedom, and so I naturally used ‘absolutely free’. With the years

the lure of licence has diminished, and I used ‘lawless’ in [1968]. May the healthier

and livelier (called ‘hippier’ in the 60’s) readers not be mislead by it!

Several points are to be added:

• At the time, I did not connect the proposed terminology with his code

meaning for ‘L’ (for ‘lawlike’); the pair ‘lawlike’ and ‘lawless’ is not only

catchy, but easily translated: gesetzmässig and gesetzlos. (I take it he saw

no need to use a code like ‘L’ here, because I was not going to be reticent

about the meaning I intended anyway.)

Incidentally, today I prefer the terminology open data, because it expresses

explicitly the relevant enrichment.

• Gödel was touchingly pleased by the innocent successes of so-called informal

rigour applied to lawless sequences; in other words, of the strategy he advo-

cated in connection with sets (cf. Section 1). For example, the axioms for

open data, or the decidability of extensional equality for lawless sequences,

are recognized by inspection. Certainly, so far, the notion of lawless se-

quence has been quite comparable to the primitive notion of set as a source

of axioms (though not as a scientific tool); and much more rewarding in

this respect than the primitive notion of effective rule (cf. 249 of Chapter

10 on the contrast between the latter and that of set).

• At least as I see things now, the principal philosophical interest of lawless

sequences derives from the object lesson they provide for the topic of natural

languages (elaborated in Section 3 of Chapter 10). To repeat, a precise

and elegant development is perfectly possible, but paraphrases are just as

effective.

• At least so far, nothing much has come of Gödel’s great expectations for

lawless sequences of higher type objects.

Digression on ‘manipulating the reader’

The next two subsections will be extreme examples of the kind of musing (on

‘manipulating’ the reader) that Gödel enjoyed very much. But, for a proper

perspective, it seems necessary to get a couple of generalities out of the way.

Thinking about such manipulation (from advertizing to formal education) in-

volves not only highly publicized ‘normative’ elements about desired effects, but

costly empirical elements in assessing actual effects; ‘costly’ because either many

people are involved or, as in the case of education, only long term observations

are of much use.

So, on the negative side, it’s hard to establish any conclusion (and therefore

often difficult to refute silly opinions).
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On the positive side, as already mentioned in Section 1 about current mass

activity, Gödel’s short term view on getting immediate attention by at least a few

able people is perhaps more effective than it used to be; the activity will lead to

a kind of natural selection, not only of concepts (cf. the story of determinacy on

p. 116 of Chapter 6). With relatively few exceptions, silly (ideologically inspired)

shibboleths have been quietly dropped in the last 15 years. For example:

• One no longer speaks of ‘deriving consequences from the axiom ‘V = L’

when in fact one is proving properties of L (which generally have those

consequences as trivial corollaries, but not conversely).

• Slowly one is beginning to talk of the rate of growth of bounding functions

for Π0
2 theorems, and not only of formal independence (when in fact one

has proved independence from all true Π0
1 theorems; cf. p. 75 of Chapter 6).

The progress achieved in this way becomes spectacular if contrasted with one

of the exceptions; especially with Nerode and Harrington [1984], which revives

remarkably many thoughtless first impressions that were corrected by logical re-

search in this century.3

Here are the two promised titbits, both about the incompleteness paper.

A role of formal detail in [1931]

When I once mentioned to Gödel that the introduction to his incompleteness

paper was fully convincing he agreed, but thought that the masses of formulas in

later parts had served to avoid futile discussions about any relations between his

work and Finsler’s [1926]. Nobody looking at both would even dream of worrying

about such relations. Several things should be added.

First, a concise formulation of those relations needs, as so often in such cases,

considerable familiarity with the subject (cf. note 14 on p. 71 of Chapter 6 about a

quite closely related business with Zermelo). So it is not sensible to have outsiders

worry their heads over relations to Finsler (even if academic etiquette requires

some kind of reference; tacitly, for insiders).

Secondly, on the negative side as it were, the price paid for introducing all

those formulas was high; it is (at least, to some extent) the superstition that

Gödel’s proof is subtle.

Last but not least, as I realize now, the general presentations of the incom-

pleteness theorems in Hilbert and Bernays [1939] (which, according to Bernays,

incorporates several suggestions made by Gödel during their translatlantic cross-

ing in 1935) are not much longer than Gödel’s original introduction; of course, the

3The drivel about the fundamental character of relative consistency is put in its place in

Section 3 of Chapter 11.
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verification of the general conditions by a specific system may take some effort.

This is a, philosophically, more satisfactory balance.4

Digression on details . Gödel once spoke about a very long typescript of Chom-

sky’s that circulated in the sixties and consisted almost wholly of critical obser-

vations. Though formulated in quite different terms, Gödel’s reservation was that

the subject simply had not reached the threshold where this kind of detail was

rewarding. Without exaggeration, much the same applies to the bulk of natural

history, which of course is particularly proud of its painstaking detail.

A potential use for a Part II of [1931]

As is well known, the title of the incompleteness paper suggests a sequel, but

none has appeared. I never asked Gödel about the general circumstances, which

might allow one to judge to what extent it would be sensible to speak of ‘causes’.

Anyhow, he volunteered a view on the matter.

If there had been massive and systematic misunderstanding of the paper,

Part II could have been used to give a full statement and proof of the second

theorem, so to speak as its principal purpose; and some of the (actual, not merely

imagined!) misunderstandings would have been corrected incidentally.

Viewed this way, my leaving Gödel’s work on intuitionistic logic out of Chapter

6 has turned out to serve a similar purpose. I have used Chapter 10 (not so

much for correcting misunderstandings, but) for reiterating certain points of the

former.5

Logical work in styles different from Gödel’s own

Some ideas of Gödel about logicians with or without his flair for flashy formula-

tions:

1. He often called Gentzen a better logician than himself. Obviously, Gentzen

was not more interesting; but his results were not in the air (nor on the

surface: it took a long time to see convincing implications).

2. Gödel had such a high regard for Kleene’s contributions, that his wife com-

plained about the Institute for not making Kleene a professor there. In

particular, always appreciative of a twist to his incompleteness theorem,

Gödel talked with relish of the formulation in terms of disjoint r.e. sets that

are not recursively separable.

4For other abstract formulations cf. note 17 on p. 74 of Chapter 6, 7.2.5 on p. 140 of Chapter

7, and 9.1.1 on p. 199 of Chapter 9.
5This purpose certainly did not occur to me when I started on Chapter 6, nor even on

Chapter 10, which sets out in the opening paragraph my (conscious) reasons for neglecting

intuitionistic logic in the former.
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3. By 1957 he had so much confidence in Scott that he said he expected him to

prove soon the formal independence of CH. And, in fact, Scott contributed

fairly soon to Gödel’s favourite proof (by use of Boolean-valued models).

4. When he told me how much he liked Takeuti ’s contributions to proof theory,

I asked for a summary. Knowing my logical tastes, Gödel said instead that

Takeuti had so much talent for seeing through complicated combinatorial

situations that he did not need the kind of abstract view I wanted (and that

he, Gödel, could not formulate adequately such a view). With due regard

for conversational licence, I’d say much that same after my experience in

preparing the joint paper Kreisel and Takeuti [1974].

Perhaps 1–4 balance a little the embarrassing exaggerations in Gödel’s interview

with Time Magazine after Friedberg ’s solution of Post’s problem: as (bad) luck

would have it, Gödel went out of his way to say that this kind of achievement

happened once in a generation; more or less when Mucnik’s paper was in press.

13.3 Tricks of the Memory

The subject has fascinated many; most recently, the writer Marguerite Duras

(L’amant), who made a point of recording her memories as they presented them-

selves to her, though it would have been easy to correct many quite obvious errors

(for example, chronological discrepancies).

From a solemn point of view like Freud’s, one would look for specific causes

of each slip; a kind of hybris to suppose that they can be found even approxi-

mately without knowledge of memory structures (cf. the end of Chapter 4, on

the inner life of planets). Of course, as always, there are exceptionally favourable

circumstances [∞].

Here we treat those tricks quite differently, along the lines of this chapter.

Gödel [1938] and Hilbert [1926]

A particular trick of memory involves Gödel’s recollection (admittedly, in his less

‘formidable’ period) that his work on CH had nothing to do with Hilbert’s sketch

in [1926] (cf. note 33 of Chapter 10). The facts are plain enough:

• In notes for a lecture at Brown University (1938) in the Nachlass, Gödel

explicitly says that he had recently discovered a presentation of the work

that was closely related to Hilbert’s sketch.

• At the end of his review [1940] the genuinely cautious, not merely calcu-

lating Bernays says the same thing; and, after all, anybody competent can

verify some objective relations.
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Granted the similarities between Hilbert’s sketch and Gödel’s proof, the differ-

ences are surely much more impressive and consequential:

• As in the ε-substitution method, which was a main topic of his paper any-

way, Hilbert thought of the ordinal-theoretic functions involved as ‘essen-

tially’ finitistic.

• For Gödel’s (successful) work it is essential to think of them, in modern

terminology, as α-recursive (for constructible cardinals α).6

Thus for Gödel’s primary concern (cf. the beginning of Chapter 11) of mak-

ing his work accessible to a wide audience (and so necessarily without much

background), it is certainly most appropriate to draw attention away from the

similarities to Hilbert’s sketch, since a correct appreciation of them demands sub-

stantial background knowledge. All this looks bad from a more solemn point of

view.

First, we have a conflict with academic traditions about acknowledging prior-

ities. But since human beings (and situations in which we find ourselves) differ,

the best we can hope for from traditions, including laws, is that they are appro-

priate in many cases. Besides, academic traditions are not primarily concerned

with a wide market.

Secondly, Gödel’s later views of the facts occur, if I remember correctly, in

letters (meant for posterity to boot), not in a casual conversation.

Instead of (or after) enjoying the thrill of indignation, let us take a look at

the solemn view.

Documentation versus impressionistic anecdotes

In political history, letters and secret memoranda or tape recordings have proved

to be useful, often more so than relying on public pronouncements; at least af-

ter extensive sifting, with due attention to the temperaments of the authors.

Certainly, one element that contributes to reliability is that the documents are

produced by many different people, and affect even more. Recriminations after

the event automatically generate new material. This element is not present to

the same degree in scholarly doings, and further restricted by academic etiquette.

A principal assumption of the history of ideas is that, in contrast to politicians,

scholars do not try to manipulate their public. But even when this is true (and

Section 2 serves as a caveat), the scholars, and above all the pioneers, often simply

6In 1936, and later in the 70’s (cf. [1972]), Gödel himself felt that he had provided a first

step towards the kind of further ‘collapse’ to finite structures needed for Hilbert’s program.

But, before Girard’s (admittedly, blatantly transfinite) iterations of limit processes applied to

dilators, there was hardly a hint for achieving that kind of collapse. (The collapse of cardinals

into recursive ordinals in Bachmann’s hierarchies was not enough, at least not for me, to inspire

confidence.)
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do not know how to say what they know (cf. p. 278). So, realistically speaking,

as a reflection of their thoughts, words of scholars (whether written or spoken)

may be less reliable than those of politicians.

Without exaggeration, when the history of ideas apes the kind of documen-

tation familiar from ordinary history it is liable to become a parody. All this is,

of course, in keeping with the suspicion of the history of ideas among the silent

majority of historians.

Here it should be added that many professional historians are also unsym-

pathetic to the use of history for political rhetoric (which, for the record, I like;

just as much as for entertainment, despite Nietzsche’s diatribes in Unzeitgemässe

. . . ).

In mathematics such rhetoric tries to convey a view (for example, on the rela-

tive promise of different methods) by presenting a suitable selection of historical

titbits; including (of course) hopelessly false starts, according to that view.7

The historians’ antipathy goes well with the fact that pseudo-history can be

quite as effective rhetorically as real history, provided it catches our imagination.

The following points about letters and publications are quite down to earth:

1. Bertrand Russell complains in the introduction to (the second edition of)

his book on Leibniz that the latter never wrote a magnum opus of univer-

sal interest. In Russell’s view, because Leibniz wrote too many letters to

princesses; presumably (if there is to be a conflict at all) relying too much

on references to specific interests of those ladies.

2. Depending on the temperament of authors, formal publications (especially

on intimate subjects like broad views) are not always as different from

letters as 1 suggests. Speaking from personal experience, while writing

I often catch myself addressing particular readers; sometimes dead ones,

sometimes present company. Even if I am a bit exceptional in this respect,

my aberrations probably merely magnify a widespread phenomenon.

3. The same surely applies to the following anecdote about an, admittedly,

exceptionally simple-minded person. By a fluke I had recently the rare luck

of learning the interpretations by that person of some letters I had written

to a friend. Phrases that just happened to have caught the ear of the friend

in conversation, were given portentious (and always inappropriate) mean-

ing. Others that were of genuine concern to the person, were completely

overlooked.

7Naturally, there is plenty of relevant literature on the matter, particularly in recent years.

For example, (some) survey lectures and reviews in the Bulletin of the American Mathematical

Society ; or those histories where the author likes to identify himself with the hero (and so

has a lopsided historical view), but happens to have something significant to say about the

mathematical content of the hero’s thought.
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Of course, this does not mean that it is totally unrewarding to read letters

not addressed to one; but it underlines the unusual skills needed to guess

the intentions. Again, this does not mean that an interest in intentions is

illegitimate or, perhaps, logically ‘senseless’. It just isn’t rewarding if the

chance of anything beyond a very rough general idea is slight.
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Chapter 14

Contemporary Logic

The bulk of contemporary logicians are engaged in the internal development of the

(mathematical) disciplines currently thought of as the proper province of logic.

These disciplines constitute a (mathematically) heterogeneous mixture. What

is common is that they developed from the well-known range of foundational

schemes (originally for arithmetic, then for the whole of mathematics) associated

with Frege and Russell, Cantor and Zermelo, Poincaré, Hilbert, and Brouwer.

As with any other schemes, mathematical tools are needed to formulate them

precisely enough in order to make a detailed analysis rewarding (with a proper

proportion between the degree of accuracy of the claims to that of the data).

The schemes were intended as rival views on the nature of mathematics and

of mathematical reasoning, usually associated with traditional (rival) views on

the nature of the world and our knowledge of it. But (and this is one of the

most decisive contributions of contemporary logic for the foundational tradition)

the mathematical laws actually derived from the would-be rival views, admit

also an interpretation as variants of the original scheme (by Frege and Russell);

specifically: as simplifications, refinements, and extensions.1 This development

follows the pattern of most would-be dramatic philosophical rivals in the past;

from nature vs. nurture in phenomena of perception, to selection vs. modification

(of objects occurring naturally) in the anthropology of tools: with extended ex-

perience, the drama disappears. As a corollary, the currently widespread interest

of logicians in the different logical disciplines, associated with those ‘rival’ views,

is not necessarily related to lack of moral fibre.

On the contrary, familiarity with the broad canvas of all the logical disci-

plines, and at the same time with the mainstream of contemporary mathematics

(together with such manifestos as Bourbaki [1948] concerning the matter) re-

veals (what may properly be called) a logical view of mathematics, which stresses

aspects cultivated in contemporary logic, as opposed to those emphasized in con-

0This chapter is based on lecture notes for the seminar ‘Contemporary logic’, Winter 1983–

84, Stanford University, and it is published here for the first time.
1Cf. Section 2 below [∞].
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temporary mathematics.

Reminder . Certain elements originally introduced for the sake of foundational

schemes have by now been totally absorbed into contemporary mathematics (and

culture generally). For example: the language of sets, the notation for ordinary

logical operations with their simple vocabulary and grammar, the use of models

for independence results (without reference to necessarily dubious specifications

of rules of proof), the notion of formal rule or computer program (for the so-called

perfect computer).

Scope of the chapter

We will consider, roughly speaking, a period of 50 years, starting from the mid

thirties: by then enough notions and results had been established to assure the

visibility of logical disciplines as branches of pure mathematics (and not only as

tools for foundational schemes).2 Samples :

• relating inaccessible segments of the cumulative hierarchy to (what are

nowadays called second-order) familiar axioms of set theory (Zermelo)

• non-categoricity of first-order logic (Skolem and Löwenheim)

• the finiteness theorem, together with recursive enumerability of logical va-

lidity (Gödel)

• completeness of familiar axioms for the whole first-order theory of substan-

tial mathematical notions (real closed fields) by use of quantifier elimination

(Herbrand and Tarski)

• existence of a recursively enumerable nonrecursive set, and hence incom-

pleteness of formal (i.e. recursively enumerable) systems of arithmetic (Gödel)

• improved generation of logical valid formulae ‘without detours’ (Herbrand

and Gentzen)

• formally elegant rules for intuitionistic logic (Heyting), with unsuspected

relations to ordinary logic (Gödel and Gentzen) and certain systems of

modal logical (Gödel).

The style of publications during the period here considered changed at around

half time, when the effect of the summer school at Cornell in 1957 (whose Pro-

ceedings were published by the Institute for Defense Analysis) began to be felt.

Afterwards a much larger proportion of specialists in one branch of logic had

2This is in keeping with the broad tradition of science. For example, some notions and results

of the theory of functions of a complex variable were originally introduced for developing the

idea of (two dimensional motion of) a perfect fluid, and have been separated from the latter

(especially when that idea proved to be a poor idealization).
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relatively adequate knowledge of progress in the other branches, or at least the

successful ones.

Evidently, for details and bibliographical information readers are referred to

specialized accounts of those different branches. But there are enough features

which are common to many of those branches, and different from the mainstream

of mathematics (both w.r.t. methods and to applications) to require a broad

exposition of contemporary logic as a whole. This is the purpose of the present

chapter, which is organized as follows.

In Section 1 some of the mathematically most striking features will be indi-

cated (informally) by means of samples; both w.r.t. neglected parallels in branches

of mathematics outside logic (so to speak debunking the often exaggerated math-

ematical originality involved), and w.r.t. the imagination displayed in finding

some relevant uses of logical discoveries originally introduced for dramatic, and

thus dubious, (foundational) idealizations or issues. Readers are invited to check

for themselves that, though generally the same methods of proof are used, the

theorems so proved that are relevant to the old and new issues are generally dif-

ferent (reversing the advice: if you want to know the meaning of a theorem, look

at the proof).

In Section 2 samples are given of contributions made by foundational schemes,

correcting the widespread impression that the principal weakness of those schemes

was lack of precision; with the implied hope of (near) miracles if we only knew

more about the notions and problems regarded as basic in those schemes. In par-

ticular, experience in contemporary logic corrects the significance (for the broad

concerns in the philosophy of mathematics) assigned by some of the schemes to

such matters as completeness and incompleteness, not to speak of the importance

of formal semantics for those matters, or of the hoary business of the paradoxes.

Also in Section 2, results from contemporary logic are used to introduce the idea

of a (common) logical view , of which the so-called rival schemes are variants.

In Section 3 the assumptions of the logical view, expressed in such logical ide-

als as a (logically) universal language, or the (logical) possibility of formal rigor,

are examined by reference to some perennial questions about improving our math-

ematical capacities, including the (mathematical) language currently regarded as

natural, but radically changed within a couple of generations. The examination

consists in contrasting logical requirements on answers to those questions with

solutions implicit in the mathematical literature. Since the latter does not have

the concepts needed for to formulating those questions, contemporary logic helps

indirectly to make explicit the philosophical relevance of the mathematical solu-

tions. Here, in contrast to Section 2, mathematical logic is not intended as a tool

of the philosophy of mathematics which solves philosophical issues by means of

(neat) metatheorems; rather, it presents certain phenomena of mathematics and

(both good and poor) mathematical reasoning in a so to speak chemically pure,

memorable form.
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Finally, in Section 4, Computer Science and Artificial Intelligence are consid-

ered, as the prime examples of the passage from foundations to technology ; that

is, an unrealistic idea about (biological) processes of reasoning turns out to be

realizable by existing (electronic or photonic) technology, where the realization

achieves some of the results of those processes equally well or better (for example,

more cheaply). Again, as in the remainder above, some elements of contempo-

rary logic (for example, of recursion theory with its use of the same code for

arguments and programs) have been absorbed into the subject. But beyond this

point contemporary logic provides above all logical hygiene, in proving that most

(logically) ideal problems do not lend themselves to an algorithmic treatment at

all.

14.1 Mathematical Features

Despite slogans about the ‘unity of mathematics’ there is considerable diversity

not only within mathematics, but within branches of mathematics. Samples

(apart from bright ideas, both for ingenious constructions and imaginative new

problems which - so to speak, by definition - do not fit into any general scheme):

• There are relations, sometimes called applications , of one part of the branch

to others, and of the branch to other branches of mathematics; in particular,

those recognized as central (the so-called mainstream).

• But also there is the matter of a new interpretation, the need for a shift of

emphasis, when the current interpretation has reached the point of dimin-

ishing returns. This side of research is particularly acute when the current

emphasis (for example, in the choice of problems) derives from - the math-

ematical formulation of - a false conception, such as a false physical theory

or logical view. In this respect mathematical logic is exceptional in the

20th century, since contemporary mathematics has concentrated on the ax-

iomatic analysis or generalization of earlier mathematics that has already

proved to be successful.

The samples above are meant to indicate classifications of mathematical re-

sults (incidentally, cutting across familiar logical classifications). They are not a

blueprint for progress because, quite trivially, there are sensible and silly shifts

of emphasis.

1.1) Mid thirties to the end of the fifties

As might be expected the diversity in question is easier to see in the years of

consolidation during the first half of contemporary logic (before Cornell) and,

with the help of hindsight, easier to judge reliably.
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a) Reversing an earlier trend: positive aspects of negative theorems

In model theory and recursion theory (the theory of formal rules), non-categoricity

and incompleteness were reinterpreted. The question was:

What more do we know if a property can be defined by first order

formulas than, say, just set-theoretically? Or if an arithmetic theorem

can be proved by some formal rules than if it is merely true?

The finiteness theorem was applied directly (Robinson, Tarski), but also (more

ingeniously, and even earlier) certain properties defined by higher order formulae

could be shown to be definable by infinite sets of first order formulae (Malcev).

Thus a specific mathematical ‘reduction’ was combined with logical generalities

about first order formulae.

More importantly, the reasoning by analogy made available by set-theoretic

language (tacitly, over a structure S), that is, transfer of set-theoretic properties

P to all structures isomorphic to S was extended (by Lös) for properties P ′

formulated in elementary logic over S: P ′ transfers to all ultrapower of S too.

For any system F of formal rules for arithmetic there is a recursive function

µF which dominates the rate of growth of bounds (of y in terms of x) for any

provable Π0
2 formula ∀x∃yA, with extensions to functionals µ+

F for provable Π1
1

formulae ∀f∃yA with a function parameter f . For effective use, mathematical

analysis was needed to find (provable) equivalents in Π0
2 or Π1

1 form to assertions

presented in different (syntactic) form. Formal independence (not from F itself,

but) from F together with all true Π0
1 (or Σ1

1) formulae gives lower bounds in

terms of µF (or µ+
F).

Though more special, the shift in emphasis in connection with the method of

quantifier elimination is quite comparable. Originally introduced for decidability

results, it was soon noticed (by Tarski) that their consequence for definability was

more rewarding, and not affected by the obvious algorithmic efficiency, a kind of

parallel to Ockham’s razor of eliminating claims that are unrealistic (even if not

literally false).

b) Can’t one do better?

In proof theory with proofs of results selected by ideological preoccupations, con-

sistency or relative consistency proofs (of familiar axioms with familiar models)

were reinterpreted.

Consistency concerns only Π0
1 formulae, in the sense that a Σ0

1 theorem of a

consistent system need not be true (e.g. S ∪ {∃xA(x)} is consistent if ∃xA(x) is

formally undecidable in S). But consistency proofs for F also generally supply

the bounding functions µF and µ+
F discussed in (a).

For relative consistency proofs, two new interpretations were discovered at an

early stage. The first is expressed by so-called conservation results ; for example,
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formal set theory including the axiom of choice has a familiar model, and so a

proof of relative consistency to set theory without that axiom is a teratological

exercise, but it is not obvious from the familiar model whether new arithmetic

theorems can be formally derived by additional use of that axiom. The second

uses of a particular method for proving relative consistency (spotted by Tarski) to

transfer recursive undecidability results (to theories which have a so-called inner

model or interpretation in the given theory).

c) Relations of logical notions to more central parts of mathematics

Evidently, inasmuch as the work of (a) and (b) concerned specific branches of the

mainstream (as it did), it comes under the present heading. But people looked

also for broader relations, without much success.

Thus Tarski and his students aimed at algebraic closure conditions in models

of formulae F equivalent to the syntactic (prenex) form of F . Conversely, starting

with specific structures especially in algebra (for example, ideals) Robinson in-

troduced notions which are meaningful for all first order formulae, and specialize

to the familiar notions when applied to the specific structure.

The much more difficult matter, of spotting phenomena (for example, open

problems) to which such formal generalizations are actually relevant, made lit-

tle progress. Recursive undecidability of word problems (for various kinds of

semigroups and groups) were not only formally stronger than those for the corre-

sponding full first order theory, quoted at the end of (b), but also mathematically

more substantial. Evidently, this goes with the improvement in the opposite di-

rection, for (positive) decidability and definability results provided by quantifier

elimination, from purely existential to arbitrary formulae.

Remark . The next section is not sharply separated from the present one, since

many metatheorems involve usually only a simple device from mainstream math-

ematics (for example, König’s lemma for defining models of consistent formulae).

So a relation between, say, recursive and such models induces a relation between

recursion and compactness.

d) Relations between different parts of logic

They were pursued quite successfully. The most familiar line was to apply proof

theory, that is, particularly transparent generations of the set of logically valid

formulae (for example, by means of cut-free rules) to results concerning only

provability and hence, via completeness, model-theoretically meaningful; cf. in-

terpolation (Craig).

More delicate relations between recursion-theoretic and model-theoretic no-

tions (then called ‘absolute’, nowadays more often ‘invariant’) were stressed

throughout the 30’s (by Gödel). In the same area models were classified by

recursion theoretic measures, of prefix complexity or degree; for example, lower
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bounds for all models of particular (consistent) formulae, and upper bounds for

some model of arbitrary ones; cf. also the Remark above.

A more special, but also more imaginative relation was discovered by Robinson

in connection with quantifier elimination, mentioned already at the end of (a):

his model-theoretic interpretation made possible a quite new way of establishing

such elimination for familiar structures (by allowing the exploitation of specific

knowledge about them to establish the relevant model-theoretic property). Re-

minder : quantifier elimination allows one to infer, e.g. in the case of R, that if

any real satisfies P (x) then there is an algebraic one that does too.

e) Internal development of logic

This is not the place to go over such permanently useful contributions as Kleene’s

disjoint r.e. sets which are not recursively separable (extracted from a minor

improvement by Rosser of the incompleteness theorem), or the introduction by

Lorenzen and Novikov of infinite proof figures into proof theory (calibrated by

ordinals in articles of Schütte and others). But two contributions, so to speak, at

opposite ends of the spectrum, are relevant to a contemporary prospective.

In set theory, the constructible hierarchy L (of Gödel) transferred - in effect

if not by intention - one of the most useful lessons of algebra to logic, learned

for example from the algebraization(s) of the continuum. For R the familiar

axioms (of Dedekind) are immediate; but soon many questions about R become

unmanageable. On the other hand for first order questions about R very little

of R is used. Experience shows that it is rewarding to consider real closures3 of

arbitrary ordered fields K, obtained from K generally by transfinite iterations

of adjunctions of elements. The most obvious properties of R may not since

verification or even modification, but the later development is smoother: a case of

reculer pour mieux sauter. The general algebraic technology of adding (skillfully

chosen) transcendental elements is an obvious (conscious or unconscious) source

of ideas for enriching (Gödel’s original) work on L. Be that as it may, already his

own work (which, after all, treated infinitary set-theoretic operations in [1940],

and not only finitary algebraic operations) constitutes a very significant advance

in (manipulating functions on the ordinals) over anything that had been done

before.4

Remark (for reference on p. 301). Most of the work on the hyperarithmetic

hierarchy (by Kleene) is most simply reinterpreted by reference to the fine struc-

ture of L up to the first nonrecursive ordinal, though Kleene did not see that

aspect. In technical terms the difference is this: the hyperarithmetic hierarchy

is a version of the analytic ramified hierarchy, while L is (a version of) the cu-

3Completeness of the theory is not relevant; cf. the pythagorean closure.
4The closure conditions on the ordinals involved are of course satisfied by countable ordinals,

even though the latter are harder to describe than the cardinals which satisfy the relevant

conditions.
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mulative set-theoretic hierarchy. Because of the stability of the notion ‘the least

nonrecursive ordinal’ (with ‘elementary recursive’ or Σ1
1 in place of ‘recursive’),

the work does not use specifically recursion-theoretic properties.

In contrast to the above, work on the semilattice of Turing degrees (either of

arbitrary or r.e. subsets of ω) transferred the language, but not the spirit of alge-

bra to logic. The interest of the work goes beyond its new (priority) arguments,

probably the mathematically most original contribution of logic during the years

of consolidation.

For a broad perspective, consider the following parallel between the programs

of Pythagoras and Hilbert (number is the measure of all things): the irrationality

of
√

2 refuted the former, the existence of a non-recursive r.e. set (i.e. incomplete-

ness) the latter. Here it should be recalled that Hilbert’s broad program:

you lose nothing by formalization; in particular, completeness of Peano’s

or Dedekind’s axioms w.r.t. derivability is not lost by passing to the

corresponding first order schemata

required that every arithmetically or analytically definable set was recursive!

though Hilbert himself never realized this implication. This is in fact the most

natural sense in which incompleteness refutes Hilbert’s (broad) program. Be that

as it may, Pythagoreans and Hilbertians were faced with (so far unexpected) ir-

rationals and non-recursive sets. What is one to do with them? Which of them

should one study? What questions should one ask about them? Euclid’s choice

in Book X of the Elements , la croix des mathématicians (cf. Knorr [1983]), made

one choix (roughly speaking, pythagorean dependence): precise, coherent, intel-

ligible (as Knorr shows), and utterly sterile. Turing and Post, in the case of

non-recursive sets, made another, patently modelled on the notion of rational

dependence (of arbitrary irrationals), but ignoring the lessons of number theory

which show that, in general, algebraic dependence on the one hand, and (above

all) measures of irrationality and of transcendence can be more rewarding. Noth-

ing so far done in the theory of Turing degrees has even a remotely similar flavor

to the discovery (by Thue) how measures of irrationality of algebraic irrationals

have implications for bounds on the size of solutions of diophantine equations.

Speculation. It would be hard to imagine Archimedes trying to give a ‘sys-

tematic’ exposition in the style of Euclid’s Book X, at a time when so few specific

irrationals were known. After all, a systematic style (preferably loose, as in the

bulk of Euclid’s Elements) may magnify the advantages of a guiding good idea.

But in other cases it runs the risk of introducing systematic errors (especially if

one relies on the rigid system as a substitute for a convincing idea, as in Euclid’s

Book X); errors in the choice of notions and problems, if not in (the formal valid-

ity of) the deductions. By and large, history of mathematics is at its best when

reminding us of (forgotten) schemes that failed. After all, we remember the suc-

cesses in outline, and the details involved are rarely repeatable, hence generally

misleading.
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f) An imagined experiment

What would mature mathematicians have thought about (a)-(e) at the end of the

50’s (if they had known about the material)? In objective terms: How does this

material fit in with mathematical experience?5

As to (a), there was widespread appreciation of the fact that ‘negative’ logical

theorems, advertized for showing basic ‘errors’ in our ordinary conceptions, had

perfectly sober interpretations too. But just how far could one go in this direc-

tion? In the 20’s, the Polish school had already pursued generalizations with a

logical flavor; of analysis in descriptive set theory, of number theory in ordinal

and cardinal arithmetic. The German school had gone in the opposite direction

of algebraization. By the 50’s, it was quite clear that not all is gold that glitters.

Principal demand : More substantial uses.

As to (b), one can always do better: but at what price (marginal utility)? In

particular, the new interpretations of relative consistency proofs derive their inter-

est from (logical) assumptions about the relevance of the two (logical) categories

involved: derivability from (necessarily incomplete, and thus possibly unduly ar-

bitrary) formal systems, and the division between recursive and non recursive

(in particular, in connection with the ordinarily relevant sense of ‘decidable’). In

the light of mathematical experience accumulated by the mid fifties, questions

of ‘principle’ about (logically idealized) derivability or decidability had become

suspect, as distracting from more subtle information provided by (actual) proofs

and solutions. The logical notions are not ‘first’ steps, because they go so to

speak in the wrong direction. More concretely, in the particular case of the ax-

iom of choice the conservation result distracts attention from what is gained by

use of choice. It is not simplification by shortening of proofs (which is purely

linear), but the elimination of specific choice functions which contribute nothing

to the result stated. Thus the conservation result draws attention away from

the open problem where those choice functions may be relevant (for example, in

algorithmic matters; cf. Section 4 below).

Reminder . In this century mathematics has developed its own proof theory

under the heading of axiomatic analysis in terms of basic structures mères, which

is not merely different from, but in conflict with the categories used in logical

proof theory (or decidability theory). Also, it finds itself on the defensive be-

cause it lacks anything comparable to the neat metatheorems of logic; cf. the

(grammatically well formed) grunts like ‘This is trivial’ or ‘This is ugly’.

As to (c), one has the same kind of reservation as with (b): not whether , but

which relations are established (between logical and more central disciplines).

(d) and (e) are, formally, an internal matter, and so do not invite a view from

5This is not to be confused with the reputation of logic among mathematicians, a mixture

of hearsay, the charisma of individual logicians, interest of the general public, and so forth.

Besides, some mathematicians have broader intellectual interests than pure mathematics, and

so the non-mathematical interest of logic, elaborated in Section 3 below, intervenes too.
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outside. But experience with relations between other branches of mathematics is

certainly salutary.

About (d): around the turn of the century two kinds of relations were estab-

lished between algebra and geometry (not forgetting Cartesian coordinates!):

1. (Hilbert’s) equivalences between algebraic and geometric facts modulo skew

fields and projective geometry (reminder: commutativity and Pappus’ the-

orem).

2. (Poincaré’s) algebraic topology.

Though topology was then a much more recent subject than was logic in the 50’s,

let alone today, so far nothing like 2 turned up under (d).

About (e): parallels with mainstream mathematics were described there. As

is emphasized by specialists on Turing degrees, the most obvious parallel in other

mathematics is (finite) combinatorics . Though its practitioners seem fascinated

by (or easily addicted to) the subject, and quick to present any new idea as

some kind of revelation (revolution), most outsiders seem unconvinced. After

all, there is no guarantee that the subject lends itself to a uniform treatment;

an obvious alternative is to embed certain parts of the subject in one or more

branches of (mainstream) mathematics, other parts in others (cf. number theory,

where certain problems have been recognized to have algebraic, others to have

analytic character). In combinatorics, the recently discovered relations between

van den Waerden’s theorem about partitions P of ω and both ergodic theory and

topological dynamics are good examples (leading to conjectures about special

classes of partitions P defined, respectively, in ergodic and topological terms).

Similarly, in the case of degree theory, the ‘unity’ conjured up by such logical

devices as the first order theory of (r.e.) degrees is unconvincing. For example,

the existence of some incomparable degrees generalizes to all partial orderings of

subsets ω in which each element has at most countably many predecessors (at

least, if the sets, functions and orderings involved are taken from a stock of sets for

which CH fails). The existence of incomparable r.e. degrees seems more delicate

but the choice of recursiveness is dubious, and literally irrelevant, at least in the

trivial sense that the result generalizes to relative recursiveness in an arbitrary

A ⊆ ω.

1.2) Busy years since Cornell

Some of the (conscious or unconscious) reservations of mature mathematicians at

the end of the 50’s, listed in (f), were shown to be not quite convincing by later

work in logic.

For example, in the case of model theory the relevance of the theory of p-

adic fields was shown strikingly by Ax, Kochen, and Ershov in the sixties, and by
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MacIntyre and Denef more recently (in applications to conjectures of, respectively,

Artin and Serre).

Both model-theoretic and proof-theoretic independence proofs (in appropriate

formal systems F together with all true Π0
1 statements) established unsuspected

lower bounds µF for theorems in corners of combinatorics and number theory

concerned with variants of Ramsey’s theorem and the representation of integers

with different bases.6 The theorems involved, though of exceptionally slight in-

trinsic interest, were discovered to exhibit a phenomena previously found only in

metamathematics and related branches: dramatic differences between the math-

ematical and computational difficulty of theorems.

The model-theoretic independence proofs use of course non-standard models

(of F) specially tailored to the particular statements considered. They belong to

that part of non-standard arithmetic or non- standard analysis which parallels

the familiar strategy in mathematics of embedding a given structure (tacitly,

together with a given class of problems) in a richer structure with more ‘elbow

room’ (e.g. extending the factorial to the Γ function, and the like). In short,

detailed knowledge of the particular nonstandard model is exploited to see facts

concerning its standard elements. There is another part of the subject where no

special properties of non-standard models are used, and thus conservation results,

as in (b) above, apply. Occasionally, they have a similar function to that of the

axiom of choice mentioned in (f): in avoiding details that are irrelevant to the

problem considered.7

Warning . For the mature mathematician the fact that logical ideas have been

used effectively is more convincing than any claims about the (logical) need for

those ideas, for the simple reason that the analysis of ‘need’ in logical terms is

dubious; in effect, it is in conflict with the categories of mathematical proof theory

mentioned in (f) à propos of (b).8

6Reminders. All the variants of Ramsey’s Theorem follow trivially by compactness from its

infinite version. The finiteness of Goodstein’s sequences follows trivially by use of ordinals < ε0
or < ωω, corresponding to the variants considered.

7Warning . This view revises the common view (for example, in Robinson and Roquette

[1975]) concerning close relations between non-standard parts of models of arithmetic and func-

tion fields. The particular use of the former in Robinson and Roquette avoids details of specific

function fields (which would be needed for quantitatively more informative theorems). It is be-

yond the scope of this chapter to go over the large and very uneven literature on nonstandard

mathematics, even though it is not so large and not so uneven as the literature on fuzzy sets.
8Cf. Cantor’s proof of the existence of transcendental numbers by cardinality arguments,

10 years after Liouville had shown that
∑

10−n! was transcendental. Evidently, there was no

‘need’ for higher cardinals, except for stating a proper generalization: the result applies not

only to the algebraic numbers, but to every countable subset of the reals.

Aside. The use of uncountable iterations of the power set operation in Martin’s proof of

Borel determinacy would be a contribution to knowledge even if it were not logically needed;

tacitly, w.r.t. the remaining axioms of set theory.



Contemporary Logic 299

a) New reversals of old trends

In particular, the trend of concentrating on those aspects of recursion theory

which are related to decidability (by the perfect computer), and the trend of

concentrating on cardinality (in keeping with the logical ideal of universality: you

may not know which - say, geometric - properties of the continuum are relevant,

but you can always ask what its cardinal is). Samples :

• Higman’s discovery of the significance of r.e. word problems for questions

concerning the embedding of a finitely generated group in a finitely pre-

sented group.

• The shift in emphasis from categoricity in power to algebraically more rel-

evant notions such as stability and transcendence degree (used in Morley’s

proof of Lös’ conjecture).

Higman’s work uses only elementary properties of r.e. sets well known in the

forties, while Morley’s use of (countably) transfinite constructions differs sharply

from the earlier level of model theory.

Less well known is the shift away from interpreting so-called normalization (or

cut elimination) procedures of formal derivations in terms of equality of proofs

represented by those derivations (cf. Section 2 below on the operational semantics

of Lorenzen and Prawitz involved in that interpretation). Sample:

• Lambek’s discovery of the significance of normalization, incidentally for

somewhat teratological propositional systems for so-called relevant impli-

cation (and conjunction), for the word problem of free closed categories

and their coherence properties (needed, for example, in the study of loop

spaces).

Though this significance was spotted by mathematicians, logicians provided

slick and correct proofs.

Despite the considerable literature on topoi and sheaf models in relation to

intuitionistic logic, the latter will be treated for its relevance to Sections 2 and

3 below. For one thing the shift from the original preoccupations (for example,

of Brouwer) with continuity (in connection with choice sequences) does not seem

- at least, to me - comparably imaginative to the samples above. In the same

vague vein: the place of set-theoretic operations involved in the classical logical

operations among operations on sets seems to be - again, at least, within my

experience - much more central than that of the corresponding sheaf- theoretic

operations in the subject of sheaves (reminder: function completeness of truth

functional propositional logic).

b) Squeezing out the last drop from ideas and proofs in logic

Obviously, in the busy years under consideration this kind of thing has become

a principal occupation, but sometimes with satisfactory results. Samples :
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• If relative consistency statements are enriched quantitatively (so as to refer

to the relative lengths of hypothetical proofs of inconsistencies, and not

only to provability) then they imply strong reductions and inner models

(Kreisel, Friedman).

• A different kind of development, but also attractive, is the elegant axiom-

atization of a number of apparently isolated results about formal provabil-

ity (in familiar classical logic with modus ponens) such as Löb’s theorem.

Without exaggeration: this work is needed to establish their significance (in

the sense that the whole subject can be set out in the language of modal

logic, with those earlier results as only axioms). Of course, this leaves open

a judicious choice among the consequences.

c) Relations of logic to more central parts of mathematics

They still constitute a relatively small part of logical activity, some of which has

been mentioned in (a). Nor has logic (unlike number theory) raised problems

which required (or, at least, inspired) significant developments of broad interest.

However, logicians think here of certain corners of mathematics such as uni-

versal algebra (including uncountable abelian groups), general or set-theoretic

topology, descriptive set theory, and the theory of infinite games. This seems

absurd to most contemporary mathematicians. But while (contrary to Popper

or Lakatos) there is no evidence of basic errors in judging the validity of proofs,

as knowledge accumulates the center of gravity (interest) is liable to shift. For

example, Borel sets may become more central. Given this distinction, there are

now massive relations between such corners and logic, especially the set-theoretic

part.

Many of these relations are stated in terms of independence results . However,

the same work admits a different interpretation; for example, as raising the ques-

tion whether, in the corner of mathematics concerned, families of sets restricted

to L or satisfying Martin’s axiom etc. lead to a more rewarding development of

that area (than the simpler full cumulative hierarchy). This too is a shift, if not

a reversal, of interest, familiar from ordinary mathematical experience.9

Experience shows that, in general, no one family can be expected to be priv-

ileged. For example, even in such a small area as free bases for uncountable

abelian groups: Whitehead groups are sensitive to the choice (Shelah), but the

group of bounded sequence of integers with pointwise addition is not (Specker and

Nöbelung). It remains to be seen whether a relatively small number of families

is adequate for relatively many situations that concern us. This matter will be

9Sample. Hilbert’s 13th problem about building up functions of n variables (for n > 2)

from binary functions. He spoke of continuous functions, but the problem would seem more

rewarding for algebraic functions (at least, in the light of his examples).
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pursued in Section 3, especially w.r.t. the highly exaggerated doubts about the

subjective elements in the selection of our concerns.

d) Relations between different parts of logic

They have kept logicians almost as busy as (b), and there can be no question of

summarizing this material here. The Remark on p. 294 leads naturally to the

next sample of some delicate (and hence neglected) aspects of such relations.

So-called metarecursion theory on the recursive ordinals (extended to α-recurs-

ion theory on admissible segments α of the ordinals) established the possibility

of imitating, on suitable infinite segments, the most delicate priority arguments

of ordinary recursion theory on finite segments (cf. Gödel’s transfer of the lesson

from algebra to infinitary set-theoretic operations in (e) above). This contri-

bution of α-recursion theory during the sixties fits well the following change in

climate between 1960 and 1970. At the beginning set-theorists hardly ever cared

to ‘know’ (i.e. acknowledge) any ordinals which were not cardinals, and so ques-

tions concerning the fine structure of L appeared marginal. By the end of the 60’s

there was relatively general confidence in such questions. Granted this indirect

contribution, the project of generalizing recursion theory exceeded the wildest ex-

pectations for it. It is then a quite separate matter to assess the reverse project

of using knowledge of that fine structure to elaborate metarecursion theory, or

even the theory of ordinary Turing degrees (Simpson, Shore). After all, though

ladders (which are reusable) should not generally be thrown away (cf. Tractatus ,

6.54), a child that has at least found a comfortable home had better not be put

back in the slums.

e) Internal developments of logic

They were, implicitly, used throughout (a)-(d); not only forcing and Boolean-

valued models in set theory (Cohen, Scott, Solovay), but also the use of indis-

cernibles and stability in model theory (Morley, Shelah), and various extensions

of the priority method in recursion theory (Sacks, Lachlan).

Some internal developments made heavy use of methods already perfected in

other branches of mathematics. This applies obviously to the sheaf model already

mentioned, the construction of families of partial functions with application (sat-

isfying the axioms of the λ-calculus and much more besides) by use of injective

limits , the construction of families of partial and total functions of all finite types

and satisfying XY×Z ' (XZ)Y by use of limit spaces and general facts about

cartesian closed categories , and, more recently, (Girard’s) studies of the cate-

gory of orderings with order preserving mappings and a special class of functors,

so-called dilators (that preserve direct limits and pullbacks, and are therefore)

determined on well-orderings by their behavior on finite orderings.
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1.3) The place of contemporary logic in pure mathematics

First and foremost, some of its most elementary notions and their properties have

become an integral part of mathematics; this includes sets and isomorphism, log-

ical language, the use of models, the notion of formal rules (operating on each

other). Further, it has contributed a few very general, and hence necessarily sim-

ple, observations ; for example, on arbitrary first order axiom systems, concerning

definability and transfer properties. As a matter of actual experience such results

have continued to be useful for solving significant problems (in combination with

methods specific to the area involved); thus providing a kind of exception which

proves the rule that what is true in general is liable to be trivial in each particular

case.10 Finally, though by no means a particularly new branch of mathematics,

up to now the more elaborate parts of logic have not been strikingly rewarding

(compared to the efforts made by selected people). In short, contemporary logic

is a useful, but relatively minor adjunct to mathematics , so to speak, as a tool

for extending (mathematical) reasoning .

This is in sharp contrast to the place of (contemporary logic among attempts

to analyze mathematical reasoning; for example, the phenomena involved in

proofs and rules (for deciding classes of problems). Whether right or wrong

or even totally misguided, the logical answers in the form of neat metatheorems

are unique among all such attempts (at least, in their aesthetic appeal) partly

because of their independence of detailed (mathematical) experience. So much so

that (for most of us) alternative attempts, in the mathematical or philosophical

literature, are hors de combat unless the superficially plausible logical answers

have been shown to be basically inadequate. As with any other theoretical pro-

gram, the mathematical properties of the proposed theory are needed for such an

investigation. (Newtonian mechanics has to be developed before one knows its

verdict on the perihelion of Mercury!)

We turn now to this use of contemporary logic.

14.2 Trade with Logical Foundations

Section 1 above concerned the disengagement of (mathematical) logical disciplines

from their use for logical foundations. The present section is complementary to

it, and is organized as follows.

We first take the different branches of foundations as objects of study, without

deciding in advance on whether they are variants or rivals, or on the degree to

which any of them contribute to the broader concerns of the philosophy of math-

ematics which they were intended to advance. 2.1 reports on the (mathematical)

10In this respect contemporary logic is comparable to its (younger) variant and, occasionally,

rival for attention: category theory or, more precisely, the different branches of the latter besides

‘pure’ category theory.
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notions and results of contemporary logic related to (or actually derived from)

foundational ideas, and 2.2 reports on the foundational interpretation of mathe-

matical developments in logic, usually for correcting first impressions concerning

those foundational schemes.11

We then use this material to go back, in 2.3, to the questions of: variants

versus rivals, or of the relevance of the foundational schemes to their intended

aims.

2.1) From foundations to (mathematical) logic

Again it is convenient to separate the years of consolidation from the busy years.

By and large it was not the fashion during the years of consolidation to set

out relations of mathematical notions to foundational ideas, in keeping with the

mathematical style of the time (but ignoring the fact that most of contemporary

mathematics deals with well tested notions that lend themselves to a mathemat-

ically pure treatment). But some exceptions will be mentioned, too.

a) Before Cornell

The set-theoretic branch of foundations, especially the ideas of Poincaré and

Russell on a ramified hierarchy , is obviously related to all branches of logic.

Samples :

• Gödel’s constructible hierarchy (with the remarkable discovery that the no-

torious axiom of reducibility is actually valid for L) is a so to speak crude

formulation of the ramified hierarchy; ‘crude’ inasmuch as it ignored the

question (clearly of primary concern to the pioneers12) how far the hierar-

chy is to be iterated.

• Kleene’s hyperarithmetic hierarchy is most naturally regarded as the recur-

sive segment of L (for the hierarchy restricted to sets of natural numbers).

The concern mentioned, at least when interpreted loosely (as the pioneers -

God knows! - would have done), is respected here because of the extraordi-

nary stability of the order types of well orderings definable in the recursive

segment (Spector).13

11Since foundational schemes claimed to be conceptions of (the nature of) mathematics, this

is perfectly parallel to progress on any idea (i.e. conception or theory) we may have of the

physical world, where mathematical theories are developed to formulate that conception and

mathematical results are then interpreted, for example, to reject the conception. There would

have been no problem about the perihelion of Mercury if Newtonian celestial mechanics had

not been developed to a very considerable degree!
12But certainly no more than a modern atomic theory ignores the primary concern of atomists

that atoms be indivisible! It is not lack of moral fibre that led physicists to drop this concern.
13The concern becomes primary in so-called autonomous progressions (for predicative proof

theory), enough to examine the relevance of that primary concern. To spell it out: of course,
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• Gödel’s Princeton lecture [1946] (to mathematicians but without mathe-

matical formulae) derives the notion of ordinal definability from a variant.

The lecture is also the first place which draws attention to the fact that,

contrary to first impressions, not the power set operation, but the number

of its iterations (axioms of infinity) is problematic for full set theory.

Without much exaggeration, the ‘primary concern’ above is more relevant for the

development of ordinary set theory.

The finitist branch of foundations (which had been so exceptionally fruitful in

the early part of the thirties, in connection with hereditarily finite operations) also

spawned an autonomous progression for finitist proofs . The remarks just above

about relevance apply here too. A perhaps more sensible mathematical notion,

applicable to weak quantifier free systems, comes from the finitist branch, namely

that of direct proof in number theory (in the sense of Gauss: no new concepts

should be introduced in the course of a proof). Tarski’s cylindric algebras express

another, curiously literal, finitist view: the stock of symbols of a theory, including

its variables, should be finite!

The intuitionistic branch, obviously because of its alleged obscurity, gave rise

to several mathematical notions, so to speak depending on the particular part

of the intuitionistic literature which happened to have caught the attention of a

particular author. Samples :

• From the literature of choice sequences, Tarski’s topological interpretation.

• From (Heyting’s) explanations in terms of proofs, via Gödel’s modal expo-

sition, Tarski’s calculus of systems .

• From the general preoccupation with constructivity or effectiveness in the

intuitionistic literature, combined with Church’s thesis, Kleene’s recursive

realizability .14

• The new half-forgotten part of recursion theory about the distinction be-

tween simple and hypersimple sets (in other words, different presentations

of finite sets) also comes from the intuitionistic literature.

• The by no means forgotten use of higher types , as in Gödel’s Dialectica

interpretation, is imposed by the property of intuitionistic implication which

is not reducible. In contrast, in classical arithmetic, negations of prenex

that concern is part and parcel of a coherently predicativist scheme; but relevance involves an

additional examination whether (or which variant of) coherence is appropriate.
14The latter gives no interpretation to (¬,→,∧,∀) consistent with Kleene’s own report that

he did not understand the intuitionistic literature, but relied on a remark of Hilbert about

existential operators (including ∨) as providing partial information. This applies to the intu-

itionistic existential operator, not (contrary to Hilbert’s impression) to the classical operator

which need not provide any realization.
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formulas are a constructive reduction class, and so lead to functionals of

lowest type.

b) After Cornell

Gödel’s idea of paying attention to large cardinals , even without any specific

suggestion (except about what one should not do), was taken up in set theory

itself; but without any guidance at all except a weak ‘analogy’. Specifically,

a ‘large’ cardinal should stand in the same relation to ω as ω stands to finite

cardinals (≥ 1), say to 2 (the only finite strongly inaccessible cardinal). The same

idea also influenced model theory and recursion theory, by putting a premium on

questions which are sensitive to the stock of sets considered (for example, cones

of Turing degrees).

Ideas about predicative (in the sense of invariant) definability dominated for a

while the part of model theory which uses infinitely long formulae (and so-called

generalized recursion theory needed to provide the syntax for such languages).15

Starting with inductive (semi-invariant) definability , a parallel exposition was

given, usually with the (somewhat modest) purpose of establishing equivalence

(!); in other words, different descriptions of the same objects, but without any

indication (so far) of areas where one or the other description is superior.

The intuitionistic branch has provided very little, except such additions as

Kripke’s schema. As will be seen in 2.2, here most of the trade went in the

opposite direction (of mathematical results improving foundational ideas). Given

the wealth of notions derived in the years of consolidation from intuitionistic

ideas (sampled above), it seems proper that after Cornell people were kept busy

by these notions.

Finitist foundational ideas (in any sense that is even remotely reminiscent of

Hilbert’s) have not given rise to mathematical ideas in logic. But, for example,

Girard thinks of the functors (in the category of orderings and order-preserving

maps) which he introduced and called dilators as being in the finitist tradition:

the requirement that they preserve direct limits (and pull backs) ensures that

their values on well-orderings are completely determined by their behavior on

finite orderings, since every well-ordering is a direct limit of finite orders. Of

course, those dilators belong no more to a coherently finitist tradition than the

whole of L belongs to a coherently predicative mathematics. But, again, they are

relevant to the question whether or not a coherently finitist presentation serves

the broad concerns which it aims to advance.16

15Similar ideas, though less explicit, are involved in the tradition of descriptive set theory;

for example, Borel sets. Without exaggeration: the only idea that had been overlooked (though

it can easily be made plausible to anyone steeped in descriptive set theory of the 20’s), is the

parallel between finite and Borel (in place of recursive and Borel).
16Interpreted in this way, the finitist tradition has been quite prominent in many parts of

mathematics; thus it would be a misrepresentation of the matter to discuss it in the narrow

context of mathematical logic. As a corollary: it must be expected that a part of mathematical
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2.2) From mathematical logic to (logical) foundations

Some return from mathematical logic to improving foundational ideas is skipped

here. For example, the analysis of completeness proofs for topological interpreta-

tions by isolating axioms for choice sequences needed for the proof: these axioms

could then be seen to apply to a particular notion of choice sequence that had

been mentioned in the literature (by Brouwer), without having been correctly

judged. With these defects, the material will again be split into parts before and

after Cornell.

a) Before Cornell

We first have to correct first impressions about (the defects of) foundational ideas.

Without exaggeration: the single greatest obstacle to progress in foundations

(which includes of course seeing the genuine defects of schemes) is the - persistent -

belief in imaginary defects, and a smug feeling of triumph at having overcome the

latter. One such error, incidentally reappearing in almost all the schemes, is this:

mathematics just couldn’t be done that way! For example, by: restricting oneself

to intuitionistic logic, paying attention to the form of set- theoretic axioms used,

using the language of types in place of sets (let alone, ramified types), and so forth.

As a (neglected) corollary, one thinks that existing mathematical knowledge is

already sufficient to reject the schemes involved. This is not the case, and this

draws attention away from the problem of discovering genuine defects.17 During

the years of consolidation a very simple device was stressed and perfected for

this purpose; namely, to set up subsystems (in a familiar language) which have

straightforward models or interpretations in the (allegedly) formidable schemes.

Samples :

• Gödel’s early observation on the conservative character of the fragment ¬,

∧, ∀ of classical over intuitionistic arithmetic made the point clearly enough,

especially after Π0
2 sentences were included. The important point which was

stressed by the pioneers, but (consciously or unconsciously) obscured by

peddlers of ‘elegant’ intuitionistic expositions, was this: not only are these

conservation results derivable in (say) primitive recursive arithmetic, but

the transformations are patently clear.18

logic that pursues primarily this tradition has been ‘preempted’ by developments in other

branches.
17In the natural sciences we have to set up special experiments to decide between theories,

because as nature as it presents itself generally does not.
18Gödel’s own paper on the subject may have contributed to the confusion because he con-

jectured that such results would not extend to the theory of species or, generally, ‘stronger’

systems. Gentzen’s observation, noted independently by several people in the forties, was

overlooked when he pointed out that ordinary analysis did not need much more than weak

subsystems of formal arithmetic. Goodstein’s expositions were admittedly clumsy. And so on.
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• Gödel’s work on the constructible universe L is another perfect illustration;

only the stilted formulation in terms of relative consistency obscured this

point.

• The axiom or the rule of Σ1
1-choice in connection with predicative math-

ematics is an example of the particular prominence of this kind of logical

hygiene towards the end of the fifties.

Foundational bearing of this logical hygiene: even if there are good reasons for

rejecting the foundational schemes involved, it cannot be philosophically satisfac-

tory to do so for a bad reason.19 General but neglected conclusions to be drawn

from such work will be listed in 2.3.

We turn now to samples of results in logic with genuine foundational bearing.

The first example shows how notions regarded as fundamental (here: validity, the

sacred cow of formalistic semantics) are reassessed by inspecting proofs of results

about them. Gödel’s completeness proof did not appeal to any formal definition

of validity, but used (implicitly) the following properties of validity:

• valid formulas F (with the relations R occurring in them interpreted as

certain relations RF over the integers) are true

• formulas obtained from valid ones by the rules of inference (considered) are

valid.

This is definitely more adequate then picking on a particular definition of valid-

ity.20 Beginning in the fifties, completeness proofs for intuitionistic propositional

logic (later extended to minimal logic) were set out on the same pattern, except

that RF involved an additional parameter α, and:

• valid formulas F (with R interpreted as RF ) are true for every α

is used instead.

The second example shows how foundational refinements can be extracted

from mathematical results. The completeness proof of Tarski and Eilenberg for

Heyting’s propositional logic w.r.t. the topological interpretation provides an RF

in the style just described above, as long as the additional parameter α satisfies

certain simple formal laws. Inspection of these laws led to the recognition that

19Cf. T. S. Eliot’s definition of (intellectual) treason: doing the right thing for the wrong

reason. (It is not a lawyer’s definition.)
20Sample. If validity is defined in the (finitely axiomatized) system GB of classes (as truth

in all set theoretic structures) then one cannot prove in general that a valid formula F with

a single binary relation R is true in GB (with R interpreted as ∈); or, equivalently, that a

formula false in GB is (not valid, i.e.) false in some set theoretic structure. For example, if F

is the negation of (the conjunction of) the axiom(s) of GB then the above statement reduces

to the assertion of consistency of GB, which cannot be proved in GB itself by Gödel’s second

incompleteness theorem.
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certain simple choice sequences, nowadays called ‘lawless’ satisfy them.21 For

reference below: those objects were later seen to satisfy also additional laws

which are not needed here, for example extensionality.

The last example is Lorenzen’s attempt at introducing an operational seman-

tics for elementary logic based on Gentzen’s discovery of cut elimination. Gentzen

made a side remark about ‘introduction’ rules for a logical operator defining its

meaning by its use, a phrase made popular by the Vienna circle without an even

remotely plausible sense. Lorenzen made it at least plausible that some coherent

(though not necessarily relevant) sense could be given to the phrase; cf. (b) below

on writings of Prawitz in a similar vein.

b) After Cornell

A good deal of the work involved dotting the i’s and crossing the t’s of results

established (convincingly) already before Cornell. This applies particularly to the

material at the beginning of (a) above (weak subsystems, conservative extension

of classical over intuitionistic logic, conservative extension of theories in higher

type languages, and so forth). After absorbing this material readers should have

no difficulty in recognizing the pattern, and so no explicit reference will be made

to these later refinements. We can thus concentrate on other directions.

So to speak in principle, Gödel’s point on the possible bearing of axioms of

infinity was established up to the hilt: the simplest proof of the formal consistency

of ZF is by appeal to its smallest model in the cumulative hierarchy. The issue

was to get an idea of the range of relevance of his point. Samples :

• Scott’s refutation of V = L from the existence of a measurable (tacitly,

uncountable) cardinal is certainly memorable, despite the ad hoc character

of the hypothesis.

• Martin’s very natural use of the segment of the cumulative hierarchy up

to ω1 in the proof of Borel Determinacy is perhaps even more convincing,

despite the fact that no new large cardinal axiom was involved: Martin

used previously unemployed cardinals .

• Solovay’s very natural use of inaccessible cardinals to define a family of

sets in which all sets of reals have a measure (tacitly, in the family) is

striking enough.22 And Shelah’s verification of that need (tacitly, within

21Parallel . The integral
∫ a
b
f(x)dx of f was originally thought of, purely mathematically, as

the inverse of differentiation. Riemann gave another description in terms of upper and lower

sums, provided those sums for f (with f(x) ≥ 0 in a ≤ x ≤ b) converge. The only properties

used are: additivity w.r.t. intervals, monotonicity w.r.t. f , and the convention that
∫ 1

0
1dx = 1.

These properties can be recognized as being satisfied by the measure of the area under the

curve a ≤ x ≤ b and 0 ≤ y ≤ f(x).
22Cf. Cantor’s use in note 8 of uncountable cardinals to solve trivial questions in transcendence

theory trivially.
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the ordinary set theoretic tradition, in particular, without determinacy!) is

reassuring: one has not overlooked some really simple alternative within

the tradition.

All this has raised Gödel’s (foundationally witty) aperçu to a genuinely more

substantial level.

In much the same vein, the quite obvious possibility of having families of

partial or total functions that apply to themselves23 (or, so to speak less solipsisti-

cally, to each other) was realized in a quite substantial manner by Scott (models

of the λ-calculus) and Friedman, thus raising at least potentially the level of foun-

dational debates about some ‘universal need’ for type distinctions to a perfectly

acceptable threshold. It is a quite separate matter whether these foundationally

highly relevant results are at all rewarding in mathematics or Computer Science

(where, for example, the requirement of extensionality is usually quite extrane-

ous). The results are also well suited to reassess, in the sense of (a) above, the

basic logical assumption that the existence of some model is a fundamental issue,

in the sense that, once you have it, the ‘rest will look after itself’; cf. the case of

term models. All this provides a good example how successes of (contemporary)

mathematical logic can be used to refute the logical ideals which inspired the

problems that were solved successfully.

On the topic of partial and total functions (so to speak at the opposite ex-

treme) another logical assumption, namely, that one or the other of these objects

must be ‘fundamental’, is neatly put in its place. For an algebraic theory with a

universal enumeration, you need partial functions. For computational efficiency

you must not insist on partial functions.24

In proof theory perhaps the single foundationally most striking observations

were these:

• a semantic interpretation tailored to cut-free rules , including the use of not

necessarily well-founded proof figures

• the discovery of mathematically trivial changes in proofs which involve com-

putationally dramatically different results (when the proofs are unwound to

yield algorithms).25

23Obvious examples of such partial and total functions are obtained from the theory of partial

recursive functions (with a little care to ensure extensionality), and from any semigroup (if the

element a is interpreted as the function x 7→ ax).
24Reminder . To define multiplication for partial functions m · 0 = 0 must be replaced by

something like 0 · 0 = 0 and (m+ 1) · 0 = m · 0 since, for undefined m, m · 0 is undefined but 0

is not; cf. Statman.
25There are many open problems here, e.g. in connection with the finite variants of Ramsey’s

theorem by Paris and Harrington, and by Ramsey himself. Both versions can be proved by

compactness (from the infinite version), and a mathematically simple modification of the second

proof leads essentially to the standard proof of the finite version (by recursion).
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In intuitionistic logic there is clearly the potential for a genuine foundational

advance, but it has not been realized. Specifically:

• There is a great deal of work (combining old and new methods) which

establishes such formal properties as conservation and non-conservation of

masses of systems (incidentally, copied somewhat haphazardly from the

classical literature). It would be a foundational advance if descriptions of

the systems in specifically foundational terms allowed one to read off those

results.26 In fact, logicians are just kept busy calculating.

• There has indeed been some clarification; for example, on the place of the

usual intuitionistic connectives ¬, ∧, ∨,→ among all intuitionistic proposi-

tional operator (definable by infinitary operators on second order logic), or

on one of the intended interpretations of those operators in terms of opera-

tions and proofs (of logic free propositions). The conclusions are parallel to

those concerning predicativity or finitism: all this (simple) work shows how

to implement the primary concerns of the pioneers, but it leaves wide open

the question to which extent the pioneers knew what was good for them.

It is simply a superstition to think that everything that is coherent is good

for one.

Probably unconsciously, most people in the subject continue to think of intuition-

istic logic as deep and obscure, with many hidden treasures if only its concepts

were ‘clarified’. This overlooks the fact that intuitionistic language is very close

to one of the dialects of (natural) mathematical language in current use (and even

more widely used before Cantor). And the reaction overlooks the possibility that

this particular dialect is just not very effective for its most highly advertized aim

under the slogan of ‘constructivity’.

Finally, work has been done on the general (foundational) ideal of giving a

meaning (technically: a semantics or, more precisely, a semantics in a particular

tradition) to so to speak formal tricks (more precisely, what appear to be tricks

for the particular tradition27). Samples :

• Henkin’s straightforward semantics for the usual (many sorted) first-order

version of higher-order logic, leading to the terminology of ‘nonstandard’

models. The later development by Robinson highlights the two separate

issues of internal development (for example, considering not only formal

26Cf. imagined experiments of studying formal systems of set theory without knowing their

interpretations in terms of the cumulative hierarchy. For such a study it could be as difficult

as Gentzen’s consistency proof for arithmetic to see that replacement cannot be derived from

the other axioms (while knowing these interpretations it is sufficient to note that replacement

does not hold at level ω + ω).
27For example, though the exclusion of tertium non datur is evident for the intuitionistic

meaning, it seems a trick for standard semantics; specifically, a trick to ensure recursive realiz-

ability.
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systems, but all true formulae) and discovering areas where the new notions

are actually relevant. The difficulty of the latter is illustrated by the (so

far) unrewarding areas of invariant subspaces of operations and diophantine

problems.

• Boolean valued semantics for forcing constructions introduced by Scott,

Solovay and Vopenka.28 This was later used for a notion of nonstandard

model different from the ones above, by Scott and Takeuti. The latter

discovered the relevance to von Neumann and AW ∗ algebras.

• The formal discovery of cut-free proofs has been given both a model-theoretic

interpretation (including the case of proof trees that are not well-founded)

and an operational interpretation (by Lorenzen and Prawitz). Prawitz has

also given an interpretation to (uniqueness of different sequences of) cut

elimination steps.

• Kripke’s models are, in fact, trees or partial orderings of familiar kinds of

models.

Readers should be warned [∞] of the interplay (e.g. in the second sample above)

from mathematics to foundations and back to mathematics in general terms, and

of the fact that the important thing is not that a semantics is used, but which

(equivalence classes of formulae).

2.3) A notion of logical foundations in the light of contem-

porary logic

Provided ‘logic’ is interpreted broadly, but quite naturally, there is a good deal of

historical continuity (both positively and negatively), with the paradoxes barely

constituting a singularity.29 On the positive side: Leibniz is quoted in connection

28This semantics can be compared to an earlier intuitionistic semantics (Kreisel [1965]) in

terms of lawless sequences (which, however, has been less rewarding). Incidentally, it is not

necessarily an accident that cleverer people have worked a Boolean valued models than on

lawless sequences; just as it is not necessarily an accident that, during the last 3 centuries,

cleverer people have specialized in astronomy then astrology.
29Contrary to many contemporary accounts, the paradoxes which dominate so much of the

logical literature (and of introductions to even respectable texts in logic) are a mere ripple

in that broad logical tradition. On the contrary, the paradoxes constituted a so to speak

irresistible temptation to present any (bright) idea in the logical tradition as being relevant to

the paradoxes; cf. the temptation to present any discovery on cell growth, however striking on

broad biological reasons, as (possibly) contributing to a cure for cancer or aging or whatever

else is regarded as a ‘problem’. Questions about the broad nature of mathematics existed before

the paradoxes, but the latter produced the impression that validity of (familiar) principles was

a central and rewarding issue. Anyway, the paradoxes were a godsend , because they provided

the pretex for sounding logic itself for validity! What they showed was that one might need

logic for discussing logical mistakes!
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with both recursion theory (recursive decision methods) and nonstandard analy-

sis; Frege in connection with elementary logic, still a central part of the subject;

Hilbert’s Foundations of Geometry were a hit before the end of the last century;

finally, Russell wrote his Principles (on: What is mathematics) before he dis-

covered his paradox. On the negative side: mathematicians had (generalized)

doubts about logic and sets before that paradox (for example, did not wish to

touch Cantor’s higher cardinals), and Kronecker had specific doubts (which he

could have expressed more effectively if he had known more logic).

The obvious hallmark of logic (already in Aristotle’s business of Being) is

generality , both in the case of propositions (Being) and of processes (methods

or knowledge). The idea is that one proceeds from the general to the particular :

one could not recognize a particular proof if one did not have the (or, at least, a)

general concept of proof to start with. There is the additional idea that we need

(or even, perhaps, that there are) only very few such general ideas, and that we

have become aware of them by the end of the 19th century (at the latest, since

to some the Wisdom of the Ancients is sufficient).

From this point of view, Frege’s question: What is the number 1? is perfectly

natural. On the one hand, natural numbers have a very general domain of appli-

cation. On the other hand, if they too (and Kant’s space and time) were needed

(as additional general categories over and above the logical ones), where would it

all end? What would one be talking about when using such expressions as ‘(the

theory of) knowledge’ or ‘on what there is’?

Airy-fairy as all this sound, at least superficially, it is not so different from (the

ideas behind) a unified fundamental theory in physics. Less superficially, one is

impressed by the difference that the unified theory in physics talks about ‘deep’

phenomena in the literal sense of being far removed from everyday experience

(which certainly does not have a uniform look). The attempt - going back to

Aristotle - of presenting logical concepts as deep in the same sense (namely, by

regarding abstract notions as far removed from sensory experience) conflicts with

the observation - incidentally, also due to Aristotle - that sense experience already

involves abstractions; in current jargon, the information processing in the sense

organs corresponds to (processes which we call) abstractions.

From this same point of view, a ‘reduction’ of mathematical knowledge to

logical generalities would explain its superficially most striking property (alias

‘problem’) of being certain, and not refutable by experience; for if the knowledge

applies to all Being, it should not be sensitive to particular experience.30

30Admittedly, this point of view is strange if one thinks of concrete cases, of the precautions

needed to fit the mathematical notions employed to the phenomena considered. But for the

moment we stick to the ‘spirit’ of the view.
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a) Internal Refinements

Granted the desirability (or even possibility) of such a reduction to very general

concepts, the question arises: Can’t we do better? Specifically, when applied to

a particular branch of mathematics the ‘reduction’ should (so to speak automati-

cally) specialize further: to concepts that fit the particular branch. This point of

view of purity of method was stressed by Hilbert in the Foundations of Geometry .

The whole program of finitist reduction is a special case of this scheme: finitist

proofs for finitistically meaningful (and valid) statements.31

In the tradition of Aristotle (Metaphysica, Γ, 4, 1012a), the logical notions

considered by Frege were well defined. The question arises whether, contrary to

Aristotle’s and Frege’s impressions (alias convictions), logical operations could be

coherently extended to propositions about incompletely defined terms . The bulk

of Brouwer’s publications concerns one positive answer to this question, in the

case of choice sequences.32

Thus the scheme of Hilbert presents itself as a refinement , and that of Brouwer

as an extension, of the scheme of Frege and Russell or Cantor and Zermelo.

The ramified hierarchy of Poincaré and Russell is also a refinement in the style

of Hilbert, but with the line being drawn differently (instead of finitist: reducible

to the ordinals). Thus we have completeness not only for Σ0
1 sentences, but for Σ1

3

sentences or, more prettily, Σ1 over ordinals (in place of Σ1 over finite ordinals).

Closer to Poincaré: for ∆1
2 sentences, the meaning is not changed by introducing

new elements into the universe (cf. Gödel’s ‘absolute’ or ‘invariant’ definability).

b) Comparison with the popular views

Hilbert’s and Brouwer’s own interpretation of their schemes presented them as

rivals to the set-theoretic scheme.

Hilbert’s scheme is a pointless rival, because it simply does not apply to

perfectly sensible parts of mathematics. If regarded as a refinement, it leads to

the question:

What more can we do with a branch of mathematics that does fit the

scheme?

31To get off the ground the program requires formalization of proofs, since otherwise the

program could not even be stated in finitist terms.
32Remark concerning (what Bourbaki calls) the ‘profound intelligibility’ of mathematics (tac-

itly, in their sense, but here even extended to that of choice sequences). The logical operations

were defined by Brouwer in terms of (idealized) proofs, so to speak ‘idealized’ from the famil-

iar psychological phenomena of convincing mental constructions, the kind of thing that Frege

explicitly excluded from his science.

Another interpretation of the resulting logical laws, in terms of some kind of constructivity,

is formally possible but less convincing: too many constructions remain hidden in those logical

operations. The specialization to recursive realizations is tied to the fact that only formal (r.e.)

systems are considered.
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Philosophically even more rewarding is the question:

Are such branches distinguished by a special kind of certainty, as

Hilbert claimed for this scheme?

If not, we have the corollary: the hypothesis that the scheme is relevant to ques-

tions of certainty is thereby refuted.

Brouwer’s scheme, as presented by him, is not a rival at all because it talks

about different objects (with a different interpretation of the logical operations).

To make it worthy of attention Brouwer had to argue against the intrinsic inco-

herence of the so-called classical scheme, and this makes his own scheme superior

by default . Be that as it may, this was not successful. If viewed as an extension,

the question arises: how does Brouwer’s (also coherent!) scheme compare with a

paraphrase33 in set-theoretic terms? More specifically: for which problems may it

be relevant? Here the scheme must be regarded as a pars pro toto: not confined

to (subjectively, slanted) choice sequences, but adapted to random sequences or

propositions (as in the quantum theory) about terms which are prevented from

being completely definite by the uncertainty relation of Heisenberg. Put differ-

ently: the choice between schemes is not made on brutal grounds of validity .

The choice presents therefore a nontrivial particular instance of vague talk in the

philosophy of science about ‘simplicity’.

As far as actual knowledge is concerned, Poincaré’s and Russell’s ramified

variants of Cantor and Zermelo, as developed by Gödel, seem certainly viable in

the corner of mathematics consisting of descriptive set theory, and the like (cf.

Jensen’s many results in L). Put simply: our knowledge of V is more rewarding

when applied to L (and not to V itself).34

c) Looking back

The notion of logical foundation (or, if preferred, of logical aspects) of mathe-

matics adumbrated in 2.3 simply raised the question:

For which problems are these logical aspects relevant?

It does not claim that they are relevant for all of mathematics; let alone, for the

particular issues of certainty or validity prominent in fundamental discussions (at

least, after the paradoxes).

Admittedly, if logical aspects were significant for those ‘grand’ questions, it

would be an error (from every point of view!) to ignore this, and play about

33The matter of paraphrase is standard. For example, continuous operations were intended

to deal with imprecise data.
34References to actual knowledge are usually dubbed ‘pragmatic’; this means, ordinarily,

‘shortsighted’. It may be that our actual knowledge of V and L is simply too restricted to

serve for any sound evaluation of what is rewarding, of which (of course, valid) results are of

permanent interest. But on the other hand it is not obvious that this is the case, either.
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with modest refinements in group theory or number theory. Conversely, if logical

aspects are not relevant to those matters then the (logical) problems and conjec-

tures derived from misguided conceptions about such matters are liable35 to be

sterile; not only false, but (when false) trivially refutable. Sample:

• Hilbert’s ‘grand’ conjecture: it is consistent to assume that every problem

P can be solved, i.e. either P or ¬P can be proved. Actually, it is consistent

to assume that everything can be proved!

Interested readers should check that many of the results in Section 1 and 2 are

naturally interpreted as exhibiting the relevance of logical aspects to the areas of

mathematics involved. Obviously, able people are not fettered by any particular

scheme or notion; so there are bright ideas in the logical literature which do not

fit this interpretation.

14.3 Logical View and Mathematical Practice

On the principle:

What do they know of logic who only logic know?

this section will briefly describe schemes (used, but not mentioned!) in the math-

ematical literature which are almost at the extreme opposite to the requirements

that constitute the logical view .

We have presented the logical view in 2.3 as a disturbing element for math-

ematical practice.36 Perhaps paradoxically, more disturbing than the (exagger-

ated) claims and demands of traditional logical foundations, which after all are

primarily concerned with analyzing and justifying ordinary mathematical expe-

rience and methods, and to supplement them with answers to questions such as:

What is the number 1?, but without interfering with day-to-day operations (ex-

cept possibly when presenting the elementary ‘foundational’ first steps). Hilbert,

35Liable and not inevitable, just as in the case of gifted theologicians like St. Thomas who

made significant observations about (the nature of) thought when holding forth on the Divine

Mind.
36I downplayed the danger of the ‘invasion’ of logic into mathematics, on the ground that

mathematics ignored logic anyway [∞]. It is true that they ignored the details, but not the

general scheme (given the name ‘logical view’ above). There is no contradiction here; that is, it

is possible to pay attention to the general view without knowing about the details, just because

(the latter fit quite well into the general view, and) this general view is simply part of Western

intellectual tradition (cf. Plato’s Republic: when people lose their reason, they concentrate on

particulars). The mathematicians have come to rely on extracting (or abstracting) general

ideas from particulars. In other words, Plato overlooked the possibility of concentrating on

particulars up to a certain point (of diminishing returns), and then doing something else; just

as before the period of digging into particulars, general considerations will have drawn attention

to (so to speak) the particular particulars as rewarding objects of study.
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for example, was quite explicit: once the possibility of eliminating infinitist proce-

dures was established, one would go on as before, perhaps more so.37 All this may

be compared to the view in the 19th century of fundamental physics which would

leave then-current physics intact but give theoretical reasons for the value of, say,

certain empirical constants. (Segregation between macroscopic and microscopic

physics.)

If, however, is regarded merely as a notion, as a particular style of mathematics

(with a preference for objects and problems about them selected in terms of logical

categories) then the logical view acquires a down-to-earth function: a kind of

strategy for selection of notions and problems. Samples :

• recursive decidability for all elementary formulae about a given structure

• classification of theorems according to logical equivalence (modulo some

particular ‘basic’ system).

Mildly vague as the logical view may be (at least, in the exposition of 2.3), it

is immeasurably more precise than the (practically comparable) strategies used

in mathematics itself. They are formulated as helpful hints , usually under the

guise of pedagogic recommendations on ‘exposition’ (without any reference to

empirical evidence, though pedagogy is obviously an empirical affair).

This is not all. The logical view and (though this is rarely emphasized) those

helpful hints have a direct bearing on broad concerns about improving38 natural

(mathematical) language, the most visible and outward sign of our understanding

of mathematics. But here there is a difference: the logical view presents itself as

a candidate in this area, which the ‘helpful hints’ do not.39

The purpose of this section is to give three samples of broad concerns, which

we name in everyday language: we compare the logical ideal for an answer with

the forms of answer that have developed in the course of mathematical experience.

3.1) Vagueness: virtues and defects

Though, by convention, written formal expositions tend to be relatively free of

(what are, in the ordinary sense of the word) vague considerations, the bulk of

natural mathematical discourse is full of vague expressions. They have an obvious

virtue (to use Russell’s phrase from the introduction to the History of Western

Philosophy) in ‘the face of uncertainty’: flexibility . They also have an obvious

37The, literally, radical reform implied in this proposal of ignoring (the meaning of) anything

other than Π0
1 sentences was hardly noticed by anybody, including himself; much less than

Brouwer’s ‘reform’.
38To repeat what cannot be repeated too often: improvement is not confined to correcting

previous errors; improvements can consist in extending our interest in new (and rewarding)

directions.
39Not even mathematicians recognize the bearing of those hints on questions formulated in

the pretentious language of philosophy or Artificial Intelligence.
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defect (to which purveyers of ‘theories’ about inexact notions or fuzzy predicts

seem to be blind): detailed analysis is liable to be unrewarding, as being out of

all proportion to the accuracy of the ‘data’.40

a) Remedies

The logical view has (implicitly, but obviously) two remedies. First, generality :

if what we have to say is true for everything, it will be true also for those things

that we happen to be uncertain about.

Secondly, a (so to speak) second line of defense: by reflection, we shall find

a fundamental (or at worst a few fundamental) notion(s) which are behind the

vague notions in common use; these fundamental notions are assumed to be

among the familiar abstract notions already part of the Wisdom of the Ancients

(and neglected - not by Newton but - by science since Newton).

Historical Remarks :

• Frege’s idea that (proper) notions must be meaningful for every conceivable

object, fits well with the particular virtue of generality mentioned above.

• Cantor’s idea that this must fail, so to speak, because of human frailty

(the Absolute Infinite being the domain of the Almighty) goes well with his

proofs of modesty (n+ω = ω, while ω+n > ω if n stands modestly behind

ω).

• Russell’s idea of having to look for a domain of significance is a vestige of

his empiricism, that does not go well with giving a central place to logic.

b) Reservations

First, about the assumption that generality is a panacea. What about the possi-

bility that what is true in general is liable to be trivial in each particular case? Of

course, this does not mean anarchy or, say, the naturalist’s preoccupation with

particulars. But it does mean that one has to look for an appropriate level of

generality , comparable to Russell’s idea above.

Secondly, even if something approximating the idea of a fundamental notion

is behind vague notions, why should it be exactly one of the familiar notions

prominent in the Wisdom of the Ancients?

So to speak taking over the basic assumption of the logical ‘oppressor’ (with

its preoccupation with precision and validity), the reservations often take the

form of

doubts about the possibility of a precise analysis

40One other feature is that, if knowledge of the world around us happens to grow at a

particular period, the common meaning of ‘vague’ expressions tend to change so to speak

before our eyes; not only in mathematics, but in daily life.
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of those familiar notions, shifting the emphasis to those relating innocent doubts

from the much more basic

doubts about the adequacy of those notions

(tacitly, for their intended purpose).

c) Helpful hints: combining flexibility and precision

Here the idea is that, as far as those familiar notions are concerned, in each

particular case

only relatively few properties of the notions are relevant

and, among the particular cases of interest,41

relatively few sets of such properties cover the bulk of the cases.

Evidently, in any particular case, judgement42 is required to see which of those

(few) sets is relevant. Sample:

• From the present point of view, the study of models of incomplete axiom

systems (for arithmetic, set theory, etc.) is not at all interpreted as having

to do with lack of precision in the notions which are the so-called intended

models (though, of course, occasionally there may have been serious lack

of precision43). On the contrary, a small arsenal of such models may be

much more effective for mathematical progress than preoccupation with

the familiar model.44

3.2) ‘Paraphrase’ versus ‘analysis’ of familiar notions

Contrary to the parrot-like repetition of the would-be truism that, for example,

there can be no ‘proof’ of the identification between effectively computable and

recursive functions, this kind of question belongs to a successful tradition going

back to antiquity. Samples :

41The matter of interest is rejected as ‘subjective’. Be that as it may, it is perfectly comparable

to our selection for attention of phenomena in the external world among all those things in

heaven and on earth that Hamlet proposed to poor Horatio for study.
42Again by comparison with natural science, the choice of theory which is relevant to a

particular phenomena (that is, the discovery of the dominant factors determining the particular

phenomena, and thereby the relevant theory) is also left to judgement based on experience, and

not mechanized in a theory.
43For example, the long preoccupation with alleged imprecision of impredicativity, and total

disregard for the length of the cumulative hierarchy; or Wittgenstein’s worry about the meaning

of successor (e.g. whether 100 + 1 = 102) compared with the hackenayed worry about ω!.
44Reminder . The importance of non-Euclidean geometry does not lie in rejecting any ‘priv-

ileged’ place for Euclidean geometry; after all, most such models continue to be defined in

Euclidean space (possibly of higher dimension).



Contemporary Logic 319

• in geometry, definitions of length or surface area

• in rational(!) mechanics, of perfect rigid body or perfect liquid

• not to mention the general scheme of analytic geometry, where geometric

notions are expressed in logical terms.

a) Refinement

The logical view puts a premium of the following kind of (logical) refinement.

What could previously only be seen, can now be said; specifically, in terms of

representation theorems derived from explicit answers. Samples :

• Deriving the Riemann integral from evident properties of the (familiar)

notion of area from the axioms of monotonicity and additivity.

• Deriving the axioms of order (instead of using 30 pages as Russell did in

Principles).

Traditionally, one gave one convincing set of axioms, instead of relying on the

equivalence of many different descriptions (as is familiar from recursion theory);

on the principle that one good reason is better than 20 poor ones.

To distinguish this kind of activity from formal deductions, one speaks of

informal rigour .

b) Reservations

This kind of informal analysis, long dominant in mathematics, has been down-

played since the thirties. The most obvious external sign: disappearance of fa-

miliar words like ‘dimension’, and introduction of neologisms .45

The most obvious reservation applies when one has no confidence in the fa-

miliar notion; tacitly, in its (familiar) meaning or any other context in sight.

Probably, this applies to choice sequences.

The matter of (a) admits a convincing reinterpretation, without any hypoth-

esis on the ‘fundamental’ character: if descriptions in terms taken from different

areas of knowledge specify the same object, one has a ready made arsenal of

methods to study that object, namely all those areas. And if the object has been

recognized to be relevant to one significant area, we are in business. This view of

the matter is unaffected by the obvious weakness of (a) in overlooking the possi-

bility of a systematic oversight which spoils all of the (systematically equivalent)

descriptions. In other words, the weakness consists in a lack of safeguards against

such systematic oversights.46

45Possibly, a temporary point of diminishing returns; to be taken up later, in combination

with another interpretation coming, say, from gauge theories in physics.
46However, when (as described above) one has no confidence in a notion, it is hardly clear

that it is worth the trouble to find such safeguards.
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Current mathematical practice is usually described by means of (grammati-

cally well-formed) grunts about: ‘judging by success’; or ‘on aesthetic reasons’;

or even (in Hilbert) about ‘judging by the fruits’, in a reference to the Bible (New

Testament) where not only good but also bad fruits are mentioned! Here the

whole attempt at an informally rigorous analysis which justifies a paraphrase is

rejected (with grunts). Superficially, this seems quite silly: it can surely do no

harm to have such an analysis (for example, if one uses the paraphrase anyway);

as it can surely do no harm to have additional money or power (assuming that,

like all mathematicians, we are full of good will). But the rejection is consistent

with a more subtle consideration, reminiscent of (perfectly sound) concerns in

politics or economics: regarding some piece of analysis as a worthy end in itself

draws attention away from delicate relevant open questions, e.g. what to do next

when the money has lost its value by devaluation. From this point of view, logical

preoccupations are the opium of the scientist wishing to make scientific progress.

As a corollary, current mathematics insists that the paraphrase has been used

successfully . For, while (in the abstract) reference to ‘success’ is weak because

(again, in the abstract) it is easy to imagine circumstances where success is diffi-

cult to judge, there is a tacit requirement that the paraphrase has been used not

only successfully, but so that success is easy to judge.

Digression. A moment’s though shows that the present considerations (3.2)

apply very generally to other parts of language beside the (natural) language of

mathematics. It would therefore not only be inefficient, but unnecessarily clumsy

to present the points above merely in the special context of mathematics. So

readers are invited to look for parallels in current studies of natural language:

the possibility of finding both grammatical rules and (an intended) meaning for

dialects (as intuitionistic mathematics uses a dialect of mathematical language),

which draws attention away from the fact that a paraphrase can be better.

3.3) ‘Enrichments by descriptions’ versus ‘equivalence clas-

ses of descriptions’

(As in the digression above) this topic is a special case of a very general preoccu-

pation, going back to the Greeks, on the priority of ‘the’ extensional (object) or

‘the’ intensional (specification). The whole thing is a mixture of experience and

so-called normative considerations; not so much ‘normative’ in the sense of what

one ought to do to make progress, but in the sense of what the world ‘ought’ to be

like (to be called rational, as in ‘rational mechanics’). In particular, one argues

that the specification should be prior because that is how we come to know about

objects; and, in fact, that is how we identify objects. The argument is not partic-

ularly persuasive if one actually looks at experience: in so-called preattentive (or,

better, inattentive) perception we remember the object or some abstract feature,

and not the details nor even the particular aspect or side of the object which was



Contemporary Logic 321

perceptible on the occasion in question.

The assumption that an exposition should proceed from a list of axioms re-

quires us to single out a particular description or definition though, as knowledge

develops, that particular choice may become arbitrary.47

a) Relevance

As mentioned repeatedly, not only validity, but relevance and significance are

of central interest. Now, there is a certain subjective flavor attached to the

latter virtues which creates a malaise (as if subjective elements were necessar-

ily arbitrary, and hence unsuitable for theoretical study). To avoid this issue,

mathematicians have adopted the device of setting out generalizations and con-

sequences (corollaries) to exhibit , respectively, relevance and significance, without

saying that this is the purpose of the exercise; a device to avoid (often sterile)

arguments whether the purpose is actually achieved.48

Given any particular theorem, not everything that is known about the struc-

ture of the objects concerned will be relevant to the theorem (key word: axiom-

atization). But also (as in the paradigm of the passage from functions, in the

sense of rules, to their graphs) not everything about the genesis or ‘history’ of the

object will be relevant. So it seems plausible that, as knowledge grows, different

aspects will be discovered to be relevant. Sample:

• In the case of functions the graphs were relevant (apart from numerical

analysis, where the notation chosen was equally important). But in more

delicate problems at least types (that is, bounds on the range of the func-

tions) had the advantage that problems (e.g. functional equations) could

be solved by more elementary means. And if these additional data are

available (and effective) it is poor science to ignore them.

b) Equivalence classes

It is a feature of ‘fundamental’ theories that fundamental equivalence relations

are discovered ; for example, for chemical phenomena, the chemical structure of a

substance (within limits independent of, say, its temperature).

As a matter of general policy, the passage to a particular equivalence class

(and thus the choice of a particular equivalence relation) does not seem to have

worked well. Samples :

47When definitions are called mere ‘conventions’, it is to be distinguished whether the choice

of object defined is an arbitrary matter, or whether (given the object) the choice among possible

definitions is arbitrary (to some extent).
48This tactic is parallel to the use of neologisms after the 30’s for naming concepts like

homotopy, in order to avoid the arguments that arose in the 20’s about claims implicit in using

familiar words like dimension or area (of a surface).
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• In the case of natural numbers, if one thinks only of counting one-by-one

then the successor structure on notations is indeed primary; but not if one

starts calculating, let alone if one remembers their use for measurement

(e.g. in geometry).

• Trivially, pushed to its extreme, the equivalence relation used will be mere

equality, and then we finish up with cardinal arithmetic (the logician’s par-

adise, as mentioned already).

c) Enrichments

The opposite passage, to increasing enrichments by (or, for that matter, occa-

sional suppression of) new data, is a neglected instance of an empirical element

in mathematics, a possibility of learning from experience. Phrases like:

the tricks of mathematics are eternal

suggest that it is disturbing not to have this possibility! This is consistent with

Lakatos, Popper and Putnam wanting the truths to be in need of correction. The

slight variant:

the (eternal) tricks of mathematics are eternally interesting

is less disturbing. Experience has a place in correcting assessments of interest

or relevance of a piece of knowledge for the broad body of knowledge, as already

discussed in (a).

14.4 From Foundations to Technology

The prime examples we consider are Computer Science and Artificial Intelligence.

Broadly speaking, the two subjects are quite different. Computer Science tries to

do things well that people do badly or, realistically speaking, simply could not

do at all. Artificial Intelligence - for example, realized by robots - tries to do

what (so to speak, abstractly) people do well or even immeasurably better than

robots, but under certain circumstances cannot do for one of diverse reasons; for

example: boredom, or because they cannot survive the surroundings (on Mars,

inside a nuclear reactor), or because they are uneconomical. So it should not be

surprising if all that is common to both subjects turns out to be pretty trivial in

each.

a) Computer Science

The logical view has, by and large, been unproductive for Computer Science (in

the sense of: science of algorithms), except at a very early stage when it showed

the value of hardware that would realize Boolean operations, recursion, and (of
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course, above all) the possibility of using the same material as codes for arguments

and operations. Samples :

• Large lower bounds for practically all problems about arbitrary formulas

of elementary logic. This is a conflict because, on the logical view, such

problems have the logically ideal form.

• The choice of language, in the sense of explicit definitions , turns out to be

of the essence. Again, for the logical view explicit definitions are negligible.

Contemporary logic has been used to establish these results (even though expe-

rienced computer scientists may have been convinced of it before).

b) Artificial Intelligence

Artificial Intelligence is a typical example of the step from foundations to tech-

nology. The situation goes back to one of the main features of the logical view,

particularly clear in Frege. Granted that we know little about human informa-

tion processing, it is simply unpromising to speculate (like Kant) what we use in

reasoning, in particular in solving problems. This is in any case irrelevant to the

question he raised about what (kind of solution) is possible. Obviously, if we are

sensible we do not confine ourselves to what is so to speak logically needed, but

we use the resources we have. Now, granted further that we do not have the tech-

nology to construct cheaply systems which use the full range of resources available

in higher organisms, then it becomes interesting to go back to Kant’s question

(not his particular claims!) about looking for minimum possibilities. These may

be realizable technically.

In this respect the logical view concerning a technical task (to achieve a given

output for a given input) appears perfectly appropriate; especially if we really

have no idea how to do it; for example, if we found no model for it in a phenomena

in nature that we understand well.

Of course, a good deal of Artificial Intelligence (which is by no mean homoge-

neous) proceeds by starting with an algorithm together with a robot that can do

unexpected things; then one looks for applications in the literal sense of commer-

cial applications.49 This direction is only slowly being counted as part of Artificial

Intelligence, because it does not involve the detour via a familiar psychological

solution of some (partly intellectual) task. In other words, it does not appear to

be an analysis of an intellectual process, but so to speak a paraphrase.50

49So here too we have an interplay between methods and aims adjusting one to the other; cf.

Section 2.
50Evidently, contemporary logic is also not homogeneous, and exhibits a similar interplay.
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14.5 Conclusions

Contemporary logicians think of their subject as a collection of mathematical

disciplines, not so much related by the methods used to prove the main result,

as by the subject matter; more precisely, the subject matter of most general

(and therefore most elementary) logical notions of relations including predicates

and (various kinds of) general processes. The generality involved is elementary

because it is the kind illustrated by what is common to two objects when they

are seen from far away; and not what may be common when their atomic or

subatomic structures are meant. Naturally, most of the logical disciplines have

developed on the pattern of other mathematical disciplines: the general notions

remain of interest or have even been absorbed in the body of current thought,

but the general theory of the (general) notion has long reached the point of

diminishing returns, to be compared for example, to the subject of all groups

(i.e. the general notion of groups).

Section 1 of the present chapter documented the heterogenous character of

contemporary mathematical logic, by reference to a few samples (which interested

readers can easily supplement from the literature, provided they look for the so

to speak qualitative difference in level of mathematics sampled in Section 1).

But the main stress was on the relevance of contemporary logic to a very much

broader topic and a neglected distinction within it. Specifically:

1. the broad idea of a logical view or, more simply, of logical aspects of (math-

ematical) thought, with the particular emphasis on generality mentioned

earlier

2. the additional idea of giving a central place to those aspects for so-called

foundational aims; both in the sense of a systematic exposition beginning

with (that is, founded on) logical notions, and in the sense of being secured

(made ‘certain’) in that manner.51

51The following two common oversights exaggerate the role of logical aspects on general (or

so to speak a priori) grounds, and of logical foundations on empirical grounds.

The general must come first. For example, before recognizing a particular argument as a

proof one must know what a proof is, i.e. proceed from the known to the proved. But even

granted this piece of wisdom, it is of little relevance when the principal issue is selection: from

which particular knowledge, by which procedures. Reminder . Tarski’s definition of truth is

unsatisfactory only if one expects too much, that is, expects what was generally claimed for

the importance of the question: What is Truth? The solution has corrected a false evaluation

of the question.

The problems of logical foundations are said to have had heuristic value (at least, for some

people) because they introduced clever ideas à propos of those problems; cf. medieval theolo-

gians who had interesting ideas on thought and action, and formulated them in the context

of speculations on the mind or designs of God. But it is a quite delicate matter to assess

what these same people would have done outside the constraints (of foundations or theology),

and how many people talented for the broad area (of logic or philosophy) were put off by the

constraints.
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This broad idea 1 is as old as Western culture; cf. Plato’s Republic about men

having lost their reason when they become concerned with particulars. Now,

in fact (at least when interpreted literally) practically the whole of experimental

science and mathematics did the latter (though there may occasionally have been

a general interest ‘behind’ those specific preoccupations). Without exaggeration:

nothing remotely like that logical view had got a foothold in mathematics at all

before the work of Cantor or abstract sets, and of Boole and Frege on logic. There

was no mathematical discipline of those logical aspects,52 and they were not prior

to the bulk of mathematics.

Here it is to be noted that work of the pioneers on the subject was not primar-

ily concerned with either of the foundational aims in 2. The work was certainly

not viewed by the silent majority of the contemporaries as contributing to founda-

tions. On the contrary, it was suspect; partly because, as already mentioned, one

had had no experience with successful mathematics of such broad generalities.

Perhaps, the most recurrent theme of early work on logical aspects was the

refutation of Kant’s claim for some kind of need for specific (reasoning) abilities,

which incidentally are pretty obviously used constantly, such as visualization of

one sort or another. The logical pioneers interpreted this ‘need’ as logical, that

is, for obtaining in principle as it were mathematical results (tacitly, after being

reformulated logically).53 Unfortunately for the development of the then-young

logical view, the pioneers chose to stress that particular theme, and not the

obviously striking discovery that there was anything (in fact, a good deal) to be

done with superficially so unpromisingly general subject matter.

The other distraction came from the business of the paradoxes. They led to

(or at least provided a temptation for) converting age-old elements of the logical

view (such as the issues of purity of method, or incompletely defined predicates)

into panaceas for the paradoxes (specifically, finitistic purity and incomplete or

potential totalities). The outcome followed the principle: if one worries about

nonexistent dangers, one is liable to miss the real ones.

Nevertheless work associated with these divisions permits also a reinterpreta-

tion: as a contribution to intellectual tools extending our capacities for (math-

ematical) reasoning, but not necessarily as particularly suited for foundational

aims in the literal sense. Specifically, the logical notions proposed as sole founda-

tions are regarded as (more or less new) elements in the arsenal of mathematical

notions, whose range of relevance (not merely of definition) is to be determined

by research.

Contemporary logic has achieved two things. As mentioned:

52One may indeed look at elementary number theory as something very general about finite

sets: but this was not the way it was looked at (and neither the theory of amicable numbers

nor of ternary quadratic forms fits into it).
53The recognition that a proposition stated in terms prominent in Kant was correctly ex-

pressed by a logical reformulation was outside the logical domain.
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1. it has established that something can be done, that is, (general) logical

notions have some rewarding theory

2. by shifting emphasis, so to speak in the course of nature, without external

pressure it has itself established the limits of relevance, the point (or range)

of diminishing returns.54

For reasons explained in Section 4, the positive side is particularly prominent

in Artificial Intelligence, the negative side in Computer Science (two, in other

respects, easily comparable subjects).

54This is not paradoxical. Generally any theory has to be developed before its weaknesses are

apparent (except for really brutal errors like Frege’s axioms, or Galileo’s first formula: v = αs

for freeling falling bodies).
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[1984] The rationality of Poincaré series associated to the p-adic points of a variety, Invent.

Math. 77 (1984) 1–23.

Descartes, R.

[1637] Discours de la méthode, Leyden, 1637.
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(1932) 20–21, transl. in [1986], pp. .

[1932a]Zum intuitionistischen Aussagenkalküls, Anz. Akad. Wiss. Wien 69 (1932) 65–66,
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[1987] in Gödel remembered , Weingartner and Schmettered eds., Bibliopolis, 1987, pp.

Troelstra, A.S.

[1973] Metamathematical investigations of intuitionistic arithmetic and analysis, Springer

Lecture Notes in Mathematics 344, 1973.

[1977] Choice sequences, a chapter of intuitionistic mathematics, Clarendon Press, 1977.

[1981] The interplay between logic and matehmatics: intuitionism, in Modern logic - A

survey , Agazzi ed., Reidel, 1981, pp. 197–221.

[1983] Analysing choice sequences, J. Phil. Log. 12 (1983) 197–260.

Troelstra, A.S., and van Dalen, D.

[1988] Constructivism in mathematics, 2 volumes, North Holland, 1988.

Turing, A.M.

[1936] On computable numbers with an application to the Entscheidungsproblem, Proc.

Lond. Math. Soc. 42 (1936) 230–265.

[1939] Systems of logic based on ordinals, Proc. Lond. Math. Soc. 45 (1939) 161–228. Van

den Hoeven, G.F., and Moerdijk, I.

[1984] Constructing choice sequences from lawless sequences of neighbourhood functions, in

Logic Colloquium ’83 , Müller et al. eds., Springer, 1984, pp. 207–234.

Van der Dries, L.

[1982] Some applications of a model-theoretic fact to (semialgebraic) geometry, Ind. Math.

44 (1982) 397–441.

Vaught, R.L.

[1974] Model theory before 1945, Proc. Symp. Pure Math. 25 (1974) 153–172.



Bibliography 339

Wang, H.

[1974] From mathematics to philosophy , Routledge and Kegan, 1974.

Weil, A.

[1974] Basic number theory , Springer, 1974.

Weinberg, S.

[1976] The forces of nature, Bull. Am. Acad. Sci. 29 (1976) 13–29.

Weinstein, S.

[1983] The intended interpretation of intuitionistic logic, J. Phil. Log. 12 (1983) 261–270.

Weyl, H.

[1918] Das Kontinuum, Leipzig, 1918.

[1946] Review of The philosophy of Bertrand Russell , Am. Math. Monthly 53 (1946) 208–

214.

Whithead, A.N., and Russell, B.

[1910] Principia Mathematica, vol. I, Cambridge, 1910.

Wigner, E.

[1960] The unreasonable effectiveness of mathematics in the natural sciences, Comm. Pure

Appl. Math. 13 (1960) 1–14.

[1982] , Nobel Conf. 17 (1982)

Wittgenstein, L.

[1921] Logisch-philosophische Abhandklung, Ann. Naturphil. 14 (1921) 185–262.

[195 ] Philosophical Investigations, 195 .

[1956] Bemerkungen über die Grundlagen der Mathematik , Oxford, 1956.

[1967] Zettel , Oxford, 1967.

[1980] Vemischte Bemerkungen, Chicago, 1980.

Wojtylak, P.

[1982] Collapse of a class of infinite disjunctions in intuitionistic propositional logic, Rep.

Math. Log. 16 (1982) 37–49.

[1984] A recursive theory for the {¬,∧,∨,→, ◦} fragment of intuitionistic logic, Rep. Math.

Log. 18 (1984) 3–35.

Zermelo, E.
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