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Foreword

Odifreddi has written a delightful yet scholarly treatise on recursion theory.
Where else can one read about mezoic sets? His book constitutes his answer
to the central question of recursion theory: what is recursion theory? His
answer, I am pleased to note, is idiosyncratic. He makes numerous references
to set theory, for example Baire’s category theorem, the analytical hierarchy,
the constructible hierarchy, and the axiom of determinateness. To my mind
an understanding of recursion theory, even at the level of Turing degrees and
recursively enumerable sets, is incomplete until the connection to higher levels
is made via set theory.

If recursion theory is about computations, then the familiar finite case allows
only a shallow view of the matter. Infinitely long computations, as in Kleene’s
account of finite type objects, or as in Takeuti’s version of recursive functions
of ordinals, permit a deeper insight into the nature of computation. This is
borne out by the work of Slaman and others on fragments of arithmetic and
polynomial reducibility, in which ideas from high up are applied low down.

The author’s use of ‘classical’ in his title is partially meant, in this volume,
to date the material he covers. He concentrates on the early days of recursion
theory. Perhaps those were the glory days. Perhaps only the early results will
survive.

The author makes the set theoretic connection but does not pursue it fully
here. Let us hope he writes his next volumes on ‘modern’ recursion theory. His
sparkling first volume proves him worthy of the task.

G.E. Sacks
Harvard University and M.I.T.

November 1987
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Preface

The origins of this book go back to fourteen years ago when, having done
my studies in a country that, as Kreisel later remarked to me, was ‘logically
underdeveloped’, I thought I could learn Recursion Theory by writing it. There
were at the time a few textbooks, prominent among them Kleene [1952] and
Rogers [1967], but I was unsatisfied with them because papers I was interested
in, on progressions of formal systems, seemingly required many results that
they did not cover. Thus I sat down, read a lot, and wrote a first version in
Italian. Fortunately, I did not publish it.

Meanwhile, I had gotten in touch with some recursion theorists, and decided
I would go to the United States to study some more. The Italian Center
of Researches (C.N.R.) provided support, and in 1978 I landed in Urbana-
Champaign, where the world opened up to me. I found there a very sensitive
and kind teacher, Carl Jockusch, who taught me in one pleasant year more
than I could have taught myself in a lifetime. And I found a friend in Dick
Epstein, from whom I learned how to write mathematics. Then, having read
some of their papers, I went to the U.C.L.A. people for a year, and I’m afraid
I tried their patience with my many questions. There I learned what I know of
Set Theory and Generalized Recursion Theory, through the teaching and help
of Tony Martin, Yannis Moschovakis and John Steel. Back in Italy, I rewrote
the whole book, this time in English.

In the meantime, I had grown aware of the fact that mathematics was not
the universal science that I had once thought it was: not only personal, but
also social and historical influences shape the work of the researchers. More
specifically, I had learned that the Soviets were doing, in Recursion Theory,
work that the Westerners did not know much about, and they themselves were
largely unaware of what people did in the West. I found this an odd situation,
and decided I would go to the Soviet Union to bridge the gap, at least in my
knowledge. The Italian and Soviet State Departments provided support, and I
stayed in Novosibirsk for one and a half years, in 1982-83, again learning a lot,
in both mathematical and human terms. In particular, great help was provided
by Marat Arslanov, Sergei Denisov, Yuri Ershov, and Victor Selivanov. Despite
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some difficulties there, which cost me a marriage among other things, I came
back with more experience, and the book was now ready.

A final and unexpected touch was added by Anil Nerode and Richard Shore,
who invited me to Cornell for a year in 1985, and in the following summers.
With them I started a (for me) very fruitful collaboration, partly financed by a
joint N.S.F.-C.N.R. grant. In particular, Richard Shore has relentlessly proved
theorems that covered blank spots in the book. In Cornell I also met Juris
Hartmanis, who changed my perspective in Complexity Theory.

In addition to all the people mentioned above, I was greatly helped by those
who have read, and commented upon, substantial parts of the manuscript, or
have taught me different things, including Klaus Ambos-Spies, Felice Cardo-
ne, Alexander Degtev, Leo Harrington, Georg Kreisel, Georgi Kobzev, Manny
Lerman, Jim Lipton, Gabriele Lolli, Flavio Previale, Mark Simpson, and Bob
Soare. Many other people have provided various kinds of help and correc-
tions, in particular those who attended classes and seminars on various parts
of the book in Torino and Siena (Italy), Urbana, U.C.L.A. and Cornell (United
States), Novosibirsk and Kazan (Soviet Union). It would take too much space
to mention them all, but to everybody go my sincerest thanks.

Since Gutenberg, books have usually been written to be printed. In my
case this was made possible by Solomon Feferman and Richard Shore, who
introduced the book to different editors. Michael Morley convinced me that I
could type it myself in LATEX, at a time when I did not even know how to turn
a computer on, and he and Anil Nerode helped afterwards with the machines,
in many ways. While I was preparing the typescript, the amazing Bill Gasarch
and Richard Shore provided overall corrections in real time. Finally, support
for typesetting was provided by the C.N.R. Thanks to all of them, too.

Different and very special thanks go to Lidia. She was there before it all,
saw the book taking shape, and heard about it more than anybody else. She
followed me on my pilgrimages, and I could perceive how great a toll this was
taking on her only when it was too late. She is not here anymore, to see the
end of it, and this is most sad. The immense amount of time stolen from her
and devoted to this work is partly responsible for her absence. No doubt it
was a stupid trade, but now, after fourteen years, here is the book: devoted to
her as a partial, late compensation for what she deserved, and I was unable to
give.

Torino - Urbana - Los Angeles
Novosibirsk - Ithaca

1974–1988
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Introduction

Classical Recursion Theory is the study of real numbers or, equiva-
lently, functions over the natural numbers. As such it has a long history,
and a number of notions and results that were originally proved in different
fields and for different purposes are incorporated, unified and extended in a
systematic study. We are thinking here, for example, of the different equiv-
alent definitions of real number, of Cantor’s theorem that the real numbers
are uncountable, of Gödel’s class of constructible real numbers, and so on. All
of these are now part of Recursion Theory and of our study, but the theory
also provides new tools of its own, the origins of which can be traced back to
Dedekind [1888]: he introduced the study of functions definable over the set
ω of the natural numbers by recurrence using the well-ordered structure of ω,
whence the name Recursion Theory.

The power of recursion as a tool for defining functions was analyzed in
detail by Skolem [1923], Peter [1934], and Hilbert and Bernays [1934], but
its limitations were also pointed out. Gradually the collective work of Post
[1922], Church [1933], Gödel [1934], Kleene [1936], and Turing [1936], led to the
identification of the most general form of the recursion principle and to what
we now call recursive functions. In a bold philosophical abstraction Church
[1936] proposed to identify the notion of ‘effectively computable function’ of
natural numbers with that of recursive function, thus providing a feeling of
absoluteness to the notion. With Post [1944] Recursion Theory became an
independent branch of mathematics, studied for its own sake.

What is ‘Classical’

In more recent decades Recursion Theory has been generalized in various ways
to different domains: ordinals bigger than ω, functionals of higher order, ab-
stract sets. All these subjects belong to what we call Generalized Recursion
Theory. We use the word ‘classical’ to emphasize the fact that we confine our
treatment to the original setting, and we will deal with notions of Generalized

1



2 Introduction

Recursion Theory only when the theory provides results for the case we are
interested in.

If we see classical mathematics as the study of concrete structures, like the
set of natural numbers in Number Theory, or the set of functions over the real
or complex numbers in Analysis (as opposed to modern mathematics, where
the emphasis is on abstract structures, like algebraic or topological ones), then
Classical Recursion Theory is part of classical mathematics, and sits between
Number Theory and Analysis. This provides another reason for the word ‘clas-
sical’ in our subject.

Mathematics is usually formalized in well-established systems of Set The-
ory such as ZFC (the Zermelo-Fraenkel system, together with the Axiom of
Choice). Our final use of the word ‘classical’ emphasizes the fact that we will
be working mostly in ZFC. It is not surprising, due to the well-known in-
dependence results of Gödel [1938] and Cohen [1963], that only a part of the
study of real numbers can be carried out in ZFC and we will point out the
limits of our approach, together with possible extensions of ZFC suitable for
Recursion Theory, at the end of the book.

What is in the Book

The basic methods of analysis of the real numbers that we are going to use are
two:

Hierarchies. A hierarchy is a stratification of a class of reals built from below,
starting from a subclass that is taken as primitive (either because well
understood, or because already previously analyzed), and obtained by
iteration of an operation of class construction.

Degrees. Degrees are equivalence classes of reals under given equivalence re-
lations, that identify reals with similar properties. Once a class of reals
has been studied and understood, degrees are usually defined by identify-
ing reals that look the same from that class point of view. Degrees were
used for the purpose of a classification of reals already in Euclid’s Book X
(w.r.t. a geometrical equivalence relation, between rational and algebraic
dependence). See Knorr [1983] for a survey.

As might be imagined the two methods are complementary: first a class is
analyzed in terms of intrinsic properties, for example by appropriately strati-
fying it in hierarchies, and then the whole structure of real numbers is studied
modulo that analysis with the appropriate notion of degrees induced by the
given class. The two methods also have a different flavor: the first is essentially
definitional, the second essentially computational.
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To give the reader an idea of what (s)he will find in the book we outline its
bare skeleton, referring to the introductions of the chapters for more detailed
outlines.

The starting point of our study is the class of recursive functions intro-
duced in Chapter I. The idea of its definition is simple: we try to isolate the
functions over ω that are ‘computable’ in ways appealing both to the math-
ematician and to the computer scientist. Having many different approaches
available, and various different intuitions of the notion of computability, we try
them all, and discover that they all produce, once appropriately formalized,
the same class of functions (and sets, through characteristic functions).

Chapter II considers two fundamental generalizations of the notion of re-
cursiveness. Partial recursive functions are the natural formalization of
algorithms: these, in the common use of the term, do not necessarily define
total functions but only provide for specifications that allow the computation
of values if particular conditions are satisfied. Partial recursive functionals
take care of a different aspect of computations, namely the interactive proce-
dure according to which a machine can be piloted, in its behavior, by a human
agent. This can be formalized by the use of oracles that help the computation
when requested by the machine.

A set is recursive if membership in it is effectively computable. The next
level of complexity is reached when a set is effectively generated. In this case
membership still can be effectively determined by waiting long enough in the
generation of the set until the given element appears, but nonmembership re-
quires waiting forever, and thus does not have effective content. Such sets
are called recursively enumerable, and are the subject of Chapter III. But
the emphasis of the study here is on the relative difficulty of computation. In
other words, we identify sets which are equally difficult to compute. Then we
attack the problem of whether the only relevant distinction among recursively
enumerable sets, from a computational point of view, is between recursive and
nonrecursive. The answer is that the world of recursively enumerable sets is a
variegated one, in which different nonrecursive effectively generated sets may
have different computational difficulty.

Chapter IV introduces the first hierarchies, by building on the fact that the
recursively enumerable sets are exactly those definable in the language of First-
Order Arithmetic with exactly one existential quantifier (coding the fact that
an element is in a given recursively enumerable set if and only if there is a stage
of the enumeration in which it appears). A natural hierarchy is thus obtained
by looking at the arithmetical sets as those sets which are definable in First-
Order Arithmetic, counting the number of alternations of quantifiers. Other
hierarchies in the same vein are possible: counting alternations of function
quantifiers in Second-Order Arithmetic which stratifies the analytical sets;
or measuring the complexity of the definition of a set of natural numbers in
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the language of Set Theory in terms of previously defined sets which defines
the constructible sets of integers.

Hierarchies are, by their nature, only partial tools of analysis. The notion
of degree is instead a global one, classifying all sets modulo some equivalence
relation. Chapters V and VI study the structure of the continuum with respect
to two notions of relative computability, Turing degrees and m-degrees,
and obtain two structural results. The first equates the complexities of the
decision problem for the theories of Turing and m-degrees with that of Second-
Order Arithmetic, the second gives a complete algebraic characterization of the
continuum in terms of the structure of m-degrees. The Baire Category method,
in both its original version and generalized forms, is the basic method of proof.

This completes Volume I, which introduces the fundamental notions and
methods. Volumes II and III are a deeper and more sophisticated study of
the same topics, in which the structures already introduced are revisited and
analyzed more carefully and thoroughly. Volume II deals with sets of the
arithmetical hierarchy, Volume III with the rest.

Chapters VII and VIII resume the analysis of the fundamental objects
in Recursion Theory, the recursive sets and functions, and provide a micro-
scopic picture of them. We start in Chapter VII with an abstract study of
the complexity of computation of recursive functions. Then in Chapter VIII
we will attempt to build from below the world of recursive sets and func-
tions that was previously introduced in just one go. A number of subclasses
of interest from a computational point of view are introduced and discussed,
among them: the polynomial time (or space) computable functions
which provide an upper bound for the class of feasibly computable functions
(as opposed to the abstractly computable ones); the elementary functions,
which are the smallest known class of functions closed under time (deterministic
or not) and space computations; the primitive recursive functions, which
are those computable by the ‘for’ instruction of programming languages like
PASCAL, i.e. with a preassigned number of iterations (as opposed to the re-
cursive functions, computable by the ‘while’ instruction, which permits an un-
limited number of iterations).

Chapters IX and X return to the treatment of recursively enumerable sets.
In Chapter III a good deal of information on their structure had been gathered,
but here a systematic study of the structures of both the lattice of recursively
enumerable sets and of the partial ordering of recursively enumerable
degrees is undertaken. Special tools for their treatment are introduced, most
prominent among them being the priority method, a constructive variation
of the Baire Category method.

Chapter XI deals with limit sets, also known as ∆0
2 sets, which are limits

of recursive functions. They are a natural formalization of the notion of sets
for which membership can be determined by effective trials and errors, unlike
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recursive sets (for which membership can be effectively determined), and re-
cursively enumerable sets (for which membership can be determined with at
most one mistake, by first guessing that an element is not in the set, and then
changing opinion if it shows up during the generation of the set).

The following chapters produce an analysis of the sets introduced, and only
touched upon, in Chapter IV, in particular arithmetical, hyperarithmeti-
cal, ∆1

2, and constructible sets, and various other classes. In all these chap-
ters the study proceeds by first analyzing the classes themselves, and then look-
ing at the notions of degree associated with them (respectively: arithmetical
degrees, hyperdegrees, ∆1

2-degrees, constructibility degrees, as well as degrees
with respect to appropriate admissible ordinals).

The final chapter deals with nonclassical set-theoretical worlds in order
to point out the limitations of the classical approach, to exactly establish its
limits, and to reach beyond it by adding appropriate axioms (prominent among
them the Axiom of Projective Determinacy).

Starred subsections deal with topics related to the ones at hand thought
sometimes quite far away from the immediate concern. They provide those
connections of Recursion Theory to the rest of mathematics and computer
science which make our subject part of a more articulate and vast scientific
experience. Limitations of our knowledge and expertise in these fields make our
treatment of the connections rather limited, but we feel they add important
motivation and direct the reader to more detailed references.

Particular themes on which continuous commentary is made throughout
the book are relationships with computers, logic, and the theory of formal
systems, in particular the results known as Gödel’s Theorems. As our devel-
opment becomes more technical, connections to fields outside logic in general,
and other branches of Recursion Theory in particular, become less important.

As will be clear by now, we have opted for breadth rather than depth,
and have provided rudiments of many branches of Classical Recursion Theory,
rather than complete and detailed expositions of a small number of topics. In
this respect our book is in the tradition of Kleene [1952] and Rogers [1967], and
differs from recent texts like Hinman [1978], Epstein [1979], Moschovakis [1980],
Lerman [1983], and Soare [1987], which can be used as useful complements and
advanced textbooks in their specialized areas.

Applications of Recursion Theory

No sound mathematical theory is self-contained or detached from the rest of
mathematics or science. It takes inspiration from, and provides matter of
reflection to other branches of knowledge. Recursion Theory is no exception
and, despite this being a book on the pure theory, we will touch on applications
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and connections whenever possible. Here we give an idea of the applications
that our subject can have in other branches of science some of which will be
taken up again in more detail in the book.

Philosophy

If one of the main goals of Philosophy of Science is the conceptual analysis
of epistemological notions, then the foundations of Recursion Theory provide
some astounding successes for it. One of the original concerns of Recursion
Theory had been the analysis of the notion of effective computability and of
the related concept of algorithm. The isolation of the technical notion of recur-
siveness as a formal proposal intended to capture the essence of computability
on natural numbers (see Chapter I) is a first success of the philosophical side of
the theory, but by no means the only one. After all, computability on natural
numbers is just one part of the whole story.

A great deal of work has been spent on axiomatizing the abstract notion of
computability (see p. 222), and on analyzing the role of the special properties of
natural numbers in computations. Decent notions of elementary computability
have been proposed for abstract domains (see p. 202), and deeper properties
have been shown to extend to a variety of domains more general than ω (such
as admissible ordinals, see p. 444). This has required an analysis of the role
of finiteness in computations, and an isolation of its essential properties. The
familiarity of the notion involved, which is usually used unconsciously, magnifies
the success obtained.

The concern of Recursion Theory with predicativity predates even its con-
cern with computability (see p. 22), and it is reflected in its widespread use of
hierarchies as a mean of building classes of functions from below. One of these
hierarchies (the hyperarithmetical, see p. 391) has turned out to be particularly
interesting and to provide for an upper bound to the notion of a predicatively
defined set of natural number (Kreisel [1960]). Related work has subsequently
been able to isolate a precise analogue of this notion (Feferman [1964]), thus
doubling the success obtained with computability.

Computer Science

The area of Recursion Theory that deals with recursiveness is part of Theoreti-
cal Computer Science. Turing’s analysis of computability in terms of machines
provided the conceptual basis for the construction of physical computers in the
late Forties: in the United States through Von Neumann, who knew Turing’s
work, and in the United Kingdom through Turing himself (see p. 132). Different
approaches to recursiveness generate different types of programming languages,
and we discuss (Chapter I and Section II.1) how the computational core of
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PASCAL, LISP, PROLOG, and SNOBOL can easily be obtained from the ap-
propriate versions of recursiveness (a topic that will be fully developed in our
forthcoming book Logical Foundations of Programming). Finally, a good deal
of Recursion Theory is devoted to the analysis of the complexity of algorithms
and to a classification of recursive functions according to the tools needed to
compute them. This is rapidly becoming a field of its own, called Complex-
ity Theory, with methods and results strongly influenced by other parts of
Recursion Theory (see Chapters VII and VIII).

Number Theory

The very origins of Recursion Theory place it close to Number Theory: the mo-
tivation of Dedekind [1888] was the analysis of the concept of natural number
(see p. 22), while Skolem [1923] wanted to present a formulation of Arithmetic
that avoided the difficulties of the common solutions to the paradoxes. But
perhaps the most striking application of Recursion Theory to Number Theory
is the solution of Hilbert’s Tenth Problem (see p. 135) which asked for a de-
cision procedure to determine the existence of solutions of given diophantine
equations. Matiyasevitch [1970] proved a representation theorem, showing that
the sets of (non-negative) solutions of diophantine equations are exactly the re-
cursively enumerable sets. A negative solution to Hilbert’s Tenth Problem then
follows from the existence of a recursively enumerable, nonrecursive set.

Algebra

Until the second half of the last century, including the work of Lagrange, Gauss,
Abel, and Galois, algebra had been developed in a strictly constructive way.
The dichotomy between constructive and nonconstructive methods arose with
the notion of prime ideal, which both Kronecker and Dedekind discovered
from the usual constructive approach, but which Dedekind published in the
now common set-theoretical framework. After that, nonconstructive methods
which may produce less informative but more easily graspable arguments have
become standard (see Metakides and Nerode [1982] for more historical back-
ground). Recursion Theory makes possible the analysis of the constructive
content of classical results, as the following typical case illustrates. Steinitz
Theorem shows that a field has an algebraic closure which is unique up to iso-
morphism. Its original proof does not constructivize: this is an accident for
the existence part, but necessary for the uniqueness. The former follows from
Rabin [1960] who, using a different existence proof, showed that a recursively
presented field (i.e. a field with recursive set of elements and field operations,
including equality) always has a recursively presented algebraic closure. The
latter comes from Metakides and Nerode [1979], who showed that uniqueness
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(up to recursive isomorphism) of the recursively presented algebraic closure
is equivalent to the existence of a splitting algorithm (to determine whether
a polynomial is irreducible or not), a result that uses the priority method
(Chapter X). The analysis of the effective content of classical algebra has been
thoroughly pursued: see Ershov [1980], Crossley [1981], Nerode and Remmel
[1985] for references.

The usefulness of Recursion Theory in the analysis of constructivity in al-
gebra is plausible. But there are unexpected uses too, such as in Higman [1961]
who shows that the finitely generated groups embeddable in a finitely presented
group are exactly the recursively presented ones (i.e. those for which the set
of words equal to 1 is recursively enumerable), thus linking a purely algebraic
notion with the notion of recursiveness.

Higman’s representation theorem easily implies the undecidability of the
word problem (to determine whether two words are equal) for finitely presented
groups, proposed by Dehn in 1911 and solved by Novikov [1954] and Boone
[1959]. The undecidability of the easier word problem for semigroups, proposed
by Thue [1914] and solved by Post [1944] and Markov [1947], is historically
important, being the first undecidability result of a problem from classical
mathematics. These results started a whole area of research, devoted to the
determination of which properties of algebraic structures are (un)decidable.
See Tarski, Mostowski and Robinson [1953], Ershov, Lavrov, Taimanov and
Taislin [1965], Ershov [1980], and Hanson [198?] for detailed treatments and
references.

Analysis

Borel [1912] introduced the notion of computable real number, using the in-
tuitive notion of computability. The very paper in which Turing introduced
his influential approach to computability was motivated by the search for a
formal definition of computable reals, and was thus the beginning of recursive
analysis. Turing isolated a class of recursive reals that is independent of the
proposed constructivization (in the sense that all classically equivalent defini-
tions of real number remain equivalent when appropriately constructivized),
contains all commonly used reals, and is algebraically closed. Subsequent work
extending the notion of recursive functional (Section II.4) defined the notion
of a recursive function of a real variable as a function defined on all reals, not
only on the recursive ones.

This provided the needed tools to analyze the effective content of analysis:
a result is constructive if whenever it has recursive data it provides us with
recursive solutions. As a typical example, Weierstrass proof of the existence of a
maximum for a continuous real function on a closed interval is constructive; but
an argument at which the maximum is attained cannot be constructively found
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(Lacombe [1957], Specker [1959]). Another example is provided by the ordinary
differential equation y′ = f(x, y): the original proof of Picard that if f satisfies
a Lipschitz condition the solution exists and is unique is constructive, but
Aberth [1971] and Pour El and Richards [1979] showed that even the existence
alone is not constructive if f is only uniformly continuous. See p. 213 for more
on the subject.

As for algebra, one can look for undecidability results as well, some of which
have been obtained by Richardson [1968], Adler [1969] and Wang [1974]. As
an example, the latter proves that there is no recursive procedure to decide
whether a real elementary function has a zero.

Set Theory

Recursion Theory and Set Theory have a large overlap in the study of sets of
integers of high complexity: the material dealt with in Volume III could hardly
be classified as solely belonging to one of them; it is rather a new field sprung
from their marriage. But Recursion Theory does have successful applications to
pure Set Theory in areas were the latter seems to be classically impotent. The
better developed applications have been two theories about cardinals: recursive
equivalence types, and admissible ordinals.

The former deals with sets that, in a constructive sense, are infinite but
Dedekind-finite, i.e. can be one-one mapped neither to a proper initial segment
of ω, nor to a proper subset of themselves. Classically such sets do not exist in
the presence of the Axiom of Choice, but their recursive versions have generated
a rich theory that provides new insights into the notion of finiteness (see p. 328).

Another branch of Set Theory which is classically unmanageable is the
theory of large cardinals: even the inaccessible ones, the smallest proposed
type, cannot be proved to exist in classical Set Theory. The lack of examples
different from ω forces one to resort to trivial cases, such as considering 1 as
weakly but not strongly inaccessible because 00 = 1 (Gödel [1964]). Recursion
Theory provides a well-developed analogue of the theory of large cardinals, in
which the role of the first regular cardinal is taken by the first ordinal which
is not the order type of a recursive well ordering of ω (see p. 385). The notion
of admissible ordinal (p. 444) takes care of the analogue of regular cardinal
in general as an ordinal closed under recursive operations on ordinals, and
analogues of a great variety of large cardinals can already be seen to exist
among the countable ordinals. The existence of analogues of Ramsey cardinals
can be disproved which might prompt some reflection on the role of very large
cardinals in Set Theory (see Volume III for details).
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Descriptive Set Theory

Cantor’s Set Theory, and in particular the unlimited use of the power set,
provoked various reactions at the turn of the century, one of which produced
Descriptive Set Theory as a study of larger and larger classes of sets of reals
which were explicitly defined (see p. 392). This approach, in which hierarchies
are one of the main tools, is obviously a forerunner and an analogue of various
recursion theoretical hierarchies (see Chapter IV), the main difference being
one level of complexity: sets of reals are considered in the first case, sets of
integers in the second. But Addison [1954], [1959] discovered that not only are
there analogies: the full classical theory can be obtained by relativization of
the recursive hierarchy theory by substituting continuous functions and open
sets for recursive functions and recursively enumerable sets (see p. 392). This
implies that all classical theorems have recursive versions of which they are
consequences (but not conversely). This allows a unified approach, with recur-
sion theoretical methods applicable to the classical case, and the theory has
been resurrected from the state of lethargy in which it had fallen in the Forties.

Constructive Mathematics

The use of constructivism in classical mathematical theories is conservative:
nonconstructive methods are accepted, and the issue is only whether given
proofs are constructive as they stand, or can be replaced by constructive ones,
a negative answer being interesting and acceptable. But constructivism can be
taken more seriously as a philosophy of mathematics that would simply ban-
ish nonconstructive notions and proofs from practice. One possible approach
to constructive mathematics consists of using the notion of recursiveness as a
substitute for the notion of constructivity. This can be taken literally, as in
Markov’s school (see p. 214), which considers only those mathematical objects
and operations on them that can be effectively described by recursive proce-
dures as existing. But it can also be taken as a tool of analysis to compare
different approaches.

For example, in Kolmogorov [1932] intuitionism is seen as a logic of prob-
lems: α∨β means to solve one of α and β, α→ β to reduce the problem of solv-
ing β to that of solving α, ∃xα(x) to solve α(x) for some x, and so on. Kleene
[1945] then introduced the notion of recursive realizability for Intuitionistic
Number Theory: numbers realize formulas if they code, inductively, recursive
procedures that prove the formula according to the constructive meaning of the
logical operations. Realizability has been extended to Intuitionistic Set Theory
by Kreisel and Troelstra [1970] and, even if not accepted as the only possible
way of interpreting intuitionistic provability, it has become a common tool of
analysis since it provides for constructive models of theories. See Troelstra
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[1973] and Beeson [1985] for detailed treatments of the subject.

Logic

After the first fifty years in which Recursion Theory was mainly motivated by
mathematical problems about Arithmetic, the logicians took over. Their main
interest was still in Arithmetic, but their point of view was metamathematical.
In their hands the theory obtained its most astonishing and revolutionary re-
sults which are also the best known applications of the subject and one of the
main impulses to its growth. By a balanced use of two of the most fundamental
methods of proof of Recursion Theory, arithmetization and diagonalization, a
complete characterization of the expressiveness of formal systems was obtained,
the result being that (as in the case of diophantine equations) exactly the re-
cursively enumerable sets are (weakly) representable in any consistent formal
system having a minimal arithmetical strength. The existence of a recursively
enumerable, nonrecursive set then implies the undecidability and incomplete-
ness of any such system (see Section II.2), thus showing the inadequacy of the
concept of formal system. These are the highlights of the extensional analysis
of formal systems provided by recursion theoretical methods, but by no means
the only ones (see p. 350). A result of Myhill [1955] (III.7.13) points out the
limits of this analysis and shows that, from an extensional point of view, all
formal systems of common use look alike in the sense of being all recursively
isomorphic.

How to Use the Book

This book has been written with two opposite, and somewhat irreconcilable,
goals: to provide for both an adequate textbook, and a reference manual.
Supposedly, the audiences in the two cases are different, consisting mainly of
students in the former, and researchers in the latter. This has resulted in dif-
ferent styles of exposition, reflecting different primary goals: self-containment
and detailed explanations for textbooks, and completeness of treatment for
manuals. We have tried to solve the dilemma by giving a detailed treatment
of the main topics in the text, and sketches of the remaining arguments in the
exercises and in the starred parts.

The exercises usually cover material directly connected to the subject just
treated and provide hints of proofs in the majority of cases, in various degrees of
detail. In a few cases, for completeness of treatment and easiness of reference,
some of the exercises use notions or methods of proof introduced later in the
book.

The starred chapters and sections treat topics that can be omitted on a
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first reading. The starred subsections deal with side material, usually giving
broad overviews of subjects that are more or less related to the main flow of
thought, but which we believe provide interesting connections of Recursion
Theory with other branches of Logic or Mathematics. The style is mostly
suggestive: we try to convey the spirit of the subject by quoting the main
results and, sometimes, the general ideas of their proofs. Detailed references
are usually given, both for the original sources and for appropriate updated
treatments.

The general prerequisite for this book is a working knowledge of first year
undergraduate mathematics. When dealing with applications, knowledge of
the subject will be assumed but, since the treatment is kept separate from the
main text, there will be no loss in skipping the relative parts.

The chapters have been kept self-contained as far as possible. We have done
our best to keep the style informal and devoid of technicalities, and we have
resorted to technical details only when we have not been able to avoid them,
no doubt because of our inadequacy.

Instead of the usual complicated diagrams of dependencies, we give sugges-
tions on how the first two volumes of the book can be used as a textbook for
classes in which Recursion Theory is the main ingredient.

Elementary Recursion Theory

Chapters I and II provide a number of alternative approaches to recursiveness
and the basic development of the theory. Sections 2 to 6 of Chapter I are
independent and can be chosen according to the audience in the class. More
precisely, mathematicians can concentrate on Sections 2 and 3 and cover also
the Incompleteness and Undecidability Results, treated in Section II.2. On the
other hand, computer scientists will find more interest in Sections 4 to 6 of
Chapter I and Section II.1, where the foundations of a number of programming
languages are laid, and can also cover self-reproducing machines, touched upon
in Section II.2, and the tools needed to build models of λ-calculus and com-
binatory logic, covered in Sections II.3 and II.5. Section I.8 treats Church’s
Thesis in a less simple-minded way than usual (i.e. facing the problems, in-
stead of sweeping them under the rug), and it is perhaps more appropriate for
philosophers.

Recursively Enumerable Sets

The elementary theory of r.e. sets and degrees is contained in Chapter III
which requires only some background in elementary Recursion Theory. The
chapter goes up to the solution to Post’s problem (Sections 1 to 5) and the
basic classes of r.e. sets. It can be used either as a final section of a course
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on elementary Recursion Theory (not dealing with alternative definitions of
recursiveness), or as the initial segment of an advanced course on r.e. sets. In
the latter case, it should be followed by Chapter IX, dealing with the lattice of
r.e. sets, and a choice of material from Chapter X, in which priority arguments
are introduced. Some of the material here, e.g. the theory of r.e. m-degrees,
is not standard, but is useful in various respects: intrinsically, this structure is
much better behaved than the schizoid one of r.e. T -degrees, and it reflects the
global structure of degrees, which the latter does not; moreover, arguments on
T -degrees (such as the coding method) are better understood in their simpler
versions for m-degrees.

Degree Theory

Elementary degree theory is treated in Chapter V which, with some background
in elementary Recursion Theory, can be read autonomously. We develop the
theory up to a point where it is possible to prove the global results of the
last ten years. This forms the nucleus of a course, and it can be followed by
a number of advanced topics including a choice of results from Chapters XI
and XII, on degrees of ∆0

2 and arithmetical sets. Chapter VI, on m-degrees, is
often unjustly neglected, but it does provide for the only existing example of
global characterization of a structure of degrees. It can be read independently
of Chapter V.

Complexity Theory

Chapters VII and VIII deal with abstract complexity theory and complexity
classes, and do not require any background, except for a working knowledge
of recursiveness and Turing machines (like Sections 1 and 4 of Chapter I).
The treatment is fairly complete but, going beyond the usual unbalanced con-
finement to polynomial time and space computable functions, it also covers
unjustly neglected classes of recursive functions, such as elementary, primitive
recursive, and ε0-recursive ones which are of interest to the computer scientist.

Notations and Conventions

ω = {0, 1, . . . } is the set of natural numbers, with the usual operations of plus
(+) and times (× or ·), and the order relation ≤. P(ω) is the power set of ω,
i.e. the set of all subsets of ω. ωω and P are, respectively, the sets of total and
partial functions from ω to itself.

We reserve certain lower or upper case letters to denote special objects:

• a, b, c, . . . , x, y, z, . . . for natural numbers
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• f, g, h, . . . for total functions of any number of variables

• α, β, γ, . . . , ϕ, ψ, χ, . . . for partial functions of any number of variables

• F,G,H, . . . for functionals, i.e. functions with some variables ranging over
numbers, and some over functions

• A,B,C, . . . ,X, Y, Z, . . . for sets of natural numbers

• P,Q,R, . . . for predicates of any number of variables

• σ, τ, . . . for strings, i.e. partial functions with finite domain and values in
{0, 1}.

Regarding sets:

• x ∈ A means that x is an element of A

• |A| is the cardinality of A, i.e. the number of its elements

• A ⊆ B and A ⊂ B are the relations of inclusion and strict inclusion

• A is the complement of A, and the prefix ‘co-’ in front of a property of a
set means that the complement has this property (i.e. a set is co-immune
if its complement is immune)

• A ∪ B is the union of A and B, i.e. the set of elements belonging to at
least one of A and B

• A ⊕ B is the disjoint union of A and B, i.e. the set of elements of the
form 2x if x ∈ A, and 2x+ 1 if x ∈ B

• A ∩ B is the intersection of A and B, i.e. the set of elements belonging
to both A and B

• A × B is the cartesian product of A and B, i.e. the set of pairs (x, y)
whose first and second components are, respectively, in A and B

• A · B is the recursive product of A and B, i.e. the set of codes 〈x, y〉 of
pairs (x, y) ∈ A×B (see p. 27 for codings)

• cA is the characteristic function of A, with value 1 if the given argument
is in the set, and 0 otherwise.

Regarding predicates:
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• ¬P , P ∧ Q, P ∨ Q, P → Q, P ↔ Q, ∀xP , ∃xP are the usual logical
operations of negation, conjunction, disjunction, implication, equivalence,
universal and existential quantification.

The symbols → and ↔ will be used in a formal way, to build new prop-
erties from given ones. The symbols ⇒ and ⇔ will be used informally,
as abbreviations for ‘if . . . then’, and ‘if and only if’.

We use bounded quantifiers as abbreviations:

(∃x ≤ y)P (x) for (∃x)[x ≤ y ∧ P (x)]
(∀x ≤ y)P (x) for (∀x)[x ≤ y → P (x)].

• cP is the characteristic function of P , with value 1 if P holds for the given
argument and 0 otherwise.

Regarding binary relations on a set A, R is:

• reflexive if xRx for every x ∈ A

• antireflexive if ¬(xRx), for every x ∈ A

• symmetric if xRy ⇒ yRx for every x, y ∈ A

• transitive if xRy ∧ yRz ⇒ xRz for every x, y, z ∈ A

• a (weak) partial ordering if it is reflexive and transitive (weak partial
orderings are indicated by ≤, �, or v)

• a (strict) partial ordering if it is antireflexive and transitive (strong partial
orderings are indicated by <, ≺, or <)

• a total ordering if it is a partial ordering, and xRy ∨ yRx ∨ (x = y) for
every x, y ∈ A

• an equivalence relation if it is reflexive, transitive, and symmetric; in this
case the set A is partitioned into equivalence classes (each consisting of
the elements that are in the relation R with each other)

• an uppersemilattice if any pair of elements of A has a l.u.b., and a lattice
if any pair of elements of A has both l.u.b. and g.l.b. (given two elements
x and y, their least upper bound (l.u.b.) and greatest lower bound (g.l.b.)
are, respectively, the smallest element of A greater than both x and y,
and the greatest element of A smaller than both x and y).

Regarding functions:

• f ◦ g or fg denote the composition of f and g
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• f (n) denotes the result of n iterations of f , i.e. n successive applications
of f (by convention, f (0)(x) = x)

• ϕ(x)↓ means that ϕ is defined on x

• ϕ(x)↑ means that ϕ is undefined on x

• the set of elements on which ϕ is defined is called its domain, and the set
of elements which are values of ϕ for some argument is called its range

• ϕ ' ψ means that ϕ and ψ are equal as partial functions, i.e. on each
argument they are either both undefined, or both defined and equal

• the set of pairs (x, y) such that ϕ(x) ' y is called the graph of ϕ

• α ⊆ β means that as partial functions β extends α, i.e. if α is defined on
an argument, then β is too and has the same value.

Each chapter is divided into numbered sections, and each section is divided
into unnumbered subsections. There is a unique progressive numbering inside
sections, including definitions, results, and exercises. Internal references in a
given chapter may omit the chapter number.

The bibliography only includes papers quoted in the book. We have done
our best to attribute results and quote the original sources. In case of unpub-
lished results, when an attribution has been possible through personal com-
munication or other sources we have attached names without references, and
the mistakes that may have occurred are unintentional. We are, of course,
well aware of the fact that simply quoting original sources is only a ghost of
history, and it barely hints at the growth and interaction of ideas. But at least
it provides the bare facts.

It is now time to plunge into the real work. We hope you will find the book
readable, despite the difficulties imposed partly by the subject, but mostly by
our limitations. Try to be patient,

and remember patience is the great thing, and above all things else
we must avoid anything like being or becoming out of patience.

(Joyce, Finnegans Wake)



Chapter I

Recursiveness and
Computability

This chapter attacks the problem of characterizing the notion of effective
computability, by isolating various different proposals. The methods intro-
duced in Section 7 show them all to be equivalent, thus demonstrating that we
have certainly found a natural and fundamental class of functions. In Section
8 we discuss whether we have reached a satisfactory solution, and to which
extent it is possible to believe that the class of functions so isolated coincides
with the class of effectively computable functions.

The various approaches we introduce can be roughly classified into two
groups:

Mathematical. We start in Section 1 with a class of functions defined by mim-
icking the basic arithmetical notions, the principle of induction among
them. We note that the functions of this class are naturally defined by
means of equations, and thus undertake in Section 2 a general study of
systems of equations. We then discover that by adopting special formal
rules we can derive the values of a function from a system of equations
defining it. In Section 3 we thus investigate the functions whose values
can be derived by any logical means in current formal systems suitable
for arithmetic.

Computational. By analyzing the human process of routine calculation, we
set up in Section 4 a machine-like model of computation and programs
for it. In Section 5 we then consider the purely algorithmical skeleton
of programs, by abstracting from the specific implementation of the ma-
chine. In a final generalization we then set up, in Section 6, a theory of

17
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functions as abstract programs.

Of course different classifications are possible. A particularly relevant one,
from a computational point of view, would make a distinction between de-
terministic and nondeterministic notions. So, e.g., Herbrand-Gödel com-
putability, representability in formal arithmetical systems, λ-definability and,
more generally, all notions of derivability in suitable formal systems (the most
comprehensive formulation in this direction being Post canonical systems, in-
troduced in Section II.1) are nondeterministic, since they provide rules which
can be applied in certain situations, but do not establish the order of appli-
cation when multiple choices are available. It is however possible to introduce
restrictions in nondeterministic approaches to turn them into deterministic
ones, usually without affecting their power (and this is actually done when
these approaches are taken as basis for programming languages).

It is important to stress that for much of the later development of
Recursion Theory, alternative characterizations of recursiveness, as
well as its relation with effective computability, are not needed. The
various sections have been kept mostly independent from each other, so that
they can be read separately. The reader not interested in foundational aspects
of Recursion Theory can even skip the whole chapter, except for Sections 1 and
the first part of Section 7, in which the recursive functions and the fundamental
method of arithmetization are respectively introduced. Arithmetization is a
basic technical tool, which is here applied to produce a normal form for the
recursive functions, and to show the equivalence of the various approaches to
recursiveness.

As a whole, this introductory chapter (and the first two sections of the
next one) may be thought of as a technical version of what Webb [1980] does
philosophically and Hofstadter [1979] pyrotechnically. These books may offer
various (and sometimes unexpected) complements to the matters here discussed
(especially so for those we just hint at). They are recommended reading.

I.1 Induction

The subject of this book is a close look at functions from natural numbers to
natural numbers. The interest of our study is evident: the natural numbers are
one of the most natural type of mathematical objects, and thus our functions
are among the most natural mathematical functions. But to even understand
what such functions are, we must first of all have a good grasp of the objects
they relate. We then start by analyzing the intuitive picture of the natural
numbers, trying to characterize their structure. Something is clear: the natural
numbers are all in a single discrete row, with a first but no last element. Since
what matters to us is just their mutual relationship and not their ultimate
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individual nature, we may imagine them as obtained from a first element (the
number 0), by iteration of a generation procedure (the successor operation S).
Thus the numbers are

0 S(0) S(S(0)) · · ·

or (by using now the natural numbers metalinguistically, to indicate the number
of iterations of S)

0 S1(0) S2(0) · · ·

We simply write n for Sn(0).
Three axioms that we take for granted from our intuitive picture above are

the following (in a first-order logic with equality):

Axioms I.1.1 (Dedekind [1888])

A1 S(x) = S(y) → x = y

A2 0 6= S(y)

A3 x 6= 0 → (∃y)(x = S(y)).

They say that the successor induces an isomorphism between ω (the set of
natural numbers) and ω − {0}. Also, they rule out some unwanted pictures of
the natural numbers, like ones with cycles, or with two infinite sequences of
elements like

a0 a1 a2 · · · b0 b1 b2 · · ·

Unfortunately, they leave space for structures like

a0 a1 a2 · · · · · · b−2 b−1 b0 b1 b2 · · ·

and to be able to isolate just the initial part of these structures we need to say
that every element can be reached from 0 by a finite number of applications
of S. This seems to involve the very notion of integer that we are trying to
characterize, and might seem to be circular (It is actually impossible to do this
in a first-order way. See the related remarks on p. 24).

We then take an operational stand, and begin to study how we can deal with
functions and properties of natural numbers. There are basically two ways: we
may want to define something new, or to check properties of something we
already have. Necessarily (according to our intuition) we have to proceed in
both cases by induction, i.e. starting from 0 and going on by means of the
successor operation.
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Definitions by inductions

A typical example is given in the following definitions of sum and product,
that reduce each of these two binary functions to an infinite family of unary
functions (obtained by fixing the first argument).

Definition I.1.2 (Grassmann [1861])

A4 x+ 0 = x

A5 x+ S(y) = S(x+ y)

A6 x · 0 = 0

A7 x · S(y) = x · y + x.

In both cases a new function is defined, first for 0 and then for a generic
S(y), using the work already done for y. A general formulation of this process
(with parameters) is the following, where we write y + 1 for S(y), as usual.

Definition I.1.3 (Dedekind [1888]) A function f is defined from g and h
by primitive recursion if

f(~x, 0) = g(~x)
f(~x, y + 1) = h(~x, y, f(~x, y)).

Proofs by induction

Suppose we have a property ϕ of natural numbers and we wish to check that
it holds for every number. From the way the numbers are generated, this
follows if the property holds for 0 and it propagates through the successor
operation, since every number is obtained from 0 by a finite iteration of S.
This is expressed by the Axiom of Induction:

Axiom I.1.4 (Dedekind [1888]) If ϕ is a formula with one free variable
then

A8 ϕ(0) ∧ (∀x)[ϕ(x) → ϕ(S(x))] → (∀y)ϕ(y).

In terms of sets this means that any set containing 0 and closed under
successor contains ω, or that the numerals Sn(0) exhaust the natural numbers.
This is thus a tentative to restrict the possible models of the axioms A1–A3.
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For our purposes it is better to express this principle in the equivalent form
of Complete Induction, which refers to the natural ordering of the natural
numbers, that can be introduced for example as:

x ≤ y ⇔ (∃z)(x+ z = y)
x < y ⇔ x ≤ y ∧ x 6= y.

We then have the following equivalent form of A8:

(∀z)[(∀x < z)ϕ(x) → ϕ(z)] → (∀y)ϕ(y).

By writing ψ in place of ¬ϕ and taking the contrapositive, Complete Induction
is equivalent to the following Least Number Principle:

(∃y)ψ(y) → (∃z)[ψ(z) ∧ (∀x < z)¬ψ(x)].

Its content is simply that if we know that a number with a certain property
exists, then we also know that there is the least number satisfying that property.
A general formulation of this principle (with parameters) in terms of functions
is:

Definition I.1.5 (Kleene [1936]) A function f is defined from a relation R
by µ-recursion1 if

1. R is a regular predicate, i.e. (∀~x)(∃y)R(~x, y).

2. f(~x) = µyR(~x, y), where µyR(~x, y) is the least number y such that R(~x, y)
holds.

Similarly, f is defined from g by µ-recursion if

1. (∀~x)(∃y)(g(~x, y) = 0)

2. f(~x) = µy(g(~x, y) = 0).

Note that the Least Number Principle can be simply written in µ-notation
as (∃y)ψ(y) → (∃z)(z = µyψ(y)).

The name recursion for both the processes above (primitive recursion and
µ-recursion) is justified by the fact that they are both defined by recurrence on
the natural numbers.

1µ is the Greek equivalent of the first letter of ‘minimum’.
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Recursiveness

We are now ready for our first attack on the notion of effective computability.
The idea is simple: the two processes just introduced certainly produce effec-
tively computable functions when applied to effectively computable functions
and predicates. We just have to take an inductive approach, by starting from
the effectively computable functions corresponding to 0 and S and by succes-
sively building up new functions using primitive recursion and µ-recursion. We
will also permit a rudimentary logical intuition to contribute to the class, both
in initial functions (identities or projections) and in building rules (composition
of known functions), to allow for useful manipulations. We are thus led to the
following notion.

Definition I.1.6 (Dedekind [1888], Skolem [1923], Gödel [1931])
The class of primitive recursive functions is the smallest class of functions

1. containing the initial functions

O(x) = 0
S(x) = x+ 1

Ini (x1, . . . , xn) = xi (1 ≤ i ≤ n)

2. closed under composition, i.e. the schema that given g1,. . . ,gm,h produces

f(~x) = h(g1(~x), . . . , gm(~x))

3. closed under primitive recursion.

A predicate is primitive recursive if its characteristic function is.

Definition I.1.7 (Kleene [1936]) The class of recursive functions is the
smallest class of functions

1. containing the initial functions

2. closed under composition, primitive recursion and µ-recursion.

A predicate is recursive if its characteristic function is.

Historical roots of Recursion Theory ?

Dedekind [1888], improving the work of Grassmann [1861], was the first to
succeed in the analysis of the concept of natural number. He was able to
isolate the axioms for 0 and S, and the principle of second-order induction.
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He was immediately faced with the problem of justifying his formal theory
as adequately describing the informal notion of number. For this purpose he
offered a characterization theorem: the theory described, up to isomorphism,
only one structure (in modern terms, it was categorical). The basic idea for
the proof was to see that an isomorphism of any two structures satisfying the
axioms can be immediately defined by (primitive) recursion. The main task
for Dedekind was, thus, the justification of the existence of functions defined
by such a principle. By doing this he pulled the trigger of Recursion Theory.

A great impetus for the early work on the field was set by the suggestion
of considering only effectively defined functions: this underlay various con-
structive approaches to mathematics, among which two have been particularly
relevant to our subject. Semi-intuitionists (like Kronecker [1887], Poincaré
[1903], [1913], and Lebesgue [1905]) were interested, on the positive side, in
effective solutions to mathematical (especially algebraic) problems. They were
also reacting, on the negative side, to Cantor’s Set Theory and his use of the
power set (which, they thought, should be taken as consisting of just those sets
of natural numbers which are somehow explicitly definable). Finitists (Hilbert
[1904] and his school), stimulated by the discovery of paradoxes, were trying
to constructivize Dedekind’s second-order result on Arithmetic by bringing it
into the realm of first-order logic: one of their main interests was a consistency
proof for Arithmetic done by finitary means. This soon led to general prob-
lems of characterizing finitistic arithmetical methods and their relationships
with primitive recursion.

Formal Arithmetic ?

The simplest partial formalization of arithmetic that can be extracted from
our treatment is the Robinson Arithmetic Q (R.M. Robinson [1950]). It
consists, in the language of first-order logic with equality, of a constant 0,
functional symbols S, + and · , and the axioms A1–A7. Local variations are
possible, e.g. both the constants 0 and S can be defined (and thus eliminated)
in the following way:

x = 0 ⇔ x+ x = x

x = 1 ⇔ x · x = x ∧ x 6= 0
S(x) = y ⇔ y = x+ 1.

Also, axiom A3 can be replaced by the following:

x = 0 ∨ x > 0

where < is the predicate so defined:

x < y ⇔ (∃z)(x+ S(z) = y).
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This system is quite weak, but nevertheless sufficient to represent every recur-
sive function (in a precise sense introduced in definition I.3.1).

Robinson Arithmetic adds the defining equations of plus and times to the
axioms for successor. Primitive Recursive Arithmetic (Skolem [1923]) ac-
tually adds axioms corresponding to the definitions of all the primitive recursive
functions. Equivalently, one could add a general schema of primitive recursion:

R(f, x, 0) = x

R(f, x,S(y)) = f(R(f, x, y), y).

The next step would be to add the equation for µ-recursion (or equiva-
lently, as we know, the induction principle), and this would result in Peano
Arithmetic PA (a first-order version of Peano [1889]), which can be defined
as the extension of Q obtained by adding to it the axiom A8. Note that A8 is
actually a schema of axioms, one for each formula of the language with one free
variable. Axiom A3 now becomes derivable from the others, and it is usually
dropped. But dramatic simplifications are not possible: PA, although inde-
pendently axiomatizable, is not finitely axiomatizable (Ryll-Nardzewski [1952],
Montague and Tarski [1957]).

Leaving aside formal systems, we can consider the structure 〈ω,+, ·〉 un-
derlying our intuition of natural numbers and take a semantic approach to
arithmetic. This pertains to the following chapters of our study and we quote
here two extremal cases: First-Order Arithmetic, that is, the set of formulas
of the first-order language with equality true in the structure; and Second-
Order Arithmetic, obtained similarly by considering the second-order lan-
guage. Note that First-Order Arithmetic, though completely determining the
first-order sentences true in the standard model (i.e. determining the structure
up to elementary equivalence), admits countable models not isomorphic to it
(Skolem [1934]). This shows that no purely first-order version of Dedekind’s
isomorphism theorem exists. But, quite appropriately, the notion of recur-
siveness does provide the missing ingredient: any recursive model of Peano
Arithmetic is isomorphic to the standard one (Tennenbaum [1959]).

Some primitive recursive functions and predicates

We begin our treatment by noting (after Skolem [1923]) that many interesting
arithmetical functions and predicates in common use are primitive recursive.
To illustrate the use of identities and composition, we show that addition is
primitive recursive. Recall its defining equations

x+ 0 = x

x+ S(y) = S(x+ y).
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They define a function f(x, y) = x+ y such that

f(x, 0) = x

f(x, y + 1) = S(f(x, y)).

This can be put in the form allowed by Definition 1.3 by letting (by composition
of initial functions)

h(x, y, z) = S(I3
3 (x, y, z))

f(x, 0) = I1
1 (x)

f(x, y + 1) = h(x, y, f(x, y)).

In the following we do not attempt to put definitions in the allowed forms,
which can be easily done as an exercise by the reader. It should be clear
however that, due to the existence of the identity functions Ini and the possi-
bility of substitutions (compositions), the schemata of primitive recursion and
µ-recursion may be applied quite freely by interchanging, identifying and intro-
ducing variables when needed .

The following are primitive recursive:

• Predecessor

pd(0) = 0
pd(x+ 1) = x.

• Integer difference2

x− 0 = x

x− (y + 1) = pd(x− y).

• Bounded sums ∑
y≤0

f(~x, y) = f(~x, 0)

∑
y≤z+1

f(~x, y) = (
∑
y≤z

f(~x, y)) + f(~x, z + 1).

∑
y<z

f(~x, y) =
∑
y≤z−1

f(~x, y).

2Since we do not consider negative integers, the difference of two numbers is set equal to
0 when it would give a negative value.
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• Bounded products, as above.

This shows that the primitive recursive predicates are closed under logical
connectives and bounded quantifiers, since e.g. the characteristic functions of
¬P , P∧Q and (∀y ≤ z)R(~x, y) are respectively 1−cP , cP ·cQ and

∏
y≤z cR(~x, y).

This allows us to translate usual arithmetical definitions into logical terms, and
to often find out that they are primitive recursive. For example:

• x divides y
x | y ⇔ (∃z ≤ y)(x · z = y).

• x is a prime

Pr(x) ⇔ x ≥ 2 ∧ (∀y ≤ z)(y | x → y = 1 ∨ y = x).

To define the sequence of prime numbers px, the natural guess would be:

p0 = 2
px+1 = the smallest prime number greater than px

= µy(Pr(y) ∧ y > px).

This is a permissible application of the µ-operator since the predicate is regular
(there are infinitely many prime numbers), but we are not allowed to use the
µ-operator in primitive recursion. However px+1 ≤ px! + 1 (by Euclid’s proof),
i.e. we have a primitive recursive bound (the factorial is primitive recursive
because z! =

∏
y<z(y + 1)). And the primitive recursive functions are closed

under the bounded µ-operator

µy≤zR(~x, y) =
{
µyR(~x, y) if (∃y ≤ z)R(~x, y)
0 otherwise.

Indeed, if

g(~x, y) = characteristic function of R(~x, y) ∧ (∀z < y)¬R(~x, z)

then
µy≤zR(~x, y) =

∑
y≤z

(y · g(~x, y)).

We can also decompose a number in a primitive recursive way:

• the exponent of k in the decomposition of y

exp(y, k) = µx≤y[kx | y ∧ ¬(kx+1 | y)].

Here we stop our first taste of primitive recursion: the unsatiated reader can
have a bellyful by turning to Chapter VIII.



I.1 Induction 27

Codings of the plane

It is possible (after Cantor [1874]) to put the plane (i.e. the set ω×ω of ordered
pairs of natural numbers) into a one-one, onto correspondence with the line
(i.e. the set ω of natural numbers) in a primitive recursive way. This can be
achieved by dovetailing: enumerating the pairs of the first row in the picture,
and inserting after each of them all the pairs connected to it by arrows.

(0, 0) (0, 1) (0, 2) (0, 3) · · ·
(1, 0) (1, 1) (1, 2) · · ·
(2, 0) (2, 1) (2, 2) · · ·
(3, 0) · · · · · · · · ·
· · ·

�+ �+ �+

�+ �+

�+

Note that all pairs on a same arrow-connection have the same sum. We
thus order the pairs by their sum, and the pairs with the same sum in a lexi-
cographical way (i.e. by first component):

(x, y) < (x′, y′) ⇔ (x+ y < x′ + y′) ∨
(x+ y = x′ + y′ ∧ x < x′).

Since there are z + 1 pairs with sum z, the position of the pair (x, y) in the
order will be

J (x, y) = (
∑
i<x+y

(i+ 1)) + x =
(x+ y)2 + 3x+ y

2

and J is primitive recursive. It also has primitive recursive inverses:

R(z) = µx≤z(∃y ≤ z)(z = J (x, y))
L(z) = µy≤z(∃x ≤ z)(z = J (x, y)).

It is easy to check that the following properties hold:

• x ≤ J (x, y) and y ≤ J (x, y)

• x+ y > 0 ⇒ x < J (x, y) ∧ y < J (x, y)

• x < x′ ⇒ J (x, y) < J (x′, y)

• y < y′ ⇒ J (x, y) < J (x, y′)

• RJ (x, y) = y, LJ (x, y) = x and J (L(z),R(z)) = z.

Slightly different codings are:
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1. By noting that each natural number different from 0 can be uniquely
written as the product of an even (2x) and an odd (2y + 1) number, the
map

(x, y) 7→ 2x(2y + 1)− 1.

2. By considering the 1’s in the binary expansion of natural numbers as
markers, the map

(x, y) 7→ 1 0 . . . 0︸ ︷︷ ︸
x times

1 0 . . . 0︸ ︷︷ ︸
y times

= 2y + 2x+y+1.

This is not onto as a coding of pairs. But since every natural number can
be thought of as coding a finite sequence of natural numbers this way,
this actually provides an onto coding of all finite sequences (Minsky
[1967]).

Other codings will be considered in the next theorem (Gödel’s function β)
and in Section 7.

Elimination of primitive recursion

We have introduced two definitional schemata based on induction: primitive
recursion and µ-recursion. The next result shows that the former is subsumed
under the latter, modulo appropriate initial functions. The intuition comes
from Peano Arithmetic, which is built only on plus, times and the induction
principle.

Theorem I.1.8 (Gödel [1931], Kleene [1936a]) The class of recursive
functions is the smallest class

1. containing sum, product, identities Ini and the characteristic function δ
of equality

2. closed under composition

3. closed under µ-recursion.

Proof. Let C be the smallest class satisfying the conditions of the theorem:
clearly every function in C is recursive, and for the converse we only have to
show that the constant function O and the successor S are in C, and that C is
closed under primitive recursion.

Since 0 is the least number equal to 0,

On(~x) = µy(In+1
n+1 (~x, y) = 0).
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Also, since

δ(x, y) =
{

0 if x 6= y
1 otherwise

and 1 is the least number different from 0,

1(x) = µy(δ(O2(x, y), I2
2 (x, y)) = 0)

= µy(δ(0, y) = 0) = 1
S(x) = I1

1 (x) + 1(x).

The whole problem is thus to show the closure of C under primitive recur-
sion. The idea is the following: we will show that it is possible to define in C
a function β such that for every finite sequence a0, . . . , an of natural numbers
there is one natural number a coding the sequence via β, i.e. such that

(∀i ≤ n)(β(a, i) = ai).

Then, if f is defined from g and h in C by primitive recursion as

f(~x, 0) = g(~x)
f(~x, y + 1) = h(~x, y, f(~x, y))

we can code the sequence of values of f from 0 to y by using β:

t(~x, y) = µz[β(z, 0) = g(~x) ∧ (∀i < y)(β(z, i+ 1) = h(~x, i, β(z, i)))].

Since then
f(~x, y) = β(t(~x, y), y),

f will be in C if t is, and this is the case if C is closed under logical operations
(including universal bounded quantifier). We thus have three steps to perform:

1. Existence of β
This is a purely number-theoretical argument. We want β s.t. for any
sequence a0, . . . , an there is a s.t. for i ≤ n, β(a, i) = ai. We will try to
get the ai’s as remainders of the division of a number c by given numbers
d0, . . . , dn. That is, we want ai = rm(c, di). Then c = qidi + ai, ai < di.
Suppose this holds for another c′: c′ = q′idi + ai. By subtracting we get
c − c′ = (qi − q′i)di, i.e. the difference c − c′ is also divisible by di. If
the di are relatively prime, then c − c′ is also divisible by their product
p = d0 · · · dn. This means that for different c, c′ < p we get different
sequences of remainders when dividing by di (otherwise c − c′ ≥ p).
Moreover, any sequence of n + 1 numbers less than the di’s is obtained
(since the number of possible sequences is p, and different c < p give
different sequences, i.e. we get them all). Then one of these sequences is
the given one a0, . . . , an.3

3This is the Chinese Remainder Theorem, so called because it was known to the Chinese
already in the VIth century B.C.
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We now have to obtain the di’s, with the stated conditions that they be
relatively prime and ai < di.
The easiest way to get them relatively prime is to consider the sequence

1 + d 1 + 2d · · · 1 + (n+ 1)d

for any d = s!, s ≥ n. (1 + rd, 1 + r′d are relatively prime since if q
divides both of them, then it also divides their difference (r − r′)d, and
hence it divides d because r − r′ ≤ n is a factor of d = s!, since s ≥ n.
But then q divides d and 1 + rd, i.e. it divides 1.) We also want these
numbers to be greater than the respective ai’s: for this is enough to have
d ≥ ai, hence s ≥ ai.
We can then let di = 1 + (i + 1)d with d = s!, for any s greater than n
and the ai’s. By coding c and d into a = J (c, d) we can actually define

β(a, i) = rm(c, di) = rm(c, 1 + (i+ 1)d)
= rm(L(a), 1 + (i+ 1)R(a))

2. Closure of C under logical operations
For the propositional connectives:

• negation
We need a function interchanging 0 and 1. Note that

δ(x, 0) =
{

0 if x 6= 0
1 otherwise

and thus c¬R(x) = δ(cR(x), 0).
• disjunction

We need a function which is 0 exactly when both the arguments are
0, i.e. when x + y = 0. Then d(x, y) = δ(δ(x + y, 0), 0) satisfies the
need, and cR∨S(x) = d(cR(x), cS(x)).

Closure under negation implies that in C we can apply the µ-operator
directly to predicates:

µyR(~x, y) = µy(cR(~x, y) = 1) = µ(c¬R(~x, y) = 0).

• bounded µ-operator
We use, in this proof only, the form

µy<zR(~x, y) =
{
µyR(~x, y) if (∃y < z)R(~x, y)
z otherwise

which is expressible in C as

µy<zR(~x, y) = µy(R(~x, y) ∨ y = z).



I.1 Induction 31

• bounded existential quantifier
By the particular form of bounded µ-operator defined above we have:

(∃y < z)R(~x, y) ⇔ (µy<zR(~x, y)) 6= z.

• The other operations are obtained by composition as usual, e.g.

R ∧ S ⇔ ¬(¬R ∨ ¬S)
(∀y < z)R(~x, y) ⇔ ¬(∃y < z)¬R(~x, y)

3. Definition of β in C
We simply need to show that J ,R,L and rm are in C.

• J is defined as

J (x, y) =
(x+ y)2 + 3x+ y

2
Since in C we have sum, product and composition, we only need the
function f(z) = z/2:

f(z) = µy(2y = z ∨ 2y + 1 = z)

• R and L are in C by their very definitions, e.g.

R(z) = µx(∃y < z + 1)(z = J (x, y))

• the remainder of the division of x by y is defined as

rm(x, y) = µz<y(∃q < x+ 1)(x = qy + z). 2

The use of Gödel’s function β in the proof above can be avoided by using
different codings. Of course the usual coding by prime numbers (see Section
7) would not work here, since the relevant functions and predicates are de-
fined by primitive recursion, which is exactly what we have to avoid. For very
elementary coding techniques, see Quine [1946] and Smullyan [1961].

Complementary results have been obtained by J. Robinson [1950], [1968],
one of them being that the recursive functions of any number of variables can
be obtained, by composition alone, from the recursive functions of just one vari-
able, plus sum and identities. And the recursive functions of just one variable
can be defined independently, without using functions of more variables, by the
operations of composition and inversion of onto functions (the latter clearly
corresponding to µ-recursion applied to regular predicates), from two (but not
from only one) suitable initial functions.
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I.2 Systems of Equations

From a mathematical point of view a function is usually defined from a set of
equations, and we have used this fact informally in the previous section. We
now undertake an analysis of the expressive power of systems of equations,
bearing in mind that our concern is effective computability, and that we there-
fore require not only a definition of a function, but also some way to compute
it.

The formalism of equations

Definitions are linguistic objects, and we then need, first of all, an appropriate
language to express them. Also, since we are dealing with numerical functions,
we need linguistic analogues of the numbers, which we can generate from 0 by
the successor operation. Our formalism thus consists of:

1. symbols

• equality ‘=’

• constants 0 (for the number 0) and S (for the successor operation)

• parentheses ‘(’ and ‘)’

• comma ‘,’ (to separate variables)

• variables x0, x1, . . . for numbers

• constants fn0 , f
n
1 , . . . for n-ary functions (for each n).

2. numerals

• 0 is a numeral

• if a is a numeral, so is S(a)

• nothing else is a numeral.

We will write n for the numeral Sn(0) representing the number n.

3. terms

• 0 is a term

• variables and 0-ary functional letters are terms

• if t is a terms then so is S(t)

• if t1, . . . , tn are terms then so is fni (t1, . . . , tn)

• nothing else is a term.
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Note, in particular, that the numerals are terms.

4. equations
If t and s are terms, and t is of the form fni (t1, . . . , tn) for some n, i and
t1, . . . , tn not containing any functional letter except possibly S, then
t = s is an equation.

The idea is that equations define functions by their right-hand sides, while
left-hand sides just tell which functions are defined.

5. systems of equations
A system of equations is simply a finite set of equations.

We will write E(f1, . . . , fn;~z) for a system of equations whose functional
letters and numerical variables are all, respectively, among f1, . . . , fn, and
~z.

Definability by systems of equations

The first thought that comes to mind is to consider systems of equations that
define functions uniquely w.r.t. a given letter (which we may always suppose
to be f1):

Definition I.2.1 (Herbrand [1931]) A function f is definable by a sys-
tem of equations if there is a system E such that:

1. there is a solution to the system:

(∃f1) . . . (∃fn)(∀~z)E(f1, . . . , fn;~z)

(i.e. there are functions satisfying every equation of E)

2. any solution determines uniquely f1 as f : for every f1, . . . , fn

(∀~z)E(f1, . . . , fn;~z) ⇒ (∀~x)(f1(~x) = f(~x))

(i.e. if f1, . . . , fn are solutions of E, then f1 = f).

Note that the existence condition 1) is necessary, otherwise any system of
equations E without solutions would define any function f , since then the clause
(∀~z)E(f1, . . . , fn;~z) would be false, and the implication of condition 2) would
be vacuously true.

For our purposes of identifying computable functions this notion of defin-
ability is however unsatisfactory, because each value f(~x) is determined (inde-
pendently of ~x) by a global infinitary condition involving every ~z. Herbrand
probably intended the uniqueness condition 2) to be proved constructively,
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and such a proof would probably give an explicit computation procedure for
f . But, we do not have a precise notion of constructiveness (after all, we are
precisely trying to characterize the related notion of effectiveness). And from
a classical standpoint the class of functions definable by systems of equations
is too comprehensive (although mathematically very interesting), and it very
much transcends the class of recursive functions (Kalmar [1955]): it coincides
with the class of hyperarithmetical functions (Grzegorczyck, Mostowski
and Ryll-Nardzewski [1958]), which will be studied in Volume III (see also
p. 391).

Computations, whatever they might be, are certainly finite objects and
thus each value f(~x) should be uniquely determined by just a finite amount
of information. We are thus led to the following modification of the notion
introduced above.

Definition I.2.2 (Kreisel and Tait [1961]) A function f is finitely de-
finable by a system of equations if there is a system E such that:

1. (∃f1) . . . (∃fn)(∀~z)E(f1, . . . , fn;~z)

2. for every ~x there is a finite set ~z1, . . . , ~zp (p depending on ~x) such that
the substitution instances of E by them determines the value of f(~x), i.e.
such that for every f1, . . . , fn

E(f1, . . . , fn; ~z1) ∧ · · · ∧ E(f1, . . . , fn; ~zp) ⇒ f1(~x) = f(~x).

For example, the system of equations (written informally)

f(0) = 0 f(x+ 1) = f(x) + 2 g(x) = f(g(x))

defines (for every x) f(x) = 2x and g(x) = 0. Here f is finitely defined (by
the first two equations), while g is not: indeed g is uniquely determined by the
infinite set of equations

g(0) = 2 · g(1) = 4 · g(2) = . . .

but there are infinitely many solutions to any finite subset of these equations.

Theorem I.2.3 (Herbrand [1931], Gödel [1934], Kleene [1935]) Every
recursive function is finitely definable.

Proof.
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1. initial functions
O,S and Ini are, respectively, finitely defined by:

f1
0 (x0) = 0
f1
0 (x0) = S(x0)

fn0 (x1, . . . , xn) = xi.

2. composition
Suppose gi(x1, . . . , xn) (i = 1, . . . ,m) and h are finitely defined, respec-
tively, by Ei and E w.r.t. fni and fmm+1 (by changing the letters if needed,
we can always reduce to this case). Then

f(x1, . . . , xn) = h(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn))

is finitely defined by E1 ∪ · · · ∪ Em ∪ E together with

fn0 (x1, . . . , xn) = fmm+1(fn1 (x1, . . . , xn), . . . , fnm(x1, . . . , xn)).

Of course we must suppose (here and in the following) that there are
no conflicts of functional letters in E1, . . . , Em, E (which can always be
achieved by possible changes of letters).

3. primitive recursion
If g and h are finitely defined by E1 and E2 w.r.t. fn0 and fn+2

0 then

f(x1, . . . , xn, 0) = g(x1, . . . , xn)
f(x1, . . . , xn, y + 1) = h(x1, . . . , xn, y, f(x1, . . . , xn, y)).

is finitely defined by E1 ∪ E2 together with

fn+1
0 (x1, . . . , xn, 0) = fn0 (x1, . . . , xn)

and

fn+1
0 (x1, . . . , xn,S(xn+1)) =

fn+2
0 (x1, . . . , xn, xn+1, f

n+1
0 (x1, . . . , xn, xn+1)).

4. µ-recursion
If g is finitely defined by E1 w.r.t. fn+1

0 and

f(x1, . . . , xn) = µy(g(x1, . . . , xn, y) = 0)
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then let E be E1 plus the equations defining sum and product (which are
primitive recursive, and for which we then already have finite definabil-
ity), together with

f1
0 (0) = 0 f1

0 (S(x0)) = 1
f1
1 (0) = 1 f1

1 (S(x0)) = 0

and the formal translations of the following:

fn+1
1 (x1, . . . , xn, xn+1) =

f1
0 (fn+1

0 (x1, . . . , xn, xn+1)) · fn+1
1 (x1, . . . , xn,S(xn+1))

+ f1
1 (fn+1

0 (x1, . . . , xn, xn+1)) · xn+1

fn0 (x1, . . . , xn) = fn+1
1 (x1, . . . , xn, 0).

Then E finitely defines f w.r.t. fn0 , because the system just translates the
following facts: it defines

h(~x, y) =
{
y if g(~x, y) = 0
h(~x, y + 1) otherwise

w.r.t. fn+1
1 (by using two auxiliary functions f1

0 and f1
1 to allow for case

distinction), and then it defines

f(~x) = h(~x, 0)

w.r.t. fn0 . Indeed
h(~x, 0) = µy(g(~x, y) = 0)

because if µy[g(~x, y) = 0] = z then

h(~x, 0) = h(~x, 1) = · · · = h(~x, z) = z.

Note that E has solutions: the only trouble might come from fn+1
1 , but

here the natural interpretation applies: either for a given ~x there are
infinitely many y’s such that g(~x, y) = 0, and then the definition of fn+1

1

is the natural step function, or there are only finitely many such y’s, and
then any function constant from the last one of such y’s would work. 2

Derivability from systems of equations

Having shown that every recursive function is finitely definable by systems of
equations (in logical terms), we would also like to concoct explicit rules to ob-
tain the values of a function from a system of equations finitely defining it, thus
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determining a syntactical counterpart to the semantical notion of finite defin-
ability. Since this amounts to finding an appropriate formal system (capturing
a notion of validity for a given interpretation) we have as natural candidates
the analogues of well-known rules used for logical formal systems: substitution
and cut.

Definition I.2.4 (Gödel [1934]) An n-ary function f is Herbrand-Gödel
computable if there is a finite system of equations E such that if fni is the
leftmost letter in the last equation of E, then

f(a1, . . . , an) = b

holds if and only if the equation

fni (a1, . . . , an) = b

can be derived from E by means of the following two rules:

R1 Substitution of a numeral for every occurrence of a particular variable
in an equation.

R2 Replacement in the right-hand side of an equation of a term of the form
fmj (c1, . . . , cm) with a numeral d, provided fmj (c1, . . . , cm) = d has already
been derived.

We say that E defines f w.r.t. the letter fni .

Theorem I.2.5 (Herbrand [1931], Gödel [1934], Church [1936],
Kleene [1936]) Every recursive function is Herbrand-Gödel computable.

Proof. We consider here the systems of equations defined in the proof of
Theorem I.2.3. There are two things to prove:

1. Completeness property (the values can be deduced from the appropriate
systems of equations).

This is quite evident from the informal discussion of I.2.3.

2. Consistency property (no other value can be deduced, i.e. the values are
uniquely determined).

This follows by induction on the construction of the systems. As an
example, we show the case of primitive recursion (with notations as in
I.2.3). Suppose

fn+1
0 (x1, . . . , xn, y) = b

has been derived. There are two cases:
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• y = 0
Then, since R2 only allows for replacement on the right-hand side,
and since there is only one equation with fn+1

0 (x1, . . . , xn, 0) on the
left-hand side, it follows that

fn+1
0 (x1, . . . , xn, 0) = fn0 (x1, . . . , xn)

fn0 (x1, . . . , xn) = b

have been previously derived. But the consistency property holds
for fn0 by induction hypothesis.

• y = S(z)
Then, as in the above case, an equation

fn+1
0 (x1, . . . , xn,S(z)) =

fn+2
0 (x1, . . . , xn, z, f

n+1
0 (x1, . . . , xn, z))

must have been derived. Note that by definition there can be no
equation with the left-hand side like the right-hand side of the above
equation. Also, R2 only allows for replacement of terms of the form:
functional letter followed by numerals. Then equations like

fn+1
0 (x1, . . . , xn, z) = a fn+2

0 (x1, . . . , xn, z, a) = b

must have been derived. But then again the induction hypothesis
applies. 2

In Section 7 we will prove that the syntactical notion of Herbrand-Gödel
computability and the semantical notion of finite definability are globally equiv-
alent, by showing them equivalent to recursiveness. Also, by the proof just
given, every recursive function is Herbrand-Gödel computable from a system of
equations finitely defining it . But the two notions are not locally equivalent, in
the sense that given a system E the following may happen:

1. g can be finitely defined by E without being Herbrand-Gödel computable
from it , as the system

f(x) = 0 f(x) = h(x) g(x) = h(x).

and the function g(x) = 0 show. This simply results from the fact that
the rules R1 and R2 are of a very specific form, and do not even allow
for full logical substitution of equal entities.

2. g can be Herbrand-Gödel computable from E without being finitely defined
by it , as the system

f(0) = 0 f(S(x)) = S(f(S(x))) g(x) = f(0)
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and the function g(x) = 0 show. Here Herbrand-Gödel computability
follows because only f(0) is used among the values of f , but finite defin-
ability fails because there is no total function f satisfying every equation
(since f(z) = f(z) + 1 for z > 0).

Kreisel and Tait [1961] isolate a notion of derivability from systems of equa-
tions, which is locally equivalent to finite definability. Basically, the rules cor-
respond to the logical axioms for equality and successor. See Statman [1977]
for a proof-theoretical analysis.

Herbrand-Gödel computability has the advantage of using simple rules, and
the disadvantage of not being complete, in the sense of not allowing the deriva-
tion of everything which is logically derivable.

A logical programming language ?

Note that an equation can be put into a normal form of the kind

R1 ∧ · · · ∧Rn → Q

with Ri, Q atomic equations of the form fnj (x1, . . . , xn) = y and xi, y variables
or constants (the interpretation of variables being that they are all universally
quantified). For example,

f(x) = g(h(x))

can be written as
h(x) = y ∧ g(y) = z → f(x) = z.

Then the previous results show that the values of recursive functions can be
logically deduced from axioms of the described kind.

The programming language PROLOG(Programming in Logic, Colmer-
auer, Kanoui, Pasero and Roussel [1972], Kowalski and Van Emden [1976]) is
based on logical deductions from clauses of the form above, with Ri, Q atomic
relations holding of terms. These are called Horn clauses, and are especially
interesting because proof procedures for them are particularly manageable.
They can be thought of as conditions breaking up a goal Q into a series of
subgoals Ri. The results of this section show that PROLOG, although con-
cocted to handle deductive more than computational problems, has nevertheless
the power of computing all the recursive functions.

I.3 Arithmetical Formal Systems

The general trend of this century’s mathematics has been to work in formal
systems which are supposed to capture, more or less accurately, some aspects
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of the objects in which we are interested. From a formalistic point of view we
can thus consider a function as computable when we have a consistent formal
system representing it, i.e. allowing us to prove for the appropriate numbers
(and for nothing else) that they are the function’s values for given arguments.

Certainly the approach of Herbrand-Gödel computability falls in this trend,
but the formal system involved there, concocted for different goals, is somewhat
unnatural from a purely arithmetical point of view. The same will be true of the
approach of λ-definability, see Section 6. Since we are considering arithmetical
functions, it is natural to investigate which functions are representable in the
usual logical systems for arithmetic, for example in Peano Arithmetic (see
p. 24).

We attack the problem in a general way, by isolating minimal conditions
(which will turn out to be very weak) sufficient to represent every recursive
function. In this section, ‘formal system’ will always mean ‘formal system
extending first-order logic with equality, and having constants terms n, called
numerals, for each n’. For more details on formal systems, see p. 350.

Notions of representability

Definition I.3.1 (Tarski [1931], Gödel [1931], [1934], Tarski, Mostow-
ski and Robinson [1953]) Given a formal system F and a function f , we
say that:

1. f is weakly representable in F if, for some formula ϕ of the language
of F ,

f(x1, . . . , xn) = y ⇔ `F ϕ(x1, . . . , xn, y)

2. f is representable in F if, for some formula ϕ,

f(x1, . . . , xn) = y ⇒ `F ϕ(x1, . . . , xn, y)
f(x1, . . . , xn) 6= y ⇒ `F ¬ϕ(x1, . . . , xn, y)

3. f is strongly representable in F if for some formula ϕ, f is repre-
sentable by ϕ, and moreover the following uniqueness condition holds:

`F (∀y)(∀z)[ϕ(x1, . . . , xn, y) ∧ ϕ(x1, . . . , xn, z) → y = z].

The relationships among the various notions are: if f is strongly repre-
sentable then it is representable, and if f is representable in a consistent formal
system then it is weakly representable (because if F is consistent and `F ¬ϕ
then 6`F ϕ).
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Exercises I.3.2 a) The two conditions

f(x1, . . . , xn) = y ⇒ `F ϕ(x1, . . . , xn, y)

`F (∀y)(∀z)[ϕ(x1, . . . , xn, y) ∧ ϕ(x1, . . . , xn, z) → y = z]

are equivalent to the unique condition

`F (∀y)[ϕ(x1, . . . , xn, y) ↔ y = f(x1, . . . , xn)].

b) If F is such that

x 6= y ⇒ `F ¬(x = y)

then strong representability of f in F is equivalent to the unique condition

`F (∀y)[ϕ(x1, . . . , xn, y) ↔ y = f(x1, . . . , xn)].

Proposition I.3.3 (Tarski, Mostowski and Robinson [1953]) If F is a
consistent formal system with a predicate < satisfying the axiom schemata

1. ¬(x < 0)

2. x < n+ 1 ↔ x = 0 ∨ · · · ∨ x = n

3. x < n ∧ x = n ∧ n < x

then any function representable in F is strongly representable in it.

Proof. Suppose ψ represents f in F . Then the formula

ϕ(x1, . . . , xn, y) ⇔ ψ(x1, . . . , xn, y) ∧ (∀z < y)¬ψ(x1, . . . , xn, z)

strongly represents f . Indeed:

• If f(x1, . . . , xn) = y then f(x1, . . . , xn) 6= z, for every z < y. By repre-
sentability of f via ψ

`F ¬ψ(x1, . . . , xn, 0) ∧ · · · ∧ ¬ψ(x1, . . . , xn, y − 1) ∧ ψ(x1, . . . , xn, y).

Axioms 1 and 2 (depending on whether y = 0 or y > 0) take care of all
the z < y in the first part of the formula. Thus

`F ψ(x1, . . . , xn, y) ∧ (∀z < y)¬ψ(x1, . . . , xn, z)

(if y = 0 the second part is vacuously true, since there is no z < y), and
`F ϕ(x1, . . . , xn, y).
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• If f(x1, . . . , xn) 6= y then, by representability, `F ¬ψ(x1, . . . , xn, y) and
so `F ¬ϕ(x1, . . . , xn, y).

• To show the uniqueness condition we prove (see I.3.2.a) that

`F (∀y)[ϕ(x1, . . . , xn, y) ⇔ y = f(x1, . . . , xn)].

We have `F ϕ(x1, . . . , xn, f(x1, . . . , xn)) from the first part of the proof.
Suppose now `F ϕ(x1, . . . , xn, y). By axiom 3 the only possibilities are

y < f(x1, . . . , xn) ∨ y = f(x1, . . . , xn) ∨ f(x1, . . . , xn) < y.

The first one is ruled out, since from `F ϕ(x1, . . . , xn, f(x1, . . . , xn)) we
have `F ¬ψ(x1, . . . , xn, y), while from `F ϕ(x1, . . . , xn, y) (assumed by
hypothesis) we have `F ψ(x1, . . . , xn, y), and F is consistent. Similarly
we can rule out f(x1, . . . , xn) < y. Then y = f(x1, . . . , xn). 2

The notion of representability makes sense for predicates as well:

Definition I.3.4 Given a formal system F and a relation R, we say that:

1. R is weakly representable if, for some ϕ,

R(x1, . . . , xn) ⇔ `F ϕ(x1, . . . , xn)

2. R is representable if, for some ϕ,

R(x1, . . . , xn) ⇔ `F ϕ(x1, . . . , xn)
¬R(x1, . . . , xn) ⇔ `F ¬ϕ(x1, . . . , xn).

Note that if the characteristic function cR of R is (weakly) represented by
ϕ(x1, . . . , xn, z), then R is (weakly) representable by ϕ(x1, . . . , xn, 1). Also, if
F is such that

x 6= y ⇒ `F ¬(x = y)

and R is represented by ϕ(x1, . . . , xn), then cR is (strongly) representable by

(ϕ(x1, . . . , xn) ∧ z = 1 ) ∨ (¬ϕ(x1, . . . , xn) ∧ z = 0 )

(this follows from I.3.2.b). Note that the axioms are needed even for simple
representability of cR, because when cR(x1, . . . , xn) 6= z and z 6= 0, 1 we need
to know z 6= 0, 1 to be able to infer that the formula intended to represent cR
is not provable.
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Formal systems representing the recursive functions

Note that if f(x1, . . . , xn) = µyR(x1, . . . , xn, y) then

f(x1, . . . , xn) = y ⇔ R(x1, . . . , xn, y) ∧ (∀z < y)¬R(x1, . . . , xn, z).

The axioms of proposition I.3.3 then imply, by means of the same proof, that
the strongly representable functions are closed under µ-operator. We turn now
to the other conditions.

Proposition I.3.5 (Tarski, Mostowski and Robinson [1953]) If F is a
formal system such that

x 6= y ⇒ `F ¬(x = y)

then the functions strongly representable in F are closed under composition.

Proof. Suppose
f(~x) = h(g1(~x), . . . , gm(~x))

and g, hi are strongly represented by, respectively, χ and ψi. Then f is strongly
represented by

ϕ(~x, y) ⇔ (∃y1) . . . (∃ym)[ψ1(~x, y1) ∧ · · · ∧ ψm(~x, ym) ∧ χ(y1, . . . , ym, y)].

To show this we use (since we have the appropriate axioms for F) the form of
strong representability given in I.3.2.b. Then:

• if f(~x) = y let hi(~x) = yi and g(y1, . . . , ym) = y, so that `F ψi(~x, yi) and
`F χ(y1, . . . , ym, y). Then `F ϕ(~x, y) and `F ϕ(~x, f(~x)).

• if `F ϕ(~x, y) let y1, . . . , ym be such that

`F ψ1(~x, y1) ∧ · · · ∧ ψm(~x, ym) ∧ χ(y1, . . . , ym, y).

By strong representability it must be yi = hi(~x) and thus

y = g(h1(~x), . . . , hm(~x)) = f(~x). 2

We are now ready to conclude our search for axioms which allow repre-
sentability of every recursive function.

Theorem I.3.6 (Gödel [1936], Mostowski [1947], Tarski, Mostowski
and Robinson [1953]) In any formal system F with a predicate < and func-
tions + and · satisfying the following axiom schemata, any recursive function
is (strongly) representable (and thus, if the system is consistent, also weakly
representable):
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B1 ¬(x = y), for x 6= y

B2 x < n ∨ x = n ∨ n < x

B3 ¬(x < 0)

B4 x < n+ 1 ↔ x = 0 ∨ · · · ∨ x = n

B5 x + y = x+ y

B6 x · y = x · y

Proof. We refer to the characterization of recursive functions given in Theo-
rem I.1.8. We have just proved that closure under composition is implied by
B1, and closure under µ-recursion follows from B2–B4, as in I.3.3. It then
suffices to note that:

• Equality is representable because if x = y then obviously `F x = y, and
if x 6= y then `F ¬(x = y) by B1. Then its characteristic function is
representable too.

• Sum is representable by

ϕ(x, y, z) ⇔ x+ y = z.

Indeed, if x + y = z then `F x+ y = z and (by B5) `F x + y = z,
i.e. `F ϕ(x, y, z). And if x + y 6= z then `F ¬(x+ y = z) by B1 and
`F ¬(x+ y = z) by B5, i.e. `F ¬ϕ(x, y, z).

• Product is similarly represented by

ϕ(x, y, z) ⇔ x · y = z.

• Identities Ini are obviously represented by

ϕ(x1, . . . , xn, z) ⇔ z = xi. 2

The axioms B1–B6 define a theory R with infinitely many axioms. Tarski,
Mostowski and Robinson [1953] show that R is not finitely axiomatizable, since
any finite subset of the axioms (and thus, by compactness, any finite set of
theorems) admits a natural finite model consisting (for n sufficiently big) of the
numbers {0, 1, . . . , n} naturally ordered, and having the operations restricted
to value equal to n when the original value would exceed it. Of course R
cannot have a finite model (by B1) and thus it is not reducible to a finite set of
theorems. This also proves that any closed theorem of R is true in some finite
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model, and thus the power of R is very limited. Theorem I.3.6 is, thus, very
general.

Local improvements of Theorem I.3.6 are possible however, as Cobham (see
Vaught [1960]) and Jones and Shepherdson [1983] have shown. The conclusion
still holds if B2 and B5 are dropped. Moreover, by changing the language and
introducing a predicate ≤ in place of <, B2–B4 may be reduced to two axiom
schemata

x ≤ n ∧ n ≤ x

x ≤ n ↔ x = 0 ∨ · · · ∨ x = n.

Robinson Arithmetic Q (see p. 23) is an extension of R, and thus provides
an example of a finitely axiomatized theory in which every recursive function
is representable. Robinson has proved that if any one of the axioms of Q is
removed, then some recursive function is not strongly representable. Thus Q
is a minimal finitely axiomatizable theory in which every recursive function is
strongly representable. For details and more information, see Tarski, Mostowski
and Robinson [1953].

Invariant definability ?

Every model A of R has a submodel isomorphic to ω, which is called the
standard part of the model and is still denoted by ω. Given a formula ϕ and
a subset A of the universe of A, we say that A is defined by ϕ in A if

A = {x : A |= ϕ(x)}

(where |= is the usual notion of satisfaction in a structure, see IV.1.1). A is
defined on ω by ϕ in A if

A = ω ∩ {x : A |= ϕ(x)}.

We can also introduce uniform versions of these notions, by saying that A is
invariantly defined (on ω) by ϕ if A is defined (on ω) by the same ϕ in
every model A of R.

The Compactness Theorem implies that a set is invariantly definable if and
only if it is a finite subset of ω, while the proof of I.3.6 (together with the
results of Section 7) shows that invariant definability on ω and recursiveness
coincide (Kreisel [1965a]). Thus we have a purely model-theoretical reformu-
lation of recursiveness, and by changing the class of models one gets natural
generalizations of it (see Mostowski [1962] and Kreisel [1965a]), some of which
will be considered in Volume III.

Note that the reformulation of finiteness explains the need of considering
the relative notion of invariant definability: ω is not invariantly definable in
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models of R. For models of PA a stronger fact is true: ω is not even definable
in a single nonstandard model of PA. Indeed, given a formula ϕ defining a
set A, consider ¬ϕ. If there is no element satisfying it then A is the whole
universe, which is nonstandard. If there is an element satisfying ¬ϕ then, by
the Axiom of Induction, there is a minimal one x, which is not in A because
¬ϕ(x) holds. If x is 0 or the successor of a standard element then A does not
contain all standard elements. If x is the successor of a nonstandard element
y then, by minimality of x, ϕ(y) holds and A contains a nonstandard element.
In any case, A is not ω.

Definability of functions ?

We say that f is definable in F if for some term t(~x), `F t(~x) = f(~x). If
F satisfies B1 then definability implies strong representability (by the formula
t(~x) = z, see I.3.2). But definability is not an absolute notion, since the
fact that a function is definable is quite accidental and simply depends on
the functional constants of the theory language. For example, in Robinson
Arithmetic only polynomials are definable, because the language has only the
function symbols S,+ and · .

By extending a theory with axioms for a formal analogue of the µ-operator,
namely

(∃z)A(z) → A(µyA(y))
(∀z)¬A(z) → (µyA(y) = 0)
(∀z)[z < µyA(y) → ¬A(z)],

every function which is strongly representable by ϕ(~x, y) becomes definable
by µyϕ(~x, y). In particular, there are formal systems in which every recursive
function is definable.

In any theory with a predicate <, a functional symbol f can be introduced
in a conservative way (i.e. not producing new theorems in the old language) for
any function which is strongly represented by ϕ(~x, y), together with the axioms

ϕ(~x, f(~x))
(∀z)[z < f(~x) → ¬ϕ(~x, z)]

In any theory with the Axiom of Induction (e.g. Peano Arithmetic and
its extensions) the same can be done even more generally, in the sense that
only (∃y)ϕ(~x, y) is required, instead of strong representability. The provable
existence of µyϕ(~x, y) then follows by the Least Number Principle.

From I.7.7 it follows that functions definable in consistent formal systems
satisfying B1 are recursive, since in this case definability implies representabil-
ity, as noted above.
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I.4 Turing Machines

We have been analyzing the notion of effectiveness by taking our inspiration
from mathematical activity. We now switch our point of view and begin an
analysis based on computational activity, by providing a model of certain as-
pects of human behavior during routine computations. The final goal is to
understand what we are doing when we compute, in such a way to be able to
simulate this activity by a machine. In this section we present the analysis of
Turing [1936] and Post [1936].

In doing a computation we are given an input and then produce an output,
usually after an appropriate amount of written calculations. Fortunately, for
the pure writing activity we already have a mechanical device: the type-
writer. On it we base our model. We may imagine our abstract machine as
being capable of printing symbols on paper. In real life writing is usually
done on planar sheets of paper, but since we write in consecutive (horizontal
or vertical) lines we may simplify, and just think of our machines as writing on
a linear tape. Since we do not put a priori bounds on the amount of scratch
work needed for a computation, we think of our tape as potentially infinite in
both directions (i.e. we suppose that we are always able to glue more tape at
either end, when needed). Also, since symbols are actually (or can be) written
one at a time, we think of our tape as consisting of cells, each of which can
contain a single symbol.

Although we might, in general, need symbols for infinitely many entities
(e.g. one for each number), we can certainly use complex symbols (like words)
built up from a finite stock of atomic ones (like letters). Thus our machine will
simply be capable of printing symbols from a finite alphabet, as in real life.
And as in concrete typewriters, we allow for the possibility of two directions
of movement along the tape, one cell at a time. Movement is necessary to
print symbols in different cells, and the two directions allow for a recall of the
work already done. It does not matter whether we picture the situation as an
actual movement of the tape, or of the machine, or even just of an extendible
telescopic arm examining the tape and transmitting the information to the
machine. Since we can come back to cells containing a printed symbol, we
allow for the possibility of erasing it (as modern typewriters can do).

An abstract human being can carry on his computation by using just such
an abstract machine for his explicit writing activity, but his assistance is at
this point obviously still necessary (as it would be for writing something by a
typewriter). We now take advantage of our restriction to routine work: no step
must require ingenuity, and thus each move must be automatically carried on
on the basis of the previous work. In particular, the machine needs a memory,
i.e. a way to recall the crucial features of what it has already done.

One possible way to implement this requirement is to think of the machine
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as being at each moment in some particular physical state, determined by the
previous action up to this point, and determining the successive action. As a
simple example, consider once again the typewriter: one possible routine de-
cision that is done when we write something in most western languages is to
begin a word coming after a dot with a capital letter. We might thus build
a typewriter that automatically steps, after printing a dot, from its current
writing state to the state for printing capital letters (in actual machines this
change of state is obtained by pushing an appropriate key). If we allow for suf-
ficiently (possibly infinitely) many states we can certainly record any action: it
is enough to consider the tree of all possibilities, associate states to its nodes
and, by representing possible actions as paths of the tree, to change states by
following a given path. But infinitely many states would contradict the intu-
ition both of routine work (as the implementation of an effectively describable
task) and of machine (as a device of limited complexity). We thus impose the
limitation of having only finitely many states.

To be able to work automatically, the machine must perform its elementary
operations according to given instructions, telling it what to do on the basis
of given information. Some of this information reaches the machine through
its internal memory (codified by the current state), but other (in particular
the input) might be fed from outside. The connections with the outer world
(the tape) consists not only in getting, but also in providing information (the
output among others) and it may be pictured (following the parallel with the
typewriter) as happening through a head, which is both able to read and
write. Since the tape consists of cells, the head’s range of action will just be
one single cell, both statically (when reading and printing) and dynamically
(when moving).

It is clear at this point that only finitely many instructions are needed,
specifying what to do in a given situation. Indeed, there are only finitely many
possible local situations (determined by state and read symbol) and actions
(consisting in printing or erasing a symbol, possibly moving the head one cell
left or right, and possibly changing state).

We need not analyze the actual physical implementation of the machine
work. Just imagine the existence of a black box, which somehow knows the
instructions and the way to carry them out (for more on this see the remarks
on pp. 53 and 117). Thus the machine hardware consists of a tape, a head
and a black box. It can be pictured as follows:
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The physical intuition of a machine as a generalized automatic typewriter is
certainly useful, but for our abstract purposes nothing more than its software
is needed:

Definition I.4.1 (Turing [1936], Post [1936]) A Turing machine M
consists of:

1. a finite alphabet {s0, . . . , sn}, with two distinguished symbols s0 = ∗
(blank) and s1 = 1 (tally)

2. a finite set of states {q0, . . . , qm}, among which distinguished states q0
(initial state) and qf (final state)

3. a finite set of consistent instructions {I1, . . . , Ip}, each one of the follow-
ing three basic types:

• qa sb sc qd : the machine in state qa and reading the symbol sb erases
it and prints sc in its place, then changes its state to qd

• qa sbRqd : the machine in state qa and reading the symbol sb moves
one cell to the right and changes its state to qd

• qa sb L qd : similar, moving one cell to the left.

Consistency means that no pair of instructions is contradictory, i.e. with
the same premise qa sb but with different conclusions.

Note that instructions are local: their behavior is completely determined by
the part of the tape immediately adjacent to the head. Except for this crucial
feature, the form of instructions could be different. We could further analyze
the first type of instructions into pure erasing and pure writing actions. Note
that pure erasing is a special kind of printing, with sc = ∗. Or we could slightly
complicate the basic actions into a unique type qa sb sc qd j, telling the machine
in state qa and reading sb to print sc in place of sb, change its state to qd and
(depending on whether j = 0, 1, 2) stay still, move one cell to the right or move
one cell to the left.
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An instantaneous configuration of the machine is a complete recording
of all the relevant data in a given instant. It can be represented by a sequence

σ1 . . . σj qa σj+1 . . . σz

in which all the consecutive symbols σi (including the blanks) written in the
relevant portion of the tape (at least the one between the two outermost non-
blank symbols) are indicated, together with the state and the head position
(shown by the position of the state symbol among the alphabet symbols). Thus
the sequence above records the following situation:

�
�

A
A qa� -blanks blanks

∗ ∗ ∗ ∗ ∗ ∗σ1 σj σz· · · · · ·

The machine behavior can be represented by a sequence of instantaneous
configurations, each obtained from the previous one by application of a neces-
sarily unique instruction, and starting from an initial configuration (coding
the input and the initial state). A final configuration is reached when the
machine finds itself in the final state, and we say figuratively that the machine
stops. An alternative formulation, not using final states, simply states: the
machine stops when no instruction is applicable.

We will show in I.4.2 how a Turing machine can compute a function, which
is our real concern. Before that we discuss Turing machines in more detail, but
the interested reader can skip this, and go directly to p. 54.

Variations of the Turing machine model

The particular model of a Turing machine introduced in definition I.4.1 is
absolutely unimportant, as long as we are only concerned with computational
power and not with efficiency. Since in this book we do not deal with machine
theory (although we will prove some scattered results in Chapter VIII), we will
only quote some facts, and refer to Minsky [1967], Arbib [1969] and Hopcroft
and Ullman [1979] for their proofs and for further information.

States. Although only one state is not in general enough to compute every
recursive function (Shannon [1956], Wang [1957]: basically, a one-state
Turing machine must behave in the same way on every cell outside the
input), two states are (Shannon [1956]). Thus it is not relevant whether
we restrict our model to machines with only a fixed number n ≥ 2 of
states, or we allow any number of states.
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Symbols. Clearly we must have at least two symbols, since we consider blank
as a symbol. Two symbols are enough to compute any recursive function
(Shannon [1956]), since it is possible to economize on the number of
symbols by increasing the number of states. See Priese [1979] for results
concerning the simultaneous economy of states and symbols.

Erasing. This is dispensable (Wang [1957]), in the sense that all the recursive
functions can be appropriately computed by machines that never erase.
Basically, given a Turing machine it is possible to simulate it by a new
nonerasing machine, that writes on its tape codes of successive configu-
rations of the original machine. The result shows that in principle we do
not need erasable material, like magnetic tapes or disks, for the external
memory of computers. See also p. 52.

Tapes and heads. Here the freedom is practically absolute. We synthesize
it in the following result. A Turing machine with finitely many tapes,
each with its own (finite, or even countable) dimension and its own finite
number of heads simultaneously scanning it, can be simulated by a Turing
machine with only one linear tape, infinite in just one direction, and
scanned by a single head (Hartmanis and Stearns [1965]). However, we
do need the two directions of movement, since to restrict it to one would
be compatible only with finite or periodical behavior on cells outside the
inputs (Wang [1957]).

Determinism. Our model of a Turing machine is deterministic, in the sense
that the instructions are required to be consistent (at most one of them
is applicable in any given situation). Randomizing elements in comput-
ing devices were introduced early on by Shannon [1948] and De Leeuw,
Moore, Shannon and Shapiro [1956]. There are basically two models.
Nondeterministic Turing machines behave, in an ambiguous situation
where conflicting instructions might be applicable, by randomly choosing
one of them: their computational power, at least for 0, 1-valued functions
(sets), does not exceed the power of deterministic ones. Probabilistic
machines differ from nondeterministic ones in that the next state has a
probability, and thus conflicting instructions do not have the same chance
of being chosen by the machine.

Physical Turing machines ?

Turing machines are theoretical devices, but have been designed with an eye to
physical limitations. In particular, we have incorporated in our model restric-
tions coming from: (a) atomism, by ensuring that the amount of information
that can be coded in any configuration of the machine (as a finite system) is
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bounded; and (b) relativity, by excluding actions at a distance, and making
causal effect propagate through local interactions. Gandy [1980] has shown
that the notion of a Turing machine is sufficiently general to subsume, in a
precise sense, any computing device satisfying similar limitations.

However, there is at least one aspect which has been neglected in our dis-
cussion, namely energy consumption. This is a central problem especially
for actual modern computers, whose sizes are getting increasingly bigger. The
point is that in devices with packed components, energy dissipation is pro-
portional to volume, while heat removal is proportional only to surface. To
provide adequate cooling, it would thus seem necessary to expand machines
only in two dimensions, and keep them flat and thin. But this would mean a
spread of components in space and an increase in the time needed to transmit
information, thus a decrease in speed. It is then crucial to limit energy con-
sumption in computations, not only for costs limitation, but also for physical
realization.

At a macroscopical level, energy seems to be needed in at least two different
ways. First of all, physical computations involve data handling (like storing and
transmitting), and thus measurements: this implies energy consumption. Sec-
ondly, Turing machines and real computers are irreversible devices (many
sets of inputs may produce the same output, and it is usually impossible to
invert computations): this implies energy dissipation. Theoretical bounds on
energy requirements have been computed by various authors (e.g. from the
uncertainty principle ∆E ·∆t ≈ h, by arguing that if ∆t represents a switch-
ing time, then ∆E must represent energy dissipation). See Landauer [1961],
Bremermann [1962], [1982], and Mundici [1981].

At a microscopical level, dynamical physical laws are reversible: it is thus
natural to look for reversible models of Turing machines. Logical reversibil-
ity (of rules) is easy to achieve (Bennett [1973]). First note that a computation
can be trivially simulated in a reversible way, by having an extra tape that suc-
cessively records the quadruples of the Turing machine used, so that the present
configuration, and the last record on the history tape, allow for a recovery of
the previous configuration. Then note that erasing a computation done by
reversible rules is also reversible, and that it can be done after the output has
been copied (to be saved) on a separate blank tape: no record is needed at this
stage, since copying onto a blank tape is a one-one operation. Then the whole
computation, including the erasure of scratch work, can be done by reversible
rules. The next step is to look at energetic reversibility. Bennet [1973] and
Landauer [1976] provide Brownian models for any finite computation on Turing
machines, dissipating arbitrarily little energy when proceeding slowly enough.
The final step is to look for plainly conservative models of Turing machines,
not dissipating any energy at all, while computing at finite speed. For classical
mechanics, Fredkin and Toffoli [1982] give a ballistic model consisting of hard
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spheres (whose presence or absence in a constant flow code digits 1 or 0) that
collide elastically with each other and with fixed barriers placed inside the com-
puter (see also Landauer [1981] and Toffoli [1981]). For quantum mechanics,
models have been given by Benioff [1980], [1981], [1982].

It should be noted that all these models are mathematical. They only show
that dissipationless computations are not contrary to current physical laws, not
that they are physically realizable. Moreover, energy dissipation does occur in
these systems, in interactions with external observers (to receive inputs and
give outputs): it is not needed for the internal system evolution, i.e. for the
computation itself, but it is needed in the end to capture and communicate the
information that is wandering inside the process, devoid of meaning.

For more on physics of computations, see the issue devoted to the subject
by the International Journal of Theoretical Physics (vol. 21 (1982) nos. 3,4),
and the review papers Bennet [1982] and Landauer [1985].

Finite automata ?

The control box of a Turing machine exemplifies the notion of finite automa-
ton (McCulloch and Pitts [1943]), as a machine with finite sets of states and
of inputs and outputs, together with functions for next state and for output
behavior (both depending on input and current state): this is a mathematically
rendition of finite state system. Having only a finite number of possible inputs
and outputs, the possible behavior of a finite automaton is a logical function
{0, 1}n → {0, 1}m, and it is thus representable by a switching circuit (Shan-
non [1938]) or a neuronic net (McCulloch and Pitts [1943], see also p. 117),
by writing a truth-table representation for it in disjunctive normal form, and
by using chips for the logical connectives.

A finite automaton is basically a passive device, producing only an output
from an input by a series of internal changes. Moreover, it has only a finite
short-term memory, since the only way it is able to record is by changing
its state. A Turing machine is a more complex device, and it may be seen as
a finite automaton supplied with an external, potentially infinite long-term
memory, and with the ability of interacting with the outer world (the tape)
in a dynamical, active way (through the head). Actual modern computers lie
somewhere between finite automata and Turing machines.

The theory of finite automata is highly developed, and we will only touch
on it in Chapter VIII. For more information see Hartmanis and Stearns [1966],
Minsky [1967], Arbib [1969], Trakhtenbrot and Bardzin [1973], Eilenberg [1974],
and Hopcroft and Ullman [1979].
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Turing machine computability

We have introduced Turing machines as computing devices, but we have not
yet spelled out how they compute functions.

Definition I.4.2 (Turing [1936], Post [1936]) A function f(x1, . . . , xn) is
Turing machine computable if there is a Turing machine that, when start-
ing in the initial configuration

�
�

A
A q0

∗ ∗ ∗ ∗ ∗x1 x2 xn· · ·

(with the integers represented in unary notations by tally sequences, and noth-
ing else on the tape except the input representation) and when following its
instructions, reaches a final configuration of the kind

�� AA qf

∗ ∗f(x1, . . . , xn)

(with f(x1, . . . , xn) represented in unary notation by a tally sequence, and pos-
sibly something else on the tape).

It should be noted that the details of the definition are arbitrary. The
important thing is that the machine carries configurations coding in some way
the inputs, to configurations coding in some (not necessarily the same) way
the output. The point is that, as we have already noted, the class of functions
computable by Turing machines is widely independent of the details of the
definition.

The next result shows the computational power of Turing machines. The
proof is not difficult in outline but cumbersome in details, and we are going to
give a sketch only: for more details, see e.g. Davis [1958] or Hermes [1965].

Theorem I.4.3 (Turing [1936]) Every recursive function is Turing machine
computable.

Proof. We proceed by induction on the definition of recursive function. To
have a sufficiently strong inductive hypothesis, we prove that every recur-
sive function is computable by Turing machines that: may have initial tape
nonempty at the left of the inputs, work only on the half of the tape containing
the input and at the right of it, halt in a halting state, and print the value of
the function immediately to the right of the original inputs.
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1. constant zero
We start in the initial configuration

�
�

A
A q0

∗ ∗x1

and want to reach the following final one:

�� AA q0

∗ ∗x1 ∗1

The following instructions will do (note that q2 is the final state):

q0 s0 R q1 go right one cell
q1 s0 s1 q1 print a tally
q1 s1 R q2 go right one cell

2. identities
I1

1 is computed by any machine that copies the input. The flowchart of
Figure 1 indicates the sequence of actions to perform.

Figure 2 exhibits a program written along these lines (the instructions are
written in boxes only to indicate explicitly to which parts of the flowchart
they correspond). Note that q10 is the final state.

A program for Ini can be written in the same way, by considering xi as
the input, and by moving across xi+1 ∗ · · · ∗ xn back and forth (which can
be easily done by using more changes of states, with the only function of
making the head pass through this portion of the tape).

3. successor
The flowchart is given in Figure 3. It is then enough to add, to the
program for I1

1 given above, the following two instructions (corresponding
to the last box of the flowchart):

q10 s0 s1 q13

q13 s1 R q13
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Go to the right of
the output.

Restore the input. Go to the
rightmost tally of

the output.

Search for the
rightmost tally
remained of the

input and erase it.

Move one cell to
the right and
print a tally.

was it
the

last?

?

? ?

?

?

�

�
�

�

@
@

@

@
@

@

�
�

�yes no

Figure I.1: Flowchart for I1
1
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q9 s0 R q10
q10 s1 R q10

q5 s0 R q6
q6 s0 s1 q7
q7 s1 R q6
q6 s1 L q8
q8 s1 s0 q9

q5 s1 R q11
q11 s0 R q11
q11 s1 R q12
q12 s1 R q12
q12 s0 s0 q0

q2 s1 L q2
q2 s0 L q3
q3 s0 L q3
q3 s1 s0 q4

q0 s0 R q1
q1 s0 s1 q2

q4 s0 L q5

?

?

?

?

?

�

�
�

�

@
@

@

@
@

@

�
�

�

Figure I.2: Program for I1
1

Add one more tally
and move one cell to

right of it.

Make a copy of the
input on the right.

?

Figure I.3: Flowchart for S
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Simulate Mm+1 and get output z.
Erase z1, . . . , zm and move z

near the inputs

Recopy the inputs to the right of
zm−1. Simulate Mm and get output
zm. Erase the copy of the inputs

and move zm to the right of zm−1.

Recopy the inputs to the right of z1.
Simulate M2 and get output z2.
Erase the copy of the inputs and

move z2 to the right of z1.

Recopy the inputs on the right.
Simulate M1 and get output z1.
Erase the copy of the inputs and

move z1 to the right of the inputs.

?

?

?

Figure I.4: Flowchart for composition
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As we can see from these examples, to write programs is quite routine,
once we have the appropriate flowcharts. In the following we will then restrict
ourselves to the latter, and leave as an exercise their translation into programs.

4. composition
Let

f(~x) = h(g1(~x), . . . , gm(~x)),

and suppose g1, . . . , gm, h are computed, in the sense explained at the
beginning of the proof, by machines M1, . . . ,Mm,Mm+1. Then f is com-
puted by a machine implementing the flowchart of Figure 4, where sim-
ulation of a given machine means changing the name of its states in the
appropriate way: by renaming its initial state by the name of the state
in which the new machine begins its simulation, renaming the remain-
ing states by new names not yet used, and continuing the work of the
simulating machine from the halting state of the simulated one.

5. primitive recursion
Let

f(~x, 0) = g(~x)
f(~x, y + 1) = h(~x, y, f(~x, y)),

and suppose g and h are computed, in the sense explained at the begin-
ning of the proof, by machines M1 and M2. Then f is computed by a
machine implementing the flowchart of Figure 5. The idea is to compute
successive values of f , using the previous one each time, until we reach
the one we are interested in. To keep track of the number of iterations
still to be done we introduce a counter s, initially set up to the value
y, and decreased by one at each step. We do different simulations, de-
pending on whether y = 0 or not. In the computation we also need an
additional input, which is not present at the first step (computation of g),
and increases by one at each step afterwards: we then introduce a second
counter t, which is initially empty. The tape then codes a situation of
the kind:

x1 ∗ · · · ∗ xn ∗ y ∗ s ∗ x1 ∗ · · · ∗ xn ∗ t ∗ f(x1, . . . , xn, t)

where s+ t = y.

6. µ-recursion
Let

f(~x) = µy[g(~x, y) = 0],
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Erase everything
between the inputs
and z, and move z

near the inputs.

Increase t and
decrease s by one tally

each. Simulate M2,
get a new output z
and move it near t

(erasing the old one).

Write, to the right of
the inputs, a copy s of
y, a copy of the inputs
and an empty string t.
Simulate M1 and get

output z.

? ?

?

�

@
@

@

�
�

�

@
@

@

�
�

� s = 0?yes no

Figure I.5: Flowchart for primitive recursion

and suppose g is computed, in the sense explained at the beginning of the
proof, by a machine M . Then f is computed by a machine implementing
the flowchart of Figure 6. The idea is to compute successive values of
g(~x, y), starting with y = 0, until one with output 0 is reached. Then y
is the value of f . 2

Exercise I.4.4 Fill in the details of the proof of Theorem I.4.3, by specifying Turing

machine programs implementing the flowcharts given there.

Machine-dependent programming languages ?

To show that a certain function is Turing machine computable we have to
write a complete program, using only the elementary instructions of defini-
tion I.4.1. Since they spell out explicitly the elementary physical operations
that the machine has to perform, such programs are said to be written in ma-
chine language. Examples have been given for O, I1

1 and S in the proof of
I.4.3.
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erase the copy of
the inputs and z,
and move y near

the inputs

erase the output z
and add one tally

to y

simulate M and
get output z

write, on the right
of the inputs, a

copy of them and
a string y of just

one tally

? ?

?

?

�

@
@

@

�
�

�

@
@

@

�
�

� z = 0?yes no

Figure I.6: Flowchart for µ-recursion

The rest of the proof of I.4.3 has been given in a different format, at a
slightly more abstract level: we still described the way to combine some basic
physical operations that the machine has to perform, but left out the task
of specifying how to translate these operations into sets of instructions (to
reduce them to elementary operations that the machine can directly execute).
This is a typical situation of assembly programs, whose instructions code
blocks of instructions in machine language, but still refer directly to machine
implementation.

By pursuing this trend toward greater abstraction, we can break the pro-
gramming task into different assignments: first the algorithm is translated into
a machine-independent (or high-level) language, whose instructions re-
fer to basic abstract operations, and then these operations are programmed in
machine language. This has various advantages:

• It takes into account the difference between man and machine, and the
fact that a language suitable for one might not be suitable for the other:
machine languages are based on physical commands, high-level languages



62 I. Recursiveness and Computability

are closer to ordinary language.

• The translation of the basic abstract operations into machine language
can be done once and for all, by means of fixed programs called com-
pilers or interpreters. The distinction between the two is, at least in
origin, that the compiler translates the given high-level program into a
program in machine language, which is then executed; the interpreter
instead proceeds directly to the execution of the given high-level pro-
gram, by translating an instruction only if and when it needs it in the
computation.

• The abstract analysis of the algorithm is more easily carried out in terms
of basic abstract operations, without paying attention to concrete prob-
lems of implementation. The advantage is somewhat reflected by the
compiler’s complexity, since whatever is done automatically does not have
to be taken care of directly in the program.

• The same abstract analysis can be implemented by many different types
of machines, each one using its own compiler or interpreter.

The general skeleton of programming thus takes the following form. On
one side the given function is analyzed into an algorithm, which is then trans-
lated into a machine-independent program. On the other side the behavior of
the given machine is structured into a set of basic instructions in machine (or
assembly) language. A compiler or interpreter then relates the two parts and
produces a machine-dependent program that can be executed by the machine.

I.5 Flowcharts

Every program written in a machine-dependent language has an abstract core
that can be written in a machine-independent language. It is not clear, at
this stage of our development, whether the opposite also holds, i.e. whether the
most general programs can be implemented on abstract machines (if not step by
step at least globally, in the sense of having a machine computing the function
defined by the program). Since, however, programs do provide formalizations
of algorithms, and our concern is effective computability, we feel compelled to
analyze the notion of program as a natural approximation to it. The analysis
will make the notion precise and, as a by-product, it will be possible to clarify
the relationships between programs and machines.

To define the most general notion of arithmetical program we rely on the
intuition given by the experience with Turing machines. It seems that the
constituents of abstract programs are reducible to actions of two kinds: perform
some basic operations, and ask some basic questions. Both are clearly needed,
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since without operations we cannot compute, and without conditional actions
we cannot exercise judgments or make choices, and then we could only have
fixed behaviors.

To picture programs we thus need to distinguish the two types of action,
which we do figuratively by using (as in the proof of Theorem I.4.3) boxes for
basic operations, and diamonds for basic questions. We are then faced with the
usual problem of choosing the basic constituents of our programs. For reasons
already discussed for the other approaches, we stick to the most elementary
arithmetical functions and predicates.

As usual in Computer Science, we adopt in this section the convention of
writing variables in capital letters.

Definition I.5.1 (Goldstine and Von Neumann [1947]) A flowchart
program is a diagram having exactly one entry and a finite number (possibly
zero) of exit points, and built up by connecting (through the outward edges)
parts of the following kinds:

1. assignment statements of one of the following forms:

X := 0 X := X + 1 X := X − 1

? ? ?

The sign ‘:=’ means: set the left-hand side equal to the right-hand one.
Thus the three assignments correspond, respectively, to instructions of the
form: set X equal to 0, increase X by 1, and decrease X by 1.

2. conditional statements of the form:

�
��

@
@@

@
@@

�
��

? ?

yes noX = 0?

In a flowchart, edges can split only when passing through conditional state-
ments, but they are allowed to merge in a point (thus, even if formally many
exit points are permissible, in practice they can be connected and reduced to at
most one). Also, the outward edges of conditional statements must exit from
the diamond but can go anywhere. In particular, they can re-enter the diagram
and thus produce closed paths.
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Exercises I.5.2 Choices of primitives. a) From the assignments X := X+1 and
X := X−1 and the conditional ‘X = 0?’ one can derive the assignments X := 0 and
X := Y , and the conditional ‘X = Y ?’ . (Hint: decrease X and Y simultaneously by
1, until one or both vanish.)

b) From the assignments X = X + 1 and X := 0 and the conditional ‘X = Y ?’
one can derive the assignment X := X − 1. (Hint: use two variables, set initially to
0 and 1, and increased simultaneously by 1 until the greatest reaches X.)

c) Both choices of primitives above are minimal . (Hint: without conditionals the

arguments cannot influence the form of the computation; without predecessor in a),

the only property that can influence a computation is whether an argument is zero

or not; without successor there would be no way to write down numbers greater than

the arguments.)

Unstructured programming languages ?

The motivation that led to the introduction of the planar structure of flowcharts
is best explained by its own inventor:

There is reason to suspect that our predilection for linear codes,
which have a simple, almost temporal sequence, is chiefly a literary
habit, corresponding to our not particularly high level of combina-
torial cleverness, and that a very efficient language would probably
depart from linearity. (Von Neumann [1966])

The description of algorithms by means of flowcharts has led to the program-
ming language GPSS (General Purpose Simulation System, Gordon [1961]; see
Sammett [1969] and Wexelblat [1981] for history and references), which uses
block diagram notation directly. This is useful for the simulation of discrete
systems, since it allows for a direct representation of the system structure (with
blocks standing for operations performed in the system, and edges correspond-
ing to possible sequences of events).

However, in practice, most programming languages represent algorithms as
sequences of instructions. We thus have to devise a way to unwind flowcharts,
and lay them out (which does not mean eliminating their planar structure,
but only representing them in a different way). A simple method is to label
statements (e.g. by natural numbers). Then a flowchart can be represented
as a juxtaposition of labeled statements (the order in the sequence, not the
order of labels, indicating the progressive order of execution), by translating
conditional statements via conditional jumps (Post[1936]) of the kind

if X = 0 go to n

(with the meaning: if X = 0 then jump to the statement with label n, otherwise
continue with the next statement in the list). Note that it is also possible to
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define unconditional jumps
go to n

as: if 0 = 0 then go to n. This permits the treatment of merging edges of a
flowchart.

A ‘go to’ program is a finite sequence of labeled statements of the kind

X := 0 X := X + 1 X := X − 1
if X = 0 go to n,

with the conditions that different statements have different labels, and every
number mentioned after a ‘go to’ is the label of a statement. ‘Go to’ programs
and flowcharts programs are mutually translatable, and hence equivalent .

‘Go to’ statements are the natural solution to flowchart unwinding: they
are typical of unstructured programming languages, like FORTRAN (Formula
Translator, Backus et al. [1957]; see Sammett [1969] and Wexelblat [1981] for
history and references). However, ‘go to’ statements are currently out of fashion
(see p. 69).

Unlimited register, random access machines ?

Turing-like machines implementing ‘go to’ programs have been proposed by
Post [1936] (independently of Turing [1936]) and Wang [1957]. A different
model is the unlimited register, random access machine (Melzak [1961],
Lambek [1961], Shepherdson and Sturgis [1963], Peter [1963], Elgot and Robin-
son [1964]). It consists of a finite number of registers of unbounded capacity,
each able to contain an integer, and labeled (by a number). The machine is
able to perform the following operations: clear a register (set its content equal
to zero), and increase or decrease by one the content of a register. The machine
performs the operations by following the instructions of a ‘go to’ program, with
the convention that variables represent the content of associated registers.

This model is somewhat closer to real computers than Turing machines,
since the memory consists of labeled registers whose content can be made avail-
able by a direct call to the label. The advantage of this kind of random access
memory, versus a sequential access memory like the tape of a Turing ma-
chine, is subdivision (and consequent greater accessibility) of information. In
real computers both kinds of memory are present: the random access (chips) is
internal and limited, while the sequential access (e.g. magnetic tapes or disks)
is external and potentially (in theory, at least) unlimited. Of course, unlike
random access machines, real computers’ registers have only a finite capacity.

Flowchart computability

Flowcharts have a natural semantics:
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Definition I.5.3 A function f(x1, . . . , xn) is flowchart computable if there
is a flowchart program with an output variable Z, and possibly some of the input
variables X1, . . . , Xn, such that whenever at the entry point X1, . . . , Xn are set
equal to x1, . . . , xn, and all the other variables are set equal to 0, and their
values are then modified according to the instructions of the program, then the
exit point is reached with the variable Z having value f(x1, . . . , xn).

Theorem I.5.4 (Wang [1957], Peter [1958], Ershov [1960]) Every
recursive function is flowchart computable.

Proof. We proceed by induction on the definition of recursive function.

1. initial functions
O is computed by:

Z := 0

?

From I.5.2.a we have that the assignment X := Y is flowchart com-
putable. Then Ini is computed by:

Z := Xi

?

S is computed by:

Z := X
Z := Z + 1

?

Here and in the following, we use a single box with many lines to indicate
the concatenation of many boxes with single lines, with instructions read
in the order provided by the arrow.

2. composition
Suppose g1, . . . , gm, h are computed by flowcharts with appropriately dis-
tinct variables. We write statements of the kind
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Y := g(X1, . . . , Xn)

?

as shorthand for the program computing g with respect to input variables
X1, . . . , Xn and output variable Y , and such that the input variables have,
in exit, the same values they had in entry (which can be done by storing
their original values by using new variables, and restoring them at the
end).

. Then if

f(x1, . . . , xn) = h(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)),

f is computed by the program of Figure 7.

Z := h(Y1, . . . , Ym)

Ym := gm(X1, . . . , Xn)

Y1 := g1(X1, . . . , Xm)

?

Figure I.7: Flowchart for composition

3. primitive recursion
Let

f(x1, . . . , xn, 0) = g(x1, . . . , xn)
f(x1, . . . , xn, y + 1) = h(x1, . . . , xn, y, f(x1, . . . , xn, y)),

and suppose g and h are computed by programs with appropriately dis-
tinct variables. Then f is computed by the program shown in Figure 8.

4. µ-recursion
Let

f(x1, . . . , xn) = µy(g(x1, . . . , xn, y) = 0),
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T := T + 1
Z := h(X1, . . . , Xn, T, Z)

T := 0
Z := g(X1, . . . , Xn)

�
��

@
@@

@
@@

�
��

?

�

yes

no
T = Y ?

Figure I.8: Flowchart for primitive recursion

Y := Y + 1
T := g(X1, . . . , Xn, Y )

Y := 0
T := g(X1, . . . , Xn, Y )

�
��

@
@@

@
@@

�
��

�

yes

no
T = 0?

Z := Y

?

Figure I.9: Flowchart for µ-recursion
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and suppose g is computed by a program. Then so is f , by the program
shown in Figure 9. 2

Structured programming languages ?

It has been argued by many (e.g. Dijkstra [1968]) that unstructured flow charts
present definite disadvantages: they may be excessively complicated and dif-
ficult to visualize, even for their authors, and errors are consequently easy to
make and difficult to debug. The proof of I.5.4 clearly shows that there is no
need of complicated flowcharts, with intricate interlacements of edges, at least
for the computation of all the recursive functions.

The current trend - with a departure from planarity (see p. 64) and a return
to linearity) - is, thus, to stick to structured flowcharts (Dahl, Dijkstra
and Hoare [1972]), inductively made up from the assignments and conditional
statements of blocks with one entry and one exit line, connected only in the
ways shown by Figure 10.

One crucial advantage of structured flowcharts is the possibility of a top-
down approach, in which the algorithm is successively approximated and ex-
panded, from general to specific diagrams. Related to this is the fact that,
while unstructured programs cannot, in general, be thought of as more than
sets of isolated instructions, structured programs are really built up from sub-
programs. This brings in a consideration of operations on programs and
the need (stressed in Backus [1981]) of an algebraic study of their properties.

Definition I.5.5 Consider the programming language whose statements are
the following:

1. assignment statements (X := 0, X := X + 1 and X := X − 1)

2. ‘while’ statements (while X 6= Y do S, with S arbitrary statement)

3. compound statements (begin S1, . . . , Sn end, with Si arbitrary statements).

A ‘while’ program is any compound statement.

‘While’ programs generate all the recursive functions, as shown by the proof
of I.5.4. However, although ‘while’ programs are sufficient for recursion theory,
to simplify the overall picture of programs it is useful in practice to have at
hand more instructions than just those which are really needed. The common
use instructions of structured programming languages considered in Figure 10
can easily be defined as shorthand expressions for appropriate ‘while’ programs
(for any Boolean combination C of atomic expressions of the kind a = b and
a < b, with a, b variables or numbers). The language obtained by enriching
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Backward conditionals (while C do S, repeat S until C)

?

�

S

�
�

@
@

�
�

@
@C? yes

no
?

�

S

�
�

@
@

�
�

@
@C? no

yes

Forward conditionals ( if C then S1 else S2, if C then S)

?

? ?
�

�
@

@

@
@

�
�

S1 S2

C?yes no

?

�

�
�

@
@

@
@

�
�

S

C? yes

no

Sequencing (begin S1, . . . , Sn end)

?

?
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Sn

Figure I.10: Structured flowcharts
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‘while’ programs by these definitions is essentially PASCAL (Wirth [1971])
without declarations (variables being directly available) and the special features
necessary to handle non-numerical data. PASCAL is a modern derivative of
the ALGOL family (see Sammett [1969] and Wexelblat [1981] for the saga of
its collective gestation, birth and development).

Structured and unstructured flowcharts are equivalent (Böhm and Jacopini
[1966]) in the sense that they compute the same functions. This follows indi-
rectly from the fact, to be proved in Section 7, that unstructured flowcharts
only compute recursive functions, but this can easily be shown directly by an
analysis of unstructured flowcharts. Equivalence is the best result that can be
achieved, since we cannot expect, in general, to be able to decompose unstruc-
tured flowcharts into parts with only a fixed number of patterns (because we
can build unstructured flowcharts with any number of conditional nestings).

Note that our treatment of flowchart and ‘while’ programs is independent
of Turing machines. A different proof, based on I.5.4, of Theorem I.4.3 would
then consist of showing how to compute the assignment statements and how
to compose Turing machine programs by ‘sequencing’ and ‘while’. In other
words, we would just need a compiler (see p. 62). This can be done as a useful
exercise (see Davis [1974] for details).

Exercises I.5.6 a) ’If then else’ and ‘repeat’ can be defined as ‘while’ programs.

b) ‘While’ can be defined using sequencing, ‘if then else’ and ‘repeat’ .

Programs for primitive recursion ?

An examination of the proof of Theorem I.5.4 shows that primitive recursion
and µ-recursion are defined by similar flowcharts programs, with one basic
difference: the number of iterations is fixed in advance in the first case, and
unknown in the second. We thus isolate, in the class of ‘while’ programs defined
in I.5.5, the following class of structured programs:

Definition I.5.7 (Meyer and Ritchie [1967]) Consider the programming
language whose statements are the following:

1. assignment statements

2. ‘for’ statements ‘ for Y do S’, with S arbitrary statement (meaning: it-
erate S for Y times)

3. compound statements (begin S1, . . . , Sn end, with Si arbitrary statements).

A ‘for’ program is any compound statement.
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The ‘for’ statement is commonly used in programming languages, and it is
obviously definable as a ‘while’ program, as follows:

(begin T := 0, (while T 6= Y do (begin T := T + 1, S end))end)

(with T variable not appearing in S).

Proposition I.5.8 (Meyer and Ritchie [1967]) A function is ‘for’ com-
putable if and only if it is primitive recursive.

Proof. Every primitive recursive function is ‘for’ computable, by the proof of
Theorem I.5.4. The opposite is shown by induction on the depth of nesting of
‘for’ statements in a program. It is convenient, to have a stronger inductive
hypothesis, to show that each variable of the program has, at the end of the
program execution, a value which is a primitive recursive function of all the
variables (we would need this only for the output variable, as a function of the
input variables).

When there is no ‘for’ (i.e. when the depth of nesting is 0) the program
consists of the sequencing of a finite number of assignment statements, and
each variable has a primitive recursive value (obtained by composition of O, S
and the predecessor operation).

Consider now ‘for Y do S’, and suppose S satisfies the inductive hypothesis:
if the variables of the program S are among X1, . . . , Xn, there are primitive
recursive functions g1, . . . , gn such that Xi = gi(X1, . . . , Xn). For 1 ≤ i ≤ n, let
fi(X1, . . . , Xn, Z) be the value of Xi after Z executions of S. Then: f1(X1, . . . , Xn, 0) = X1

· · ·
fn(X1, . . . , Xn, 0) = Xn

 f1(X1, . . . , Xn, Z + 1) = g1(f1(X1, . . . , Xn, Z), . . . , fn(X1, . . . , Xn, Z))
· · ·
fn(X1, . . . , Xn, Z + 1) = gn(f1(X1, . . . , Xn, Z), . . . , fn(X1, . . . , Xn, Z)).

This is a simultaneous recursion on primitive recursive functions, which is
easily seen (by coding, see I.7.2) to define primitive recursive functions. After
the execution of ‘for Y do S’, the variable Xi will have value fi(X1, . . . , Xn, Y ).
In particular, the output variable will be a primitive recursive function of the
input variables. 2

The result suggests a natural way of classifying the primitive recursive func-
tions, by measuring the smallest depth of nesting of ‘for’ statements in programs
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computing a given function. This is essentially equivalent to the Grzegor-
czyck hierarchy (Grzegorczyck [1953]), which will be studied in detail in
Chapter VIII.

A consequence of I.5.8 is that primitive recursion in the form of defini-
tion I.1.3 is not necessary: a simpler operation of simultaneous iteration is
sufficient. This result can be further refined, and we now show that, at the cost
of a slight increase of the stock of initial functions, even simple iteration alone
is sufficient.

Definition I.5.9 A function f is defined by iteration from a function t if

f(x, n) = t(n)(x),

where t(n)(x) denotes the result of n successive applications of t (by convention,
t(0)(x) = x).

Proposition I.5.10 (Robinson [1947], Bernays) The class of primitive re-
cursive functions is the smallest class of functions

1. containing the initial functions, together with coding and decoding func-
tions for pairs

2. closed under composition

3. closed under iteration.

Proof. Let C be the smallest class of functions satisfying the conditions just
stated: every function in C is primitive recursive, because the coding and de-
coding functions for pairs are primitive recursive, and the class of primitive
recursive functions is closed under composition and iteration, the former by
the definition, and the latter because iteration is a special case of primitive
recursion:

f(x, 0) = x

f(x, n+ 1) = t(f(x, n)).

For the converse, we only have to show that primitive recursion can be
reduced to iteration. First of all note that, since C has coding and decoding
functions for pairs and is closed under composition, it also has coding and
decoding functions for n-tuples, for any fixed n. We continue to use for them
the standard notations for coding and decoding functions. Let g and h be
functions in C, and

f(~x, 0) = g(~x)
f(~x, y + 1) = h(~x, y, f(~x, y)).
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We will show that the function

s(~x, n) = 〈~x, n, f(~x, n)〉

is in C. Then so is f , by composition, because

f(~x, n) = (s(~x, n))m+2

(where m is the number of elements in the vector ~x).
Note that

s(~x, 0) = 〈~x, 0, f(~x, 0)〉
= 〈~x, 0, g(~x)〉

and thus s(~x, 0) is in C, as a function of ~x. Moreover,

s(~x, n+ 1) = 〈~x, n+ 1, f(~x, n+ 1)〉
= 〈~x, n+ 1, h(~x, n, f(~x, n)〉.

Since
s(~x, n) = 〈~x, n, f(~x, n)〉,

s(~x, n+ 1) can be obtained from s(~x, n) by one application of the function

t(〈~x, n, z〉) = 〈~x, n+ 1, h(~x, n, z)〉,

which is in C by composition, since g, h, the successor, and the coding functions
are in C. Finally,

s(~x, n) = t(n)(s(~x, 0)),

and s(~x, n) is thus the composition of s(~x, 0) and the iteration of t. Since these
are both in C, so is s. 2

The result just proved can be variously improved. First of all, Glad-
stone [1967], [1971] shows that the introduction of new initial functions can
be avoided : the class of primitive recursive functions is the smallest class con-
taining the initial functions, and closed under composition and iteration.

Second, the iteration schema can be further weakened in the following
schema of pure iteration:

f(n) = t(n)(0)

(Robinson [1947]). Some new initial functions are needed here, since by compo-
sition and pure iteration we never get, from the initial functions, any function
depending on two variables, like x+y. Choices of initial functions that generate
the primitive recursive functions by pure iteration, and a study of the algebraic
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structure of the class of primitive recursive functions, are in Robinson [1947],
Poliakov [1964], [1964a], Lavrov [1967], Kozmnikh [1968], and Gladstone [1971].

R. Robinson [1947], [1955], and J. Robinson [1955], also show that the pure
iteration schema is enough to generate the unary primitive recursive func-
tions by composition, starting from two (but not from only one) appropriate
unary functions. Thus we do not need to use nonunary functions to get any
unary primitive recursive function. See also Peter [1951] for a treatment of this
topic, and Georgieva [1976] for further simplifications.

Petri nets ?

Systems of separate, interacting components (like finite automata or computer
hardware, flowcharts or computer software, physical systems, and so on) can
be modeled by Petri nets (Petri [1962]), which consist of bipartite, directed
multigraphs whose vertices can be either places or transitions (represented,
respectively, by circles and bars), and whose arcs connect places to transitions,
or transitions to places. Tokens can be assigned to (and can be thought to
reside in) the places of a Petri net (which becomes marked), and their number
in a place may change during the execution.

The execution is controlled by the number and distribution of tokens in
the net, and consists of transition firings, which remove tokens from their input
places, and deposit new ones in their output places. A transition fires when
enabled, i.e. when each of its input places has at least as many tokens in it
as there are arcs from the place to the transition (that is, arcs are seen as
conductors of capacity one). Firing continues as long as there exist enabled
transitions, then it halts.

Thus, nets model systems, and executions model the flow of information
in them. Some of the places may be singled out as inputs or outputs, to
model interactive behavior of a system with the outer world, and thus allowing
a computational interpretation of the behavior of a net. Petri nets are quite
general devices, apt to model concurrence, due to their inherent parallelism,
asynchronicity and nondeterminism. Events which are both enabled and
do not interact may occur independently, there is no inherent measure of time
flow in the execution, and no order is placed on transition firings when many
transitions are enabled.

An extension of Petri nets (Agerwala [1974], Hack [1975]) allows for in-
hibitor arcs from places to transitions (which are pictured differently, as ar-
rows with the arrowhead substituted by a small circle). The new firing rule is
that a transition is enabled if it is in the previous sense, and moreover the input
places corresponding to inhibitor arcs are empty. Thus inhibitor arcs permit
zero testing. The interest of this extension is that Petri nets with inhibitor arcs
compute all the recursive functions. This is easily seen by modeling ‘go to’
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programs (p. 65) as Petri nets, with different places corresponding to variables
and statements, and transitions corresponding to instructions.
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Figure I.11: Petri net for a ‘go to’ instruction

For example, given a ‘go to’ program with a list of labeled instructions in,
the part of the corresponding Petri net relative to a ‘go to’ instruction

in : if Xi = 0 go to m

is the one shown in Figure 11, whose places are labeled in the natural way. The
program works in the following way: if Xi = 0 then the inhibitor arc works,
and the instruction im is activated, while if Xi 6= 0 then the normal arc works,
decreases Xi by one, thus allowing the activation of the next instruction in+1,
and then a new arc reintegrates the original value of Xi, which is not supposed
to change. The parts corresponding to the other instructions (increasing or
decreasing by one the value of a variable) are similar, but easier.

For an introduction to both theory and applications of Petri nets, and an
annotated bibliography on the subject, see Peterson [1981].

I.6 Functions as Rules

The post-Dirichelet practice has been to identify functions and their graphs,
thus giving a prominent importance to the values, independently of the way
they are obtained. The rise of Computer Science has forced people to look
at functions in the same way they were originally considered, as intensional
objects. We thus set up in this section a theory of functions as explicit rules.
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λ-calculus

Rules must be expressed somehow, and they can thus be identified with terms
in an appropriate language. A term t(x) can be seen as the value of a function
for the argument x. We introduce an abstraction symbol ‘λ’ to indicate the
step from the value t(x) to the function x 7→ t(x), which we indicate by λx. t(x).

To begin with, we work in full generality and consider a language having
merely the essential ingredients.

1. Symbols.

• variables x0, x1, . . .

• the abstraction symbol ‘λ’

• parentheses ‘(’ and ‘)’

• dot ‘.’ .

Note that there is only one kind of variable, and no theoretical distinction is
made between functions and arguments. The common practice in mathematics,
following Russell [1908], is to consider a function as being an object of a type
higher than its arguments and values. This was introduced as one possible
way out of Russell’s paradox (see p. 82), which arose from the consideration of
sets belonging to themselves. Since self-membership corresponds, in functional
terms, to application of a function to itself, the practice of λ-calculus (of dealing
with only one kind of object, that can be function or argument at will) sounds
at least suspicious, and will have to be justified. Appropriately, Recursion
Theory provides us with various ways of doing this, see pp. 194 and 223.

2. Terms.

• a variable x alone is a term, and x occurs free in it

• if M,N are terms then the application (MN) of M to N is a term,
and free or bound occurrences of variables in M or N remain so in
(MN)

• if M is a term and x is a variable then the λ-abstraction (λx.M)
of M w.r.t. x is a term, x is bound in it, and the other variables are
free or bound in it according to what they were in M .

By convention,

λx1 · · · xn.M means λx1(· · · (λxn. M) · · · )
M1M2 · · · Mn means (· · · (M1M2) · · · Mn).
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The latter just avoids the need of many parentheses, but the former is theoret-
ically important, since it defines functions of several arguments as composition
of functions of a single argument .

As we see, notations in λ-calculus are quite different from the common
practice, and they might be confusing at first sight, both for the treatment of
application (which is just written as juxtaposition) and of multiple arguments
(which are not treated simultaneously, but one at a time). E.g., what is usually
written f(t1, t2) is here rendered as (ft1)t2 or simply, by the conventions just
stated, ft1t2.

Terms are names for the objects of λ-calculus (which, as already noted,
may be thought of as both functions and arguments). We now set up a theory
of transformations for them, and introduce rules that allow us to manipulate
terms. The idea is to compute values of functions by purely syntactical trans-
formations of the terms representing the functions and their arguments.

3. Reduction rules.

α-rule. We can rename bound variables:

λx.M
α→ λy.M [x/y]

provided y does not occur in M , where M [x/y] indicates the result
of the substitution of x by y everywhere.

β-rule. We can apply a function λx. M to an argument N :

(λx.M)N
β→M [x/N ]

provided whatever was free in N before the substitution remains
free afterwards. This proviso can always be fulfilled, by a possible
application of the α-rule. For example,

(λxy. xy)y → λy. yy

is an illegal application of the β-rule, and indeed would not preserve
the intended meaning , but it can be replaced by

(λxy. xy)y → λz. yz,

which can be derived by first changing the bound variable y into z
by the α-rule, and then applying the β-rule.

We write t1
β
= t2, and say that t1 and t2 are equal (modulo α or β re-

ductions), if t1 and t2 can be reduced to the same term by a finite number of
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applications of the α or β rules. Also, a term is said to be in normal form if
it cannot be β-reduced (i.e. the β-rule is not applicable to any of its subterms),
and it is reducible otherwise.

A term is normalizable if it has a normal form, in the sense of being equal
to a term in normal form. Normal forms of terms can be considered as their
‘values’, and it is natural to investigate when they exist and how to compute
them. Unfortunately, a normal form does not necessarily exist (thus, in some
sense, the functions of λ-calculus are partial ones, see p. 127). To see this,
we can simply produce a circular example of a term reducing to itself via the
β-rule, say MN

β→ MN : M must then have a λ-abstraction (to allow for an
application of the β-rule), and produce an application. For example,

∆ = λx. xx

applies a term to itself:

∆t
β
= tt,

and hence it self-reproduces:

∆∆
β
= ∆∆.

A second negative point is that even if a normal form exists, not all se-
quences of reductions can produce it , e.g. a term might be reduced to normal
form by one reduction and enter a loop by another:

(λxy. y) (∆∆) a
β
= a by using the outer λ

(λxy. y) (∆∆) a
β
= (λxy. y) (∆∆) a by using the λ in ∆.

Terms in which every subterm has a normal form are called strongly nor-
malizable, and the example just given shows that a term can be normalizable
without being strongly so.

On the positive side, Church and Rosser [1936] have shown (by a difficult
proof, outside the scope of this book) that terminating reductions of a same
term always give the same result, up to renaming of bound variables. In partic-
ular, the normal form is unique when it exists. Moreover, there are reduction
strategies that produce the normal form, whenever it exists. One such strategy
is to always reduce the leftmost reducible λ. Then subterms are evaluated ex-
actly as many times as needed, which means that they may be evaluated more
than once in some cases, but also that they are not evaluated if not useful.

A different strategy would be to evaluate M and N before doing MN .
This does not work in general (as the example above shows), but each term
is evaluated only once, which means that the strategy is fast when it works,
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although some unnecessary terms may happen to be evaluated (and this may
be fatal if one of these is a nonterminating one).

We have already noted a peculiar aspect of λ-calculus: the absence of dis-
tinction between functions and arguments, which may be seen as a collapse
of the concept of type. In Recursion Theory a cumbersome technique (the
method of arithmetization of Section 7) is used for the related purpose of as-
similating functions with numbers. This is partly achieved by identifying the
recursive functions with their finite descriptions, e.g. programs, and by coding
these as numbers. Being indirectly obtained, this assimilation does not avoid
the need of continuously going back and forth between functions and numbers
representing them, and some arguments may at times become darkened. This
is the case of the Fixed-Point Theorem II.2.10 and its proof, which are some-
times considered quite mysterious. When recast in terms of λ-calculus, both
the statement and the proof of this result (based on methods fully explored in
Section II.2) become more transparent.

Theorem I.6.1 (Kleene [1936b], Turing [1937a], Curry [1942], Rosen-
bloom [1950]) There is a fixed-point operator Y which produces, for every
term M , a fixed-point for it:

YM β
= M(YM).

Proof. We give two different proofs.

1. We start with an informal argument. Recall that we have defined a term

∆ = λx. xx

such that, for any term t,

∆t
β
= tt.

By applying ∆ to itself, we then have

∆∆
β
= ∆∆.

Given a term M , we want a term z such that z
β
= Mz: then z reproduces

not itself, but the application ofM to itself. It is then enough to generalize
the definition of ∆, which gives what we want when M is the identity
operator. Let

∆M = λx.M(xx).

Then, for any term t,

∆M t
β
= M(tt).
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By applying ∆M to itself we then have

∆M∆M
β
= M(∆M∆M ),

and a fixed-point of M is given by

∆M∆M = (λx.M(xx))(λx.M(xx)).

Since this definition is uniform in M , we can actually abstract M from
it, and obtain

Y = λy. (λx. y(xx))(λx. y(xx)).

Then
YM β

= ∆M∆M
β
= M(∆M∆M ) = M(YM).

2. We now give a proof based on the (contrapositive of the) diagonal method

of Section II.2. Consider M : a fixed-point z for it is such that z
β
= Mz,

i.e. it must be of the form titj for some terms ti, tj . Also, M must be
thought of as the result of a transformation of terms of this kind. Consider
a possible enumeration of all pairs of λ-terms:

t0t0 t0t1 t0t2 t0t3 · · ·
t1t0 t1t1 t1t2 · · ·
t2t0 t2t1 t2t2 · · ·
t3t0 · · · · · · · · ·
· · ·

and the effect of M on the diagonal:

M(t0t0) M(t1t1) M(t2t2) . . .

This is a sequence of λ-terms, of the form

tnti
β
= M(titi)

for some n. But then it is just the n-th row of the matrix, in particular

tntn
β
= M(tntn)

is a fixed-point of M . Explicitly,

tn = λx.M(xx)

tntn
β
= (λx.M(xx))(λx.M(xx)),
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and this is uniform in M , i.e. it produces a fixed-point operator

Y = λy. (λx. y(xx))(λx. y(xx)).

Since all this might look quite mysterious, we can check that Y really
gives us a fixed-point for M :

YM = (λy. (λx. y(xx))(λx. y(xx)))M (I.1)
β
= (λx.M(xx))(λx.M(xx)) (I.2)
β
= M((λx.M(xx)(λx.M(xx︸ ︷︷ ︸

YM

)) (I.3)

= M(YM) (I.4)

where (1) is obtained by definition of Y, (2) by β-reducing the λy, and
(3) by β-reducing the outer λx. Note that (3) is still reducible, using the
outer λx. This is a typical property of the terms of the form YM , and
somewhat illustrates the circular aspect of fixed-point definitions. 2

Exercise I.6.2 Y is a fixed-point operator if and only if it is itself a fixed-point of

G = λym.m(ym). (Böhm, Van Der Mey) (Hint: identify λm. Y m and Y .)

Y is sometimes called the paradoxical combinator, because it embodies
the argument used in Russell’s paradox (Russell [1903]). The connection
between Set Theory and λ-calculus can be established by the following corre-
spondences:

element argument
set function
membership application
set formation λ-abstraction
set equality term equality.

Russell’s paradox is obtained by considering the set

A = {x : x 6∈ x}.

Then
x ∈ A ⇔ x 6∈ x,

and thus
A ∈ A ⇔ A 6∈ A,

contradiction.
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In terms of λ-calculus, the negation operator can be considered as a term N
that is never the identity. Since membership corresponds to application, self-
membership corresponds to self-application, and then the set A corresponds to
the term

λx.N(xx).

By β-reduction,

(λx.N(xx))x
β
= N(xx),

and thus

(λx.N(xx))(λx.N(xx))
β
= N((λx.N(xx))(λx.N(xx))),

i.e.
YN β

= N(YN).

Note however that here there is no paradox: from the last assertion, which is
true, we just deduce that there is no term N that is never the identity.

Other formulations of the λ-calculus ?

Our approach (Church [1933]) has been to define (by means of λ-abstractions)
terms, called combinators, reflecting the way functional letters can be effectively
combined to produce names for intensionally presented functions. Our term
formation rules allow λx.M to be a term whenever M is. This version is
called the λK-calculus. If a restriction were imposed on M , requiring that
x occur free in it, we would obtain a version called the λI-calculus, in which
functions with fictitious arguments are excluded. This restriction has been
introduced to avoid some pathologies, like the existence of normalizable, not
strongly normalizable terms, as seen above.

The α and β rules define a system called the calculus of β-conversion.
Various modifications of it are possible, e.g. by adding an extensionality law
for λ-terms:

η-rule. We can identify every term with a function:

λx.Mx
η→M

provided x is not free in M . Note that, by the rules of term formation,
for any term M the expression λx.Mx is also a term, and thus it repre-
sents a function: the rule ensures that this is exactly the function that is
represented by the term M itself.



84 I. Recursiveness and Computability

The reason we call this an extensionality law is that it implies that if M and N
behave extensionally in the same way, i.e. λx.Mx and λx.Nx are equal, then
so are M and N .

An equivalent but different approach to the λ-calculus (called the theory of
combinators, Schönfinkel [1924], Curry [1930]) consists in postulating some,
actually very few, of the combinators as primitive, and to deduce all the others
from these. This produces a kind of synthetical (bottom-up) analysis of the
global concept of λ-definability. In particular, it can be shown that only two
combinators are needed:

S = λxyz. xz(yz) K = λxy. x.

S can be seen as a kind of interpreted application, where x and y are first
interpreted in the environment z, and then applied one to the other. Since the
identity I can be defined as SKK:

Ix = SKKx = Kx(Kx) = x,

the λ operator can be defined by induction on the terms obtained from the
variables by application, as follows:

λx. x = I

λx. y = Ky (x, y distinct)
λx.MN = S(λx.M)(λx.N).

We can then prove the β-reduction rule, by induction.
Standard references on the subject are Church [1941], Curry and Feys

[1958], Curry, Hindley and Seldin [1972], Barendreght [1981], Hindley and
Seldin [1986]. Historical accounts on the origins of λ-calculus and its inter-
action with Recursion Theory are in Kleene [1981] and Rosser [1984].

λ-definability

We are interested in numerical functions, but it would seem that until now we
have just set up a logical basis, and that we still need to add to the language
of λ-calculus numerical terms and some basic numerical functions. But then
we would face the problem of not knowing exactly what to add, and we would
have to turn back to different approaches, with the λ-calculus relegated to a
mere role of convenient notation. Instead, and this is a most interesting aspect
of this approach, it turns out that there is no need of additional notions.

The natural numbers appear obliquely in this general setting, when we
consider the number of iterations of a function application. We can thus define
λ-terms n that, applied to a function f and an argument x, give the result
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f (n)(x) of n iterations of the function f on x, and take them as representing
the integers. Since we want

nfx = f (n)(x)

we can just let:

Definition I.6.3 (Wittgenstein [1921], Church [1933]) The numeral n
is the λ-term λfx. f (n)(x).

We write f and x to help the intuitive understanding, but note that we
just have one type of variable (with no distinction between functions and ar-
guments), and thus we should just write

n = λxy. x(n)y

Note that the terms m and n are different if m 6= n, by the theorem of Church
and Rosser quoted on p. 79, because they are in normal form and distinct.
Inductively we have, by definition of iteration,

0 = λfx. x

n+ 1 = λfx.f(nfx)

because f (0)(x) = x and f (n+1)(x) = f(f (n)(x)). Since these terms represent
in some way the constant function O and the successor operation S, we get
from this the idea of representing numerical functions:

Definition I.6.4 (Church [1933], Kleene [1935]) An n-ary function f is
λ-definable if there is a λ-term F such that

f(a1, . . . , an) = b

holds if and only if
Fa1 . . . an

β
= b.

Theorem I.6.5 (Church [1933], Rosser [1935], Kleene [1935], [1936b])
Every recursive function is λ-definable.

Proof. We proceed by induction on the definition of recursive function. To
simplify the technical details, we rely on the alternative characterization of the
class of primitive recursive functions given in I.5.10.

1. initial functions
O, S and Ini are, respectively, λ-defined by:

λx. 0
λzfx. f(zfx)
λx1 · · · xn. xi
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2. coding and decoding functions for pairs
This is obtained, in analogy with the representation of natural numbers,
as:

(n,m) = λfgx. f (n)(g(m(x)).

Thus the pairing function is

λyzfgx. yf(zgx).

Decoding is then immediate: if I is the representation of I1
1 , i.e. of the

identity function, then

λfx. (n,m)fIx = λfx. f (n)x = n

λgx. (n,m)Igx = λfx. g(m)x = m.

Thus the decoding functions are

λyfx. y(fIx) and λygx. y(Igx).

3. composition
Suppose f, gi are λ-defined by F,Gi. Then

f(x1, . . . , xn) = h(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn))

is λ-defined by

λx1, . . . , xn.H(G1x1 · · · xn) · · · (Gmx1 · · · xn).

4. iteration
This is an immediate consequence of the representation of natural num-
bers: if T is a term representing the function t, then the iteration

f(x, n) = t(n)(x)

is represented by
λxy. yTx.

5. µ-recursion
This is obtained as in the proof of I.2.3. Recall that if

f(~x) = µy(g(~x, y) = 0)

then
f(~x) = h(~x, 0),
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where

h(~x, y) =
{
y if g(~x, y) = 0
h(~x, y + 1) otherwise

By the first part of the proof case definition, successor, and composi-
tion are all λ-representable, because primitive recursive. By induction
hypothesis, so is g. Thus there is a term M representing λh~xy. F , where

F (~x, y, h) =
{
y if g(~x, y) = 0
h(~x, y + 1) otherwise.

Then the function h defined above, being a fixed-point of F , is represented
by YM . And f is finally represented by λ~x. (YM)~x0.

To conclude the proof we note that:

• The completeness property , stating that the values can be deduced from
the appropriate λ-terms, is quite evident from the informal discussion
just given.

• The consistency property , stating that no other value can be deduced,
follows from the theorem of Church and Rosser quoted on p. 79, which
ensures that if the process of β-reduction of a term produces a term
in normal form (like n), then this term is uniquely determined (up to
renaming of the bound variables). 2

Exercises I.6.6 a) Alternative coding and decoding functions are, respectively,
λu. uxy, T = λxy. x, and F = λxy. y. Being distinct λ-terms, T and F can be
taken as representation of the truth values ‘true’ and ‘false’.

b) δ = λz. z(λu. F )T represents a function that, when its argument is a numeral,
is T if z is 0, and F otherwise. Then λxyz. (δz)xy represents definition by cases,
i.e. a function that returns the first or the second argument, according to whether the
third is 0 or not . (Hint: a numeral applied to two terms produces the second if it is
0, and applies the first at least once otherwise.)

c) The predecessor function can be directly represented, using only representations
of successor, coding, and decoding functions. (Kleene [1935]) (Hint: the predecessor
of n is the second component of the n-th iteration of the function on pairs defined as
t((x, y)) = (x+ 1, x), started on (0, 0).)

By II.2.15 this provides an alternative proof of I.6.5, not using I.5.10.

Functional programming languages ?

The programming languages discussed in Sections 4 and 5 are imperative in
the sense that they specify a sequence of instructions and an order of execution
to be followed to produce an output f(~x). The functional approach, sug-
gested by λ-calculus, defines f directly, and computes the required values by
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β-reductions. The name ‘functional’ reflects the emphasis put on the functions
themselves as intensional objects, as opposed to extensional emphasis on the
values.

Relying on the characterization of recursive functions given in II.2.15, Mc-
Carthy [1960] notes that a function is recursive if and only if:

• there is a definition of it from identities, successor, and predecessor by
means of λ-abstraction, composition and the conditional operator

if t(~x) = 0 then g(~x) else h(~x).

• the function is computable from this definition by a call by value proce-
dure, i.e. a computation which evaluates first the innermost (and leftmost,
if there is more than one) occurrence of the letter defining the function.

Clearly the conditional operator replaces the definition by cases, and the fixed-
point operator is eliminated, in favor of a computational approach that just
produces it.

This formulation of recursive functions can be extended from numerical
functions to functions on words of a given alphabet and, as such, it has furnished
the computational basis for the programming language LISP (List Processing,
McCarthy [1960]; see Sammett [1969] and Wexelblat [1981] for history and
references).

Since there is no reason that functional programming languages should
be forced to run on machines designed for imperative ones, work has been
done to design hardware directly inspired by the functional approach, based on
λ-calculus (the SECD machine, Landin [1963], implementing β-reductions)
or on the theory of combinators (the SK machine, Turner [1979], implement-
ing reductions of graphs that represent the definition of a function, in terms of
the combinators S and K, see p. 84).

I.7 Arithmetization

Arithmetization simply means translation into the language of arithmetic. We
will give one detailed example of the method, and show how to code the ma-
chinery of computation of recursive functions in a primitive recursive way. The
details are quite cumbersome, and in the rest of our work we will content
ourselves to sketch similar arguments, leaving the details to the reader.

Historical remarks ?

The first attempt to find number-like connections between propositions of var-
ious sorts probably goes back to Lullus’ Ars Magna, but it was Leibniz [1666]



I.7 Arithmetization 89

who dreamt of arithmetization as a general method to replace reasoning in
natural language by arithmetical propositions, with the goal of substituting ar-
guments with computations. Leibniz went further than just this oneiric activity,
and devised (see [1903]) a precise coding method, by first assigning numbers to
primitive notions, and then showing how to associate composite numbers (e.g.
by multiplication) to composite notions. However, his tentative work was left
unpublished until 1903, and did not influence modern developments.

Hilbert [1904] again envisaged arithmetization in his idea of formalizing
consistency proofs into Arithmetic, but it was Gödel [1931] who first used it
explicitly and formally to translate the concepts relative to formal systems into
an arithmetical language. Tarski [1936] independently arrived at the method
in his investigations of the concept of truth.

Contrary to Leibniz’s dreams, the effect of arithmetization was, ironically,
not to shield the language against its oddities, but rather to spring a leak in
Arithmetic, through which the linguistic paradoxes poured only to reveal the
inadequacies of formalism (see II.2.17).

Numerical tools for arithmetization

Primitive recursive functions and predicates are more than enough to carry
out arithmetizations. We will use prime numbers and factorizations (recall,
see p. 26, that the sequence {px}x∈ω of prime numbers is primitive recursive),
because this coding is particularly simple. It should however be noted that we
could use functions from much smaller classes: this will be done in Chapter
VIII, when the necessity for more efficient codings will arise.

To code the sequence 〈x0, . . . , xn〉, the simplest way would be to use the
number px0

0 · · · pxn
n . But then we could not uniquely decode a number, since

we would not know whether a prime in the decomposition has exponent 0
accidentally or meaningfully (in the sense that it is coding the number 0).
Thus, either we rule out 0 as a meaningful exponent, and let

〈x0, . . . , xn〉 = px0+1
0 · · · pxn+1

n ,

or we tell in advance how many numbers we are coding, and let

〈x1, . . . , xn〉 = pn0 · p
x1
1 · · · pxn

n .

Since we have to make a choice for the following, we decide to use the sec-
ond proposal. The decoding system is given by the following functions and
predicates, all primitive recursive (see p. 26):

(x)n = exp(x, pn)
ln(x) = (x)0

Seq(x) ⇔ (∀n ≤ x)[n > 0 ∧ (x)n 6= 0 → n ≤ ln(x)].
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We call ln(x) the length of x, and (x)n the n-th component of x. If Seq(x)
holds then we say that x is a sequence number. In this case,

x = 〈(x)1, . . . , (x)ln(x)〉.

We will also need a concatenation operation ∗, such that

〈x1, . . . , xn〉 ∗ 〈y1, . . . , ym〉 = 〈x1, . . . , xn, y1, . . . , ym〉.

This is formally defined as:

x ∗ y = p
ln(x)+ln(y)
0 · p(x)1

1 · · · p(x)ln(x)

ln(x) · p(y)1
ln(x)+1 · · · p

(y)ln(y)

ln(x)+ln(y)

= p
ln(x)+ln(y)
0 ·

∏
i<ln(x)

p
(x)i+1
i+1 ·

∏
i<ln(y)

p
(y)i+1

ln(x)+i+1

if Seq(x) ∧ Seq(y) holds, and 0 otherwise.
Finally, we will need the notion of initial subsequence, defined as

x v y ⇔ Seq(x) ∧ Seq(y) ∧ (∃u ≤ y)(Seq(u) ∧ x ∗ u = y)
x < y ⇔ x v y ∧ x 6= y.

As a first use of sequence numbers we get the following useful result.

Proposition I.7.1 Course-of-values recursion (Skolem [1923], Peter
[1934]) The class of primitive recursive functions is closed under recursions in
which the definition of f(~x, y + 1) may involve not only the last value f(~x, y),
but any number of (and possibly all) the values {f(~x, z)}z≤y already obtained.

Formally, let f̂ be the history function of f , defined as:

f̂(~x, y) = 〈f(~x, 0), . . . , f(~x, y)〉.

Then, if f is defined as

f(~x, 0) = g(~x)

f(~x, y + 1) = h(~x, y, f̂(~x, y))

and g, h are primitive recursive, so is f .

Proof. It is enough to show that f̂ is primitive recursive, since then also f is:

f(~x, y) =
(
f̂(~x, y)

)
y+1

.
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But this is immediate, since

f̂(~x, 0) = 〈f(~x, 0)〉
= 〈g(~x)〉

f̂(~x, y + 1) = 〈f(~x, 0), . . . , f(~x, y), f(~x, y + 1)〉
= f̂(~x, y) ∗ 〈f(~x, y + 1)〉
= f̂(~x, y) ∗ 〈h(~x, y, f̂(~x, y))〉.

Thus f̂(~x, y + 1) only uses the last previous value f̂(~x, y), and f̂ is primitive
recursive because so are coding and concatenation. 2

Exercise I.7.2 Simultaneous primitive recursion. The class of primitive re-

cursive functions is closed under simultaneous recursion on more than one function.

(Hilbert and Bernays [1934]) (Hint: reduce simultaneous primitive recursion of, say,

f1(~x) and f2(~x), to primitive recursion of the single function 〈f1(~x), f2(~x)〉, by cod-

ing.)

The Normal Form Theorem

We are now in position to give our first and only complete example of arithme-
tization, by reducing the recursive functions to a normal form. Any approach
to recursiveness would produce similar results, and we will sketch the versions
relative to the approaches of Sections 2–6 later in this section, but here we give
a self-contained treatment based on recursiveness alone.

Theorem I.7.3 Normal Form Theorem (Kleene [1936]) There is a prim-
itive recursive function U and (for each n ≥ 1) primitive recursive predicates
Tn, such that for every recursive function f of n variables there is a number e
(called index of f) for which the following hold:

1. ∀x1 . . .∀xn∃ yTn(e, x1, . . . , xn, y)

2. f(x1, . . . , xn) = U(µyTn(e, x1, . . . , xn, y)).

Proof. The idea of the proof is to associate numbers to functions and com-
putations in such a way that the predicate Tn(e, x1, . . . , xn, y) translates the
assertion: y is the number of a computation of the value of the function with
associated number e, on inputs x1, . . . , xn. Having this, µyTn(e, x1, . . . , xn, y)
will give the number of one such computation, and the function U will extract
the value of the output from it. This is more easily said than done, and to
achieve it we need to carry out a number of steps.



92 I. Recursiveness and Computability

1. associate numbers to recursive functions
This is done according to the inductive procedure that generates the
recursive functions. The details are obviously irrelevant, and we just give
one possible assignment:

• 〈0〉 to O
• 〈1〉 to S
• 〈2, n, i〉 to Ini , for 1 ≤ i ≤ n

• 〈3, b1, . . . , bm, a〉 to f(~x) = g(h1(~x), . . . , hm(~x)), where b1, . . . , bm
and a are numbers respectively associated to h1, . . . , hm, and g

• 〈4, a, b〉 to f(~x, y) defined by primitive recursion from g and h, where
a and b are respectively associated to g and h

• 〈5, a〉 to f(~x) = µy(g(~x, y) = 0), if ∀~x∃y(g(~x, y) = 0) and a is
associated to g.

Any number associated to a recursive function is called an index of this
function. Since there are many ways to define the same function, there
will be many indices for each recursive function (see II.1.6). Also, many
numbers are not indices of recursive functions, either because they are
not sequence numbers of the right form, or because some of their relevant
components are not indices of recursive functions. We will see (p. 146)
that in general there is no effective way to tell whether a number is indeed
the index of a recursive function, because basically there is no way to tell
whether ∀~x∃y(g(~x, y) = 0).

2. put computations in a canonical form
A natural way to organize a computation for the values of a given recur-
sive function, is by way of computation trees. Each node of such a tree
will tell how a value needed in the computation can be inductively ob-
tained. Of course, the only possibilities are those given by the permissible
schemata of definition I.1.7, namely:

• nodes without predecessors:

f(x) = 0 if f = O
f(x) = x+ 1 if f = S

f(x1, . . . , xn) = xi if f = Ini

• composition
If f(~x) = g(h1(~x), . . . , hm(~x)) then the node f(~x) = z has m + 1
predecessors:
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h1(~x) = z1 · · · hm(~x) = zm g(z1, . . . , zm) = z

f(~x) = z

r r r r
r

#
#

#
#

#

c
c

c
c

c

PPPPPPPPPPPP

• primitive recursion
If f(~x, y) is defined by primitive recursion from g and h there are
two cases, respectively with one or two predecessors:

r
r

r r
rf(~x, 0) = z

g(~x) = z f(~x, y) = z1 h(~x, y, z1) = z

f(~x, y + 1) = z

@
@

@
@

�
�

�
�

• µ-recursion
If f(~x) = µy(g(~x, y) = 0) then there is no fixed pattern to the
predecessors of f(~x) = y. The general situation is:

g(~x, 0) = t0 · · · g(~x, z − 1) = tz−1 g(~x, z) = 0

f(~x) = z

r r r r
r

#
#

#
#

#

c
c

c
c

c

PPPPPPPPPPPP

where t0, . . . , tz−1 are all different from 0.

3. associate numbers to computations
This is done by induction on the construction of the computation tree.
First of all, we assign numbers to nodes: since they are expressions of the
kind f(x1, . . . , xn) = z, we give them numbers

〈e, 〈x1, . . . , xn〉, z〉,

where e is a given index of f . Thus a node is represented by three
numbers, corresponding respectively to the function, the inputs and the
output.

We then assign numbers to trees: each tree T consists of a vertex v
with associated number v, and of a certain number (finite, and possibly
equal to zero) of ordered predecessors, each one being a subtree Ti. By



94 I. Recursiveness and Computability

r
r r r r

#
#

#
#

#

c
c

c
c

c

PPPPPPPPPPPP









J
J

JJ










J
J

JJ










J
J

JJ
T1 Tm−1 Tm

. . .

v

Figure I.12: A tree T with vertex v and subtrees Ti’s

induction, we assign to this tree the number

T̂ = 〈v, T̂1, . . . , T̂m〉,

where T̂i is the number assigned to the subtree Ti. In particular, if the
vertex with number v does not have predecessors, then it has number 〈v〉
as a tree.

4. translate in a primitive recursive predicate T (y) the property that y is a
number coding a computation tree
To increase readability we use commas instead of nested parentheses,
and write e.g. (a)i,j,k in place of (((a)i)j)k. To keep track of what we are
doing, check Figure 13 and recall that

y = 〈v, T̂1, . . . , T̂m〉,

and hence:

(y)1 = 〈e, 〈x1, . . . , xn〉, z〉
(y)1,1 = various types, depending on e
(y)1,2 = 〈x1, . . . , xn〉
(y)1,3 = z

(y)i+1 = T̂i
(y)i+1,1 = number of the vertex of Ti.

First we let:

A(y) ⇔ Seq(y) ∧ Seq((y)1) ∧ ln((y)1) = 3 ∧
Seq((y)1,1) ∧ Seq((y)1,2).

This expresses the most trivial properties of y. We then have four cases,
corresponding to the possible situations spelled out in Part 2 above.
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〈b1, 〈x1, . . . , xn〉, z1〉 〈bm, 〈x1, . . . , xn〉, zm〉 〈a, 〈z1, . . . , zm〉, z〉· · ·

〈〈3, b1, . . . , bm, a〉, 〈x1, . . . , xn〉, z〉

= = =
(y)2,1 (y)m+1,1 (y)m+2,1

a) composition

r
r

〈a, 〈x1, . . . , xn〉, z〉

〈〈4, a, b〉, 〈x1, . . . , xn, 0〉, z〉

=
(y)2,1

r
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〈〈4, a, b〉, 〈x1, . . . , xn, y + 1〉, z〉

〈〈4, a, b〉, 〈x1, . . . , xn, y〉, z1〉 〈〈b〉, 〈x1, . . . , xn, y, z1〉, z〉
= =

(y)2,1 (y)3,1

b) primitive recursion
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〈a, 〈x1, . . . , xn, 0〉, t1〉 〈a, 〈x1, . . . , xn, z − 1〉, tz〉 〈a, 〈x1, . . . , xn, z〉, 0〉· · ·

〈〈5, a〉, 〈x1, . . . , xn〉, z〉

= = =
(y)2,1 (y)z+1,1 (y)z+2,1

c) µ-recursion

Figure I.13: Cases for the definition of T
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For the initial functions, there are three possibilities for v = (y)1:

〈〈0〉, 〈x〉, 0〉
〈〈1〉, 〈x〉, x+ 1〉

〈〈2, n, i〉, 〈x1, . . . , xn〉, xi〉.

We then let:

B(y) ⇔ ln(y) = 1 ∧
{[(y)1,1 = 〈0〉 ∧ ln((y)1,2) = 1 ∧ (y)1,3 = 0] ∨
[(y)1,1 = 〈1〉 ∧ ln((y)1,2) = 1 ∧ (y)1,3 = (y)1,2,1 + 1] ∨
[ln((y)1,1) = 3 ∧ (y)1,1,1 = 2 ∧ (y)1,1,2 = ln((y)1,2) ∧
1 ≤ (y)1,1,3 ≤ (y)1,1,2 ∧ (y)1,3 = ((y)1,2)(y)1,1,3

]}.

For composition we let:

C(y) ⇔ ln((y)1,1) ≥ 3 ∧ (y)1,1,1 = 3 ∧ ln(y) = ln((y)1,1) ∧
(∀i)2≤i<ln(y)[(y)i,1,1 = (y)1,1,i ∧ (y)i,1,2 = (y)1,2] ∧
(y)ln(y),1,1 = (y)1,1,ln(y) ∧ (y)ln(y),1,3 = (y)1,3 ∧
(y)ln(y),1,2 = 〈(y)2,1,3, . . . , (y)ln(y)−1,1,3〉.

For primitive recursion, recall that there are two possible cases:

D(y) ⇔ ln((y)1,1) = 3 ∧ (y)1,1,1 = 4 ∧
{[(y)1,2,ln((y)1,2) = 0 ∧ ln(y) = 2 ∧ (y)2,1,1 = (y)1,1,2 ∧

(y)2,1,2, ∗ 〈0〉 = (y)1,2 ∧ (y)2,1,3 = (y)1,3] ∨
[(y)1,2,ln((y)1,2) > 0 ∧ ln(y) = 3 ∧
(y)2,1,1 = (y)1,1 ∧ ln((y)2,1,2) = ln((y)1,2) ∧
(∀i)1≤i<ln((y)1,2)((y)2,1,2,i = (y)1,2,i) ∧
(y)2,1,2,ln((y)1,2) + 1 = (y)1,2,ln((y)1,2) ∧
(y)3,1,1 = 〈(y)1,1,3〉 ∧ (y)3,1,3 = (y)1,3 ∧
(y)3,1,2 = (y)2,1,2 ∗ 〈(y)2,1,3〉]}.

For µ-recursion we let:

E(y) ⇔ ln((y)1,1) = 2 ∧ (y)1,1,1 = 5 ∧
ln(y) ≥ 2 ∧ (y)1,3 = ln(y)− 2 ∧
(∀i)2≤i≤ln(y)[(y)i,1,1 = (y)1,1,2 ∧
(y)i,1,2 = (y)1,2 ∗ 〈i− 2〉] ∧
(∀i)2≤i<ln(y)[(y)i,1,3 6= 0] ∧ (y)ln(y),1,3 = 0.
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These conditions take care of all possible cases, and thus we may define
inductively:

T (y) ⇔ A(y) ∧ [B(y) ∨ C(y) ∨D(y) ∨ E(y)] ∧
[ln(y) > 1 → (∀i)2≤i≤ln(y)T ((y)i)].

Then T is primitive recursive because it is defined by using only primitive
recursive clauses and values (of its characteristic function) for previous
arguments because, by definition of coding, (y)i < y. That is, T is defined
by course of value recursion, which is a primitive recursive operation by
I.7.1.

5. define Tn and U
We are now ready to conclude our work. Namely, for each n ≥ 1 we let:

Tn(e, x1, . . . , xn, y) ⇔ T (y) ∧ (y)1,1 = e ∧ (y)1,2 = 〈x1, . . . , xn〉

and
U(y) = (y)1,3

These are obviously primitive recursive.

Let now f be a recursive n-ary function with index e. Since f is total, for
every x1, . . . , xn there is a computation tree for f(x1, . . . , xn) relative to the
computation procedure coded by e. This is formally expressed by:

∀x1 . . .∀xn∃ yTn(e, x1, . . . , xn, y).

Moreover, from any computation tree (in particular from the one with the
smallest code number) we can extract the value of the function by looking at
the third component of its vertex. This is formally expressed by:

f(x1, . . . , xn) = U(µyTn(e, x1, . . . , xn, y)). 2

Exercise I.7.4 There is a recursive function enumerating the unary primitive recur-
sive functions, i.e. a recursive function f(e, x) such that: for every e the function
λx. f(e, x) is primitive recursive, and every primitive recursive function is equal to
λx. f(e, x) for some e. (Peter [1935]) (Hint: let

f(e, x) =

{
U(µyT1(e, x, y)) if e is a primitive recursive index
0 otherwise,

where being a primitive recursive index means to define a recursive function from

the initial functions by composition and primitive recursion alone, without using the

µ-operator.)
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Equivalence of the various approaches to recursiveness

By using the method of arithmetization we can get a cascade of results relative
to the various approaches introduced in Sections 2–6. We will not go beyond
sketches because we believe that, once the method is understood, the transla-
tion of these into formal proofs should not present theoretical difficulties. It is,
however, a very useful exercise to try to fill in the cumbersome details of some
of these sketches.

We begin by dealing with the notions of Section 2.

Proposition I.7.5 (Kreisel and Tait [1961]) Every finitely definable func-
tion is recursive.

Proof. Suppose f is finitely definable by E w.r.t. f1. We know that if f(~x) = z
then f1(~x) = z is a logical consequence of

E(f1, . . . , fm; ~z1) ∧ · · · ∧ E(f1, . . . , fm; ~zp),

for some ~z1, . . . , ~zp. By the completeness of the predicate calculus, and the
fact that whenever we have a model we also have an ω-model (i.e. one with
domain the integers, and with 0 and S interpreted as zero and successor), this is
equivalent of saying that if f(~x) = z then f1(~x) = z is derivable in any complete
formalization of the predicate calculus with equality, from the premises

E(f1, . . . , fm; ~z1) ∧ · · · ∧ E(f1, . . . , fm; ~zp)

and the axioms for the successor operation:

(∀x)(S(x) 6= 0)
(∀x)(S(n)(x) 6= x) (for n > 0)

(∀x)(∀y)(S(x) = S(y) → x = y)

(with the f1, . . . , fm held fixed in the derivation). By arithmetization we can
define a primitive recursive predicate Tn(e, ~x, y) (where n is the number of
components of the vector ~x) meaning:

y codes a derivation of an equation of the form f1(~x) = z, in the
predicate calculus with equality, from the axioms for successor and
a finite conjunction of substitution instances of the system of equa-
tions coded by e.

Let U be a primitive recursive function such that

whenever y codes a derivation, then U(y) gives the value of the
numeral on the right-hand side of the last equation coded by y.
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Then we have that f is recursive, because

f(~x) = U(µyTn(e, ~x, y)). 2

Proposition I.7.6 (Kleene [1936]) Every Herbrand-Gödel computable func-
tion is recursive.

Proof. By arithmetization we can define Tn(e, x1, . . . , xn, y) primitive recur-
sive, meaning:

y codes a derivation, by means of the rules R1 and R2 and from
the system of equations coded by e, of an equation of the form
fni (x1, . . . , xn) = z, where fni is the leftmost letter in the last equa-
tion of the system coded by e.

Let U be a primitive recursive function such that

if y codes a derivation then U(y) is the value of the numeral in the
right-hand side of the last equation coded by y.

If f is Herbrand-Gödel computable from the system of equations coded by e
then f is recursive, because

f(x1, . . . , xn) = U(µyTn(e, x1, . . . , xn, y)). 2

We turn now to the representability approach of Section 3.

Proposition I.7.7 (Gödel [1936], Church[1936]) Every function weakly
representable in a consistent formal system (with recursive sets of axioms and
of recursive rules) is recursive.

Proof. By arithmetization we can define Tn(e, x1, . . . , xn, y) primitive recur-
sive, meaning:

y codes a derivation of a sentence of the form φ(x1, . . . , xn, z), where
φ is the formula coded by e, from the axioms of the given system
and by means of its rules.

Let U be a primitive recursive function such that

if y codes a derivation then U(y) is the value of the numeral which
instantiates the last variable of the last formula of the derivation
coded by y.

If f is weakly representable by the formula coded by e then f is recursive,
because

f(x1, . . . , xn) = U(µyTn(e, x1, . . . , xn, y)). 2
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Corollary I.7.8 For any consistent formal system extending R, the following
are equivalent:

1. f is weakly representable

2. f is representable

3. f is strongly representable.

Proof. Indeed,

recursive ⇒ strongly representable (by I.3.6)
⇒ representable (by definition)
⇒ weakly representable (by consistency)
⇒ recursive (by the proposition). 2

We now turn to the computational approaches of Sections 4 and 5.

Proposition I.7.9 (Turing [1936], [1937]) Every Turing machine computa-
ble function is recursive.

Proof. By arithmetization we can define Tn(e, x1, . . . , xn, y) primitive recur-
sive, meaning:

y codes a computation carried out by the Turing machine coded by
e, on inputs x1, . . . , xn.

Let U be a primitive recursive function such that

if y codes a computation then U(y) is the value of the number
written on the tape to the left of the head, in the last configuration
of the computation coded by y.

If f is computed by the Turing machine coded by e then f is recursive, because

f(x1, . . . , xn) = U(µyTn(e, x1, . . . , xn, y)). 2

Proposition I.7.10 (Wang [1957], Peter [1959]) Every flowchart com-
putable function is recursive.

Proof. To simplify the details we can make the following conventions: any
program has only variables named X0, X1, . . .; the inputs are indicated by
X1, . . . , Xn, and the output by X0. By arithmetization we can define a primi-
tive recursive predicate Tn(e, x1, . . . , xn, y), meaning:

y codes a computation of the program coded by e when, at the
beginning, the input variables are set equal to x1, . . . , xn, and all
the remaining variables are set equal to 0.
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Let U be a primitive recursive function such that

if y codes a computation, then U(y) is the value of the output
variable, in the last step of the computation coded by y.

If f is computed by the program coded by e then f is recursive, because

f(x1, . . . , xn) = U(µyTn(e, x1, . . . , xn, y)). 2

We finally turn to the λ-definability approach of Section 6.

Proposition I.7.11 (Church [1936], Kleene [1936b]) Every λ-definable
function is recursive.

Proof. By arithmetization we can define Tn(e, x1, . . . , xn, y) primitive recur-
sive, meaning:

y codes a reduction to a numeral, via α or β rules, of the term coded
by e, applied to x1, . . . , xn.

Let U be a primitive recursive function such that

if y codes a reduction then U(y) is the value of the numeral obtained
in its last step.

If f is λ-definable by the term coded by e then f is recursive, because

f(x1, . . . , xn) = U(µyTn(e, x1, . . . , xn, y)). 2

The basic result of the foundations of Recursion Theory

The results proved in this first part of the book imply that all the approaches to
effective computability introduced so far are equivalent, and thus show that the
notion of recursiveness is absolute and very stable. This is a striking fact, and
to stress its importance we isolate it in a theorem of its own, which captures
the essence of this chapter:

ancor dirò, perché tu veggi pura
la verità che là giú si confonde,
equivocando in śı fatta lettura.4

(Dante, Paradiso, XXIX)

Theorem I.7.12 Basic result. The following are equivalent:
4I shall say more, so that you may see clearly
the truth that, there below, has been confused
by teaching that may be ambiguous.
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1. f is recursive

2. f is finitely definable

3. f is Herbrand-Gödel computable

4. f is representable in a consistent formal system extending R

5. f is Turing computable

6. f is flowchart (or ‘while’) computable

7. f is λ-definable.

Proof. The direction showing that all these notions are not more extensive
than recursiveness is given by the results just proved in this section.

The opposite direction, showing that all these notions are at least as ex-
tensive as recursiveness, is given by Theorems I.2.3, I.2.5, I.3.6, I.4.3, I.5.4 and
I.6.5. 2

It should be noted that the equivalence proofs among different notions of
computability are effective and efficient . Effectiveness means that for any pair
of notions there is a recursive function that, given the code of a recursive
function relative to one notion, produces a code of the same recursive function
relative to the other notion. This is the basis of the definition of acceptable
system of indices, see II.5.2. A precise statement of efficiency requires concepts
introduced in Chapter VII, and will be given there. The intuitive idea is that
the code of a function not only defines the function, but also shows a method to
compute it, and the translation roughly preserves the computational efficiency
of the methods.

I.8 Church’s Thesis ?

In this section we discuss the assertion that every effectively computable func-
tion is recursive, by considering physical and biological computers. For the
former we rely on physical theory, and try first to determine how far the par-
ticular model of determinism provided by recursiveness accounts for the general
model of determinism, and then to establish the extent of determinism itself.
For the latter, due to lack of theory, we pursue the synthetical and analytical
approaches, by analyzing the brain structure and formulations of constructive
reasoning.

Due to the generality of the discussion, we will freely quote results which
either will be proved later in the book, or will not be proved at all, being
outside the scope of our work. However, appropriate references will be given,
whenever needed.
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Introduction to Church’s Thesis

The work done so far shows that the class of recursive functions is certainly a
very basic one, since it arises in fields as varied as mathematics, logic, com-
puter science and linguistics, with quite independent approaches (and each one
interesting in its own right), that turn out to be equivalent a posteriori (by
the Basic Result I.7.12). The generality of the method of arithmetization, that
allows for these equivalence results, also leads us to believe that other possible
approaches to the notion of computability are likely to produce notions not
more extensive than recursiveness, if not outright equivalent.

The fact that many variations in the details of the various approaches do
not produce changes in the defined class (see e.g. the discussion on p. 50), shows
that the notion of recursiveness is very stable.

By Theorem I.7.12, the class of recursive functions is not sensitive to changes
in the formal systems considered to represent its functions: that is, the same
functions are representable in any consistent formal system having a least min-
imal power, independently of the system strength. And even more is true:
Kreisel [1972] shows that not only in formal systems, but even in vast classes
of recursive transfinite progressions of formal systems, only recursive functions
are representable. Thus the notion is absolute in a certainly astonishing way,
with few (if any) analogues among other logical notions. To quote Gödel [1946]:

With this concept one has for the first time succeeded in giving an
absolute definition of an interesting epistemological notion, i.e. one
not depending on the formalism chosen. In all other cases treated
previously, such as demonstrability or definability, one has been
able to define them only relative to a given language, and for each
individual language it is clear that the one thus obtained is not the
one looked for. For the concept of computability however, although
it is merely a special kind of demonstrability or definability, the
situation is different.

Gödel referred to the situation as ‘a kind of miracle’.
These facts point out the exceptional importance of the class of recursive

functions, and have led (see the next subsection for historical notes) to propose
the following as a working hypothesis:

Church’s Thesis (Church [1936], Turing [1936]) Every effec-
tively computable function is recursive.

The Thesis, if true, would have a great relevance as a piece of applied
philosophy, since it imposes a precise, mathematical upper bound to the vague,
intuitive but basic notion of algorithm that underlies the concept of effective
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computability, and that has permeated technique and mathematical experience
for thousands of years. Post [1944] emphasizes that

if general recursive functions is the formal equivalent of effective
calculability, its formalization may play a role in the history of
combinatorial mathematics second only to that of the formulation
of the concept of natural number.

In applications, the Thesis has an essential use in metamathematics. Lim-
iting the extension of the concept of algorithm allows for proofs of absolute
unsolvability: if we prove that a function is not recursive then, by the Thesis,
it is not computable by any effective means. Thus, to see that a problem is
effectively unsolvable, is enough to faithfully translate it into a function, and
prove that this is not recursive.

Like the classical unsolvability proofs, these proofs are of unsolv-
ability by means of given instruments. What is new is that in the
present case these instruments, in effect, seem to be the only in-
struments at man’s disposal. (Post [1944])

Thus undecidability proofs rest on two conceptually different bases: a math-
ematical proof of recursive unsolvability (independent of the Thesis), and an
appeal to the Thesis, to deduce from it absolute unsolvability .

There is another avoidable use of the Thesis, in Recursion Theory . Giv-
ing an algorithm for a function amounts, by the Thesis, to showing that this
function is recursive. Although theoretically not important, and in principle
always avoidable (if the Thesis is true), this use is often quite convenient, since
it avoids the need for producing a precise recursive definition of a function
(which might be cumbersome in details). Strictly speaking, however, this use
does not even require a Thesis: it is just an expression of a general preference,
widespread in mathematics, for informal (more intelligible) arguments, when-
ever their formalization appears to be straightforward, and not particularly
informative. We will do this (and have already done it) throughout the book.

The meaning of the above formulation of Church’s Thesis is ambiguous in at
least two respects. First of all, the statement can be taken as saying that each
effectively computable function is extensionally equivalent to a recursive one or,
more strongly, that every effective rule is intensionally equivalent to, say, some
program for an idealized computer. Following Kreisel [1971] we will distinguish
the two meanings, and refer to them, respectively, as Thesis and Superthesis.
Second, and this is the crux of the matter, there are various possible meanings
for the word ‘effective’, partly depending on one’s philosophy of mathematics.

Extremal attitudes are possible. One (Church [1936]) is to take recursive-
ness as a precise definition of the otherwise vague notion of effective com-
putability: this makes the Thesis empty. An opposite one (Kalmar [1959]) is
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to consider effective computability as an open concept, that can only be suc-
cessively approximated: this only allows for partial verifications of the Thesis,
relative to given approximations (although it would allow for a disproval of
it). The popular attitude is, however, to consider the facts that various at-
tempts to characterize the notion of effectiveness have all led to the same class
of functions, and that no counterexample to the Thesis has ever been found,
as conclusive arguments in favor of it, and to regard the matter as (positively)
settled. Kreisel [1972] has stressed the fact that equivalence of attempts is not
particularly significant (there might be systematic errors), and that only the
intrinsic values of each model can be relevant (one good reason is better than
many bad ones).

Church’s Thesis can be analyzed from various points of view, some of which
dealt with in the special issue of the Notre Dame Journal of Formal Logic (vol.
28, no. 4, 1987) on the subject. The task we set for ourselves in this section is
to analyze some meanings of the word ‘effective’, and to discuss the (lack of)
evidence of the Thesis for these meanings. Precisely, we consider physical and
biological computers.

A physical computer, as described here, is a discrete physical system
together with a theory for its behavior (according to which the values are
under experimental control). We restrict our attention to discrete systems
because we are considering discrete functions (from natural numbers to natural
numbers), although continuous systems can be treated via approximations (see
below). The fact that we have a theory (physical laws) to work with, is what
makes the Thesis in this case less pretentious, therefore less simple-minded,
than in the original intended meaning (considered afterwards): it allows us
to compare an abstract model of computability with descriptions of classes
of physical devices. Obviously we do not question here the validity of the
world description in terms of (present day) physical laws: the relevance of our
discussion will be proportional to the degree of confidence we have in it. Since
Turing machines are locally deterministic devices, to ask whether any physical
computer computes only recursive functions actually splits into two questions:
it means first to determine how far a particular model of determinism accounts
for all of it, then to establish the extent of determinism itself. Clearly the former
is less problematic, and it therefore produces a more satisfactory analysis.

For the biological computer, we do not have yet a theory, and discussions
of human computability are mostly rambling talk. We pursue both the syn-
thetical (bottom-up) and the analytical (top-down) approaches, by analyzing
the brain structure and theories of constructive reasoning, but we reach a dead
end soon in both cases.

Before we plunge into our work, we would like to warn about what effective
computability does not mean: it is not practical (feasible) computability.
The relationship between these two notions is the distinction between Recursion
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Theory and Computer Science, i.e. between ideal computers and real ones.
The issue in Computer Science is not Church’s Thesis (whether the class of
recursive functions is broad enough), but its dual (which recursive functions
are practically computable): from this the attempt to define restricted versions
of recursiveness, like polynomial-time computability (considered in Chapter
VIII). Actually, from a strict point of view, practical computability is not even
interested in asymptotical behavior, and it will never use infinitely many values.
In this respect even the attempt to restrict the class of recursive functions to
other abstract models may be irrelevant.

Historical remarks

Post was working, at the beginning of the Twenties, toward a general formu-
lation of the undecidability results he had obtained. He defined the notion of
canonical systems (p. 143) as an abstraction of the notion of formal systems,
and proposed (on the basis of reductions he had of known formal systems to
canonical ones) the identification of the notions of a set of strings effectively
generable on one side, and generable by canonical systems on the other. This
is equivalent to saying, in modern terminology, that the effectively generable
sets are the recursively enumerable ones, and it is thus indirectly equivalent to
Church’s Thesis (for partial functions). However, Post had a platonist philo-
sophical view, and saw his proposal as something that had to be proved some-
how, by a kind of

psychological analysis of the mental processes involved in combina-
torial mathematical processes.

In particular, he believed that the analysis he had at the moment was ‘fun-
damentally weak’, and thus that the proposal was not completely convincing.
All this work (Post [1922]) was left unpublished, and so did not influence later
developments.

At the beginning of the thirties Church formulated the λ-calculus, in a foun-
dational attempt to develop a system of logic from the primitive notion of func-
tion (Section 6). It gradually turned out (in 1932–33) that there was a natural
way to represent integers in λ-notation, and that a great number of functions
were λ-definable (ultimately that all the recursive ones were, Theorem I.6.5). In
1934 Church proposed his Thesis (Church [1936]), as a mathematical definition
of the informal concept of computability.

Meanwhile Gödel, dissatisfied with Church’s approach, believed (somewhat
following Hilbert [1926]) that the computable functions could all be defined
by some general kind of recursion. This again turns out to be equivalent to
Church’s Thesis, through the Fixed-Point Theorem. Gödel [1934] even ven-
tured to formulate the notion of Herbrand-Gödel computability (Section 2) as
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a test, but was not at all convinced that this concept really comprises all pos-
sible recursion. His proposal was similar to Post’s: to analyze the notion of
computability, aiming at the isolation of its essential features.

This was done (in a way satisfactory to Gödel) by Turing [1936], who -
unaware of the work referred to above - proposed his model of an abstract
computer (Section 4), and an equivalent version of Church’s Thesis. Simulta-
neously and independently, Post [1936] attained a very similar analysis, and
admitted that

a fundamental discovery in the limitations of the mathematicizing
power of Homo Sapiens has been made.

Gödel made this more precise (see Davis [1965], p. 73):

The results mentioned . . . do not establish any bounds for the power
of human reason, but rather for the potentiality of pure formalism
in mathematics.

For more information on the history of Church’s Thesis see Kleene [1981],
[1981a], [1987], Davis [1982], Shanker [1987], Webb [1980] and the original
papers in Davis [1965].

Computers and physics

The notion of a deterministic reality that evolves according to mathematically
explicit laws is typical of classical mechanics. Galilei [1623], [1638] intro-
duces the modern scientific methodology of experimenting in order to verify
the results of theoretical reasoning, and stresses the importance of mathemat-
ics (‘the language the book of nature is written in’). Newton [1687] achieves an
informal axiomatization of mechanics, for the first time unifying large tracts of
experience into a coherent picture. With him the mechanization of the world
picture (see Dijksterhuis [1961] for an historical account) is accomplished: a
system with k degrees of freedom needs only 2k parameters (positions and mo-
ments) to completely specify every value of physical quantity for the system
at a given time and the evolution in time of the system state. If some of the
parameters are unknown, by averaging over them in some way it is still possible
to obtain statistical prevision (like in thermodynamics, where the hidden 2k
parameters needed to describe a system of k molecules produce a statistical
description in terms of pressure and temperature alone).

Plank’s discovery in 1900 of energy packets ignited a new physics (quan-
tum mechanics, see Feynman, Leighton and Sands [1963] for background),
with philosophical foundations as distant from those of classical mechanics as
they can be. The concept itself of reality is at stake: matter has a double
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appearance, as waves and as particles (Einstein, De Broglie), and its physical
quantities cannot in general be simultaneously measured with absolute pre-
cision (Heisenberg). A system with k degrees of freedom is now described
by a wave function Ψ(q1, . . . , qk), which still evolves deterministically in time
(Schrödinger), but allows only statistical prevision on the values of physical
quantities for the system at a given time (Born). This last fact can be var-
iously interpreted as necessary (change at subatomic level is casual, and can
only be accounted for probabilistically), accidental (as in the case of thermody-
namics, hidden variables might deterministically account for change, and give
quantum-mechanics states as average), or contingent (the wave function repre-
sents not only possibilities, but realities in simultaneously coexisting worlds: a
measurement, forcing a possibility into an actuality, corresponds to choosing a
path in the tree of all possible universes, see DeWitt and Graham [1973]).

Classical mechanics

The first aspect that we examine of Church’s Thesis can be phrased as fol-
lows: the notion of recursiveness (a technical isolation of a restricted class of
mechanical processes) captures the essence of mechanism. We can formulate,
more precisely:

Thesis M (for ‘mechanical’) (Kreisel [1965]) The behavior of
any discrete physical system evolving according to local mechanical
laws is recursive.

This clearly implies our real interest: that any function computable by such
a device is recursive as well (each output being obtained by a finite iteration of
a recursive procedure applied to the input). The Thesis formulation in terms
of behavior of physical systems, in addition to being more general, has the
advantage of being directly suitable for analysis (since we do not need to know
details on how the device computes a function).

The Turing-Post analysis of Section 4 is certainly not sufficient to prove
Thesis M since, being explicitly patterned on human behavior, it sees compu-
tations as well-ordered sequences of atomic steps, and thus (at least) it does
not account for parallel computations. Arguments in favor of Thesis M fall into
three distinct categories, which we analyze separately.

a) A general theory of discrete, deterministic devices

The analysis (Church [1957], Kolmogorov and Uspenskii [1958], Gandy [1980])
starts from the assumptions of atomism and relativity. The former reduces the
structure of matter to a finite set of basic particles of bounded dimensions,
and thus justifies the theoretical possibility of dismantling a machine down to
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a set of basic constituents. The latter imposes an upper bound (the speed
of light) on the propagation speed of causal changes, and thus justifies the
theoretical possibility of reducing the causal effect produced in an instant t on
a bounded region of space V , to actions produced by the region whose points
are within distance c · t from some point of V . Of course, the assumptions do
not take into account systems which are continuous, or which allow unbounded
action-at-a-distance (like Newtonian gravitational systems).

Gandy’s analysis shows that the behavior is recursive, for any device with
a fixed bound on the complexity of its possible configurations (in the sense that
both the levels of conceptual build-up from constituents, and the number of
constituents in any structured part of any configuration, are bounded), and
fixed finite, deterministic sets of instructions for local and global action (the
former telling how to determine the effect of action on structured parts, the
latter how to assemble the local effects). Moreover, the analysis is optimal in the
sense that, when made precise, any relaxing of conditions becomes compatible
with any behavior, and it thus provides a sufficient and necessary description
of recursive behavior.

b) Numerical approximations of the local differentiable equations of
classical mechanics

The work in classical mechanics, from Newton to Hamilton, has led to a de-
scription of the evolution of mechanical systems by local differentiable equa-
tions. More precisely, a conservative Hamiltonian system is defined, in local
coordinates, by Hamilton’s equations:

q̇i =
∂H

∂pi
ṗi = −∂H

∂qi

where q = (q1, . . . , qk) and p = (p1, . . . , pk) are the vectors of, respectively,
positions and momenta of the system, k being the number of degrees of freedom
of the system. Then the evolution in continuous time of the system state s
(completely describing the relevant variables of the system) can be expressed
by a vector differential equation of the form ṡ = f(s). By assuming sufficient
smoothness conditions on the derivative involved, and stepping from continuous
to discrete time (in which the evolution of the system is sampled at regular,
sufficiently small, discrete time intervals) we can linearly approximate the rate
of change given by the previous equation, as

s(t+ ∆t) ≈ s(t) + f(s(t)) ·∆t.

By taking ∆t as the unit interval of sampling, we get

s(t+ 1) ≈ s(t) + f(s(t))
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and this gives, for mechanical (not necessarily discrete) systems, a recursively
described system evolution (in the form of a simultaneous recursive definition
of all the relevant variables explicit in s) (Kreisel [1965]).

Note that the other, equivalent, way to describe the evolution of systems in
classical mechanics, namely by global variational principles (like Maupertuis’
principle of least action), does not seem to be useful for a similar analysis,
because of its teleological approach (see Von Neumann [1954]).

c) Discrete models for classical mechanics

In classical mechanics discrete data (coming from experiments) are used to
build continuous models, from which discrete data have to be deduced by nu-
merical approximation methods. The step from discrete to discrete through a
continuous model seems logically unbalanced: as Feynman [1982] puts it,

It is really true, somehow, that the physical world is representable
in a discretized way, and . . . we are going to have to change the laws
of physics.

Discrete models, studying the dynamical behavior of systems entirely in
terms of (high speed) arithmetic, have been obtained for classical mechanics,
including special relativity and conservative Hamiltonian theory (Greenspan
[1973], [1980], [1982], La Budde [1980]). Their dynamical equations are dif-
ference (opposed to differential) equations, whose solutions are discrete func-
tions. This approach still yields various conservation and symmetry laws of
continuous mechanics, and it also has direct applications to non-linear physical
behavior. Related to this, cellular automata have been investigated as a basis
for the representation of partial differential equation models in a direct com-
puter simulation, again avoiding indirect numerical approximation (Vichniac
[1984], Toffoli [1984]). See also Ord-Smith and Stephenson [1975] for a general
treatment of computer simulation of continuous systems.

To sum up the discussion above, it is plausible that the behavior of a discrete
physical system, evolving according to the local and causal laws of classical me-
chanics, can be simulated by a computer, and it is thus, in particular, recursive.

Probabilistic physics

We try now to formulate Church’s Thesis for abstract machines, in the most
general way. We will have to account for analog computers, that is any
physical system computing some function, by representing numerical data ‘by
analogy’ (based on any physical, and possibly continuous, quantity, like in-
tensity of an electrical current, or rotation angles of a watch hand). More
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precisely, an analogue computation is a combination of physical processes, be-
having (mathematically) in the same way as some other process, which is the
real object of study, but which for some reason is more manageable or better
observable than it (e.g., because of difference in scale). In the extreme case,
any physical process is an analog calculation of its own behavior.5 We thus
formulate:

Thesis P (for ‘probabilistic’) (Kreisel [1965]) Any possible be-
havior of a discrete physical system (according to present day phys-
ical theory) is recursive.

Possible behavior means a sequence of states with non-zero probability: we
cannot simply talk of behavior according to present day physical theory, be-
cause this (as opposed to classical mechanics) is formulated also in terms of
probability.

We collect our observations under categories parallel to those used for clas-
sical mechanics.

a) A general theory of analog machines

Nothing similar in spirit to the theory of Gandy [1980] for discrete deterministic
devices has yet been developed. A first step has been undertaken by Shannon
[1941], who generalized the notion of finite automaton into that of general
purpose analog computer. This is a device consisting of electronic circuits,
and a series of black-boxes (hooked up with lots of instantaneous feedback),
of four elementary kinds: constant (producing any desired constant voltage),
adder and multiplier (producing sum and product of the inputs), and integrator
(producing, given inputs u and v, the output

∫ t
0
u(s)dv(s) +C, where C is the

‘initial setting’ of the integrator). Once the connections and the initial settings
are made, the device is permitted to run in real time, and any voltage that can
be read in the circuit (as a function of time) is an output.

A characterization of the behavior of these devices has been obtained (Shan-
non [1941], Pour El [1974], Lipschitz and Rubel [1987]): a function f(x) is the
output of a general purpose analog computer if and only if it is differentially
algebraic, i.e. the solution of an algebraic differential equation

P (x, f(x), f ′(x), . . . , f (n)(x)) = 0

where P is a polynomial (over the complex field) in all its variables. Such func-
tions provide an extremely rich class, including almost all the special functions

5In this case, Church’s Thesis amounts to saying that the universe is, or at least can be
simulated by, a computer. This is reminiscent of similar tentatives to assimilate nature to
the most sophisticated available machine, like the mechanical clock in the XVII century, and
the heat engine in the XIX, and it might soon appear to be as simplistic.
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in common use (algebraic, trigonometric, Bessel functions), and with strong
closure properties (see Rubel [1982], Rubel and Singer [1985]), including the
existence of analogues of the universal function (Rubel [1981]). Also, despite
the fact that some transcendental functions (notably, Euler’s Γ and Riemann’s
ζ) are not exact solutions of algebraic differential equations, any continuous
function can be approximated, with arbitrary preassigned accuracy, by differ-
ential algebraic functions.

This approach thus describes a wide variety of physical phenomena, but it
is still only a first step toward a general theory of analog computers. Some ex-
tensions have been recently proposed, e.g. allowing black-boxes for convolution
(which would add memory to the device, since convolutions involve the whole
past history of their inputs and introduce time delays).

Digital simulations with arbitrary precision (which are our real concern,
since we talk about functions of integral, not real or complex, variables) should
be possible, by replacing the black boxes by digital approximations to them
(e.g., integration can be performed by some appropriate numerical integration,
say via Simpson’s rule), but details have not yet been worked out.

b) Analysis of the formulation of probabilistic physical laws

The dynamics of classical physical systems with probabilistic behavior may be
described by Markov chains, which consist of a finite set of states {q1, . . . , qn},
together with a n×n stochastic matrix P = (pij)1≤i,j≤n, whose interpretation
is: if the system is in a given state qi at a certain instant of time, the probability
that it be in state qj at the next instant (in a discrete time scale) is pij . A system
described by a Markov chain satisfies Thesis P, and actually something more
general holds: any sequence of states with non-zero probability, in a stochastic
process with infinitely many discrete states and recursive matrix of transition
probabilities, is recursive (Kreisel [1970a]). The reason is simply that such a
sequence is an isolated branch of a recursive tree (the tree of possible sequences
of states), since there are only finitely many possible sequences of a given non-
zero probability.

The remark just made teaches a more general lesson. Suppose we consider
a structurally stable system, i.e. such that slight changes of the parameters
in the equations describing the system behavior produce only slight changes
in the behavior itself. The stability of the solutions tend to require that they
be isolated in the relevant spaces and, if these space are recursively described,
the solutions are recursive as well. Thus it is likely that if Thesis P fails,
counterexamples have to be looked for in unstable systems.

It can be noted that it is known that some differential equations in recursive
analysis (of the kind arising in the description of physical phenomena) have
recursive data but no recursive solutions (see e.g. Pour El and Richards [1979],



I.8 Church’s Thesis ? 113

[1981], [1983]). These results are, however, not directly relevant to Thesis P,
since their data are mathematically concocted, and do not apparently arise
from the description of physical phenomena (see Kreisel [1982] for a review).

c) Deterministic models of quantum mechanics

We have already noted above that quantum mechanics is not deterministic, as
it stands. Hidden-variables theories were postulated to leave open the pos-
sibility of a deterministic description of subatomic phenomena: their existence
would prove quantum mechanics observably inadequate, but at the same time
quantum theory - although incomplete - could be complemented to obtain a
full description of individual systems.

Impossibility proofs of the existence of hidden-variables theories had been
proposed, from Von Neumann [1932] on, but with unsatisfactory features an-
alyzed in Bell [1966]. A breakthrough was Bell [1964]: he proved that realism
and hidden variables are not only philosophically, but also theoretically incom-
patible with quantum theory . He devised (in the style of Einstein, Podolski and
Rosen [1935]) a simple experiment, and computed probabilistic lower bounds
to the outcome predictions, assuming that well-defined states really exist, prior
to their observation. This bound is greater than the one obtained by quantum
theory considerations.

Recently (1981–82) the experiment has been actually carried out, and seem-
ingly conclusive evidence provided that the quantistic predictions are correct
(see Mermin [1985] for an elementary description, and references). This moves
the incompatibility of realism with quantum theory from philosophical and
theoretical ground to the experimental one, and seems to settle the matter.

At first sight it might seem impossible to simulate Bell’s experiment deter-
ministically, since the theoretical outcome predictions would clash with exper-
imental evidence, but we should not forget that these predictions are obtained
by using a particular kind of inductive inference based, in particular, on clas-
sical probability theory. Now the same inference theory is used in quantum
mechanics, and this flatly produces its incompatibility with determinism. But,
as Feynman [1982] points out, there could be a problem with probability theory
itself, at quantum level : we assume that we can always do and repeat any ex-
periment that we want, without taking into account the constrictions (stressed
by quantum theory!) imposed by the fact that we are all part of the same
universe, and that the universe does not remain the same. On the other hand,
we do not know of any version of Bell’s experiment that avoids probabilistic
computations.

Besides probability, logic is the other tool used in the inductive inference
of Bell’s theorem, and classical logic itself seems to be inadequate to describe
phenomena at quantum level . See e.g. Birkoff and Von Neumann [1936], where
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it is argued that the experimental propositions concerning a system in classical
mechanics form a Boolean algebra, while (due to the fact that only compatible
observations commute, and incompatible observations cannot be independently
performed) they are a complemented but nondistributive lattice in quantum
mechanics.

To sum up the discussion, we have only scarce evidence in favor of Thesis P
and, despite the fact that no outright refutation exists, there is plenty of room
to doubt its validity .

Computers and thought

The reduction of soul to (atomistic) physics has an old pre-Socratic tradition,
centering around Leucippus and Democritus. The Socratic revolution, and the
standing success of Plato and Aristotle, has led to a tradition of organismic
physics that has left little space for pure mechanism until more recent times.
A notable exception was Lucretius, who devoted two books of his De Rerum
Natura to an atomistic account of the mind and its functions.

Descartes [1637] laid the foundation of the modern mechanistic world view,
by trying to devitalize the human organism as much as was logically possible,
in particular by including into physics (as he envisaged it) a great deal of
what later came to be called psychology, but not the mind itself. He saw
self-consciousness and language sophistication (in particular, the ability to see
the meaning of signs and events) as the privilege and exclusive ability of an
immaterial, unextended mind.

Hobbes [1655] provided the dissenting note: by relying on the apparently
effective manipulation, in reasoning, of names as symbols for thoughts, and
on Pascal’s construction of the first calculating machine in 1645, he defended
a global mechanism, and did not hesitate to obliterate the difference between
mind and matter. In his extreme dedication to mechanism, Hobbes was a rather
lonely figure in his day, but with the advent and the success of machines, it was
inevitable that mechanism would attract more advocates. La Mettrie [1748]
provided a most notorious attempt, aimed at wholesale reductionism.

Once the terms of the debate had been set up, endless arguments developed,
and new life to the dispute has been provided by modern advances in the areas
that supported Hobbes and Descartes, respectively. On the one hand, much
current mathematical practice has been formalized (from Boole to Bourbaki),
and thus indeed mechanized (and Gödel Completeness Theorem [1930] shows
that, for what concerns first-order logic, the formalization is complete). More-
over, the quality of computers (from Babbage to the Fifth Generation) has
improved enormously, and machines are now capable of quite sophisticated be-
havior themselves. On the other hand, the undecidability and incompleteness
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results (Section II.2) expose the limitations of the formalization and mecha-
nization programs. Moreover, these results have sometimes been used to infer
the superiority of men over machines, basically with the following arguments:

Undecidability. Church’s Theorem II.2.18 shows that first-order logical rea-
soning is not mechanically decidable. It might thus appear that man, the
bearer of this reasoning, is capable of nonmechanical behavior, and thus
not a machine. It is easy to see the weak point of this argument: a mecha-
nism is such because of local mechanical behavior, and the Completeness
Theorem for Predicate Calculus (Gödel [1930]) does indeed show that
classical logical reasoning can be formalized, and thus simulated by lo-
cally mechanical steps. But a mechanism does not need to have a global,
mechanically predictable behavior, as discussed on p. 151.

Undefinability. Tarski’s Theorem (see p. 166) shows that, for a classical for-
mal system, truth is not representable in it. Again, it would seem that
man has a notion of truth, and thus that thought has nonmechanical ele-
ments. The difficulty of this argument is two-fold: on the one hand, it is
only global truth that it is not representable, while for each fixed bound
of logical complexity there is a representable notion of truth (at the next
level of complexity); on the other hand, not only does man not appear to
have a global notion of truth: he even seems unable to handle (by direct
intuition) more than four or five alternations of quantifiers, and hence
local truth itself, beyond very small levels of complexity.

Incompleteness. Gödel’s Theorem II.2.17 tells us that any consistent and
sufficiently strong formal system is incomplete, in the sense that it does
not prove some numerical sentence which we know is true. It would seem
that man, being able to produce, for any machine (formal system), a
task that can be solved by him but not by the machine, is not himself a
machine.

The first objection to this is that the proof of the result is effective, i.e.
there is a machine that, given the number of a formal system, produces
the undecidable sentence (this effectiveness is actually one of the crucial
features of Gödel’s result, since - by showing the incompleteness of every
sufficiently strong formal system - it points to inadequacies in the concept
of formal system itself). Post [1922] has noted that such an effectiveness
does not show up by chance: given an argument intended to prove that
man can fool any machine, if this argument can be made sufficiently
precise, then it becomes itself mechanizable, and it backfires.

Another important feature of Gödel’s proof is that the undecidable sen-
tence is shown to be true only under the hypothesis of the consistency of
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the system. Certainly the problem of deciding the consistency of given
formal systems is not recursively solvable, but there is no hint that man
has a decision procedure for such a problem (and hence for the truth of
the undecidable sentence relative to a given consistent system). If it were
so, this would be a direct refutation of mechanism.

Finally, although Gödel’s Theorem does not by itself refute mechanism, it
does so when combined with the assumptions that there are no number-
theoretical questions undecidable for the human mind, and that the mind
is somehow consistent. But this does not solve the problem, it just moves
it to a different level. Also, although the second assumption seems quite
reasonable, the first one is certainly more problematic and controversial,
even if understood (as it should be) as saying that the human mind has
no limitation regarding the problems it poses itself in the limit (given
enough time and resources), and taking the words ‘deciding a question’
as meaning ‘settling the problem’, possibly by showing it to be unsolvable.

See the papers in Anderson [1964], and Hofstadter and Dennett [1981] for
some discussions on the relevance of these topics for the mind-brain debate,
and Popper and Eccles [1977] for a modern philosophical and neurological in-
troduction to the latter.

The brain

Our first global approach to Church’s Thesis for human thought is to look at
the brain, the physical basis of intelligence. We begin by discussing:

Superthesis B (for ‘brain’) (Descartes [1637) The brain is a
machine.

It should be stressed that the statement is not to be taken as reducing the brain
complexity to the roughness of present-day machines: a proof of Superthesis B
would probably revolutionize the contemporary idea of machine, and precisely
in this lies its interest. In particular, Turing (see p. 164) has stressed the
significance of the limitation results (Section II.2) in showing how a purely
deterministic model of machine cannot fully account for intelligence.

It is, however, instructive to compare the brain and the most sophisticated
available machine, the computer6 (for information on the brain see Von Neu-

6History teaches us that this should not be taken too literally: Descartes [1664] saw
the brain as a complex hydraulic system, permitting the periodic flow of vital spirits from
the central reservoir into the muscles; Pearson [1892] described it as a telephone exchange,
consisting of fixed wires and mobile switches (a model that proved useful for an understanding
of spinal reflex response); Ashby [1952] provided a cybernetic model as a collection of self-
controlling systems. The computer model might look as simplistic in the not too distant
future.



I.8 Church’s Thesis ? 117

mann [1958], Arbib [1964], [1972], Eccles [1973], Young [1978], Kandel and
Schwartz [1981]). Computers are electromagnetic devices with fixed wiring be-
tween more or less linearly connected elements, operating mostly sequentially,
and at high speed. Brains are dynamical electrochemical organs with exten-
sively branched connections, operating with massive parallel action at a slow
speed and low energetic cost, continuously capable of generating new elements,
and perhaps making new connections. The architectural differences are great:
see e.g. Haddon and Lamola [1985] for a survey of the technical foreseeable
advances regarding chip dimensions. The holistic logic employed by the brain
is simply out of reach: we do not know how it concentrates on essential infor-
mation and experiences it as structured.

We are thus forced to suspend judgement on the validity of Superthesis B ,
until enough might be known on these problems. If ever, since it is certainly
conceivable (La Mettrie [1748], Von Neumann [1951]) that, due to the extreme
complexity involved, a linguistic (mechanical) description of the cerebral func-
tions might be simply unfeasible or uninforming: that is, the system itself could
be its own most intelligible description (in the terminology of p. 151, the brain
could be a random object).

On the positive side there are some results worth mentioning which show
the mechanical behavior of some simplified neuron nets. As a first approxima-
tion to the great complexity of natural neuron systems, McCulloch and Pitts
[1943] introduce regularity assumptions for artificial neurons: they are infal-
lible all-or-nothing devices with fixed synaptic threshold, firing synchronously
at discrete intervals (when the algebraic sum of the adjacent neurons effects
reaches the threshold). The behavior of an isolated system of artificial neurons
is completely characterized by the input conditions, and the system then works
as an abstract machine (actually, this is simply an equivalent description, and
the original one, of finite automata, see p. 53). Since the control box of a Tur-
ing machine can be regarded as a finite automaton, it can thus be seen as an
abstract brain of the Turing machine. We thus have two complementary
analyses: Turing’s analytical (top-down) approach describes the functioning of
the computing device, without further analyzing the way it is actually built,
while McCulloch and Pitts’s synthetical (bottom-up) analysis shows how to ob-
tain the same functioning by organizing, in a possibly very complex way, simple
parts of described structure.

Much work has been done toward a relaxation of the restrictive assump-
tions on artificial neuron nets. Von Neumann [1956], and Winograd and Cowan
[1963] consider systems in which the unreliability of the components does
not affect the reliability of the whole net, by transmitting the same informa-
tion in a highly redundant way, along multiple parallel lines or, respectively,
blocks of components. Hebb [1949] and Eccles [1953] permit variable synap-
tic thresholds: their systems have feedback information, by which they can
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somehow realize whether the outputs are conforming to the expectations. By
trials and errors it is possible to gather sufficient information and determine
thresholds that give the expected output, that is the systems have the abil-
ity to learn. This represents short-term memory by the variable states of
the system, and long-term memory by the level of the synaptic thresholds.
Hopfield [1982], [1984] has considered very general neural networks, with back-
ward coupling (where neurons can act indirectly, through other neurons, on
themselves), asynchronous firing, graded continuous response (in the form of a
sigmoid input-output relation, as opposed to a 0,1-valued step function) and
integrative time delays (due to capacitance). He has shown that (if the con-
nections between neurons are symmetric) these general networks are still com-
putational devices, since any set of inputs leads to stable states. This provides
a model of content-addressable memory, where a stable state represents
memorized information, that can be retrieved by setting the right input that
would lead to it. Various other models have been proposed, see e.g. Arbib
[1973], Bienestock, Fogelman Soulié and Weisbuch [1985], Selverston [1985],
McClelland and Rumelhart [1986], and recent issues of Biological Cybernetics.

The models just discussed are all digital (based on neuron nets), and have
been obviously inspired by the structure of digital computers (finite automata,
in particular). But it is known that parts of the central nervous system func-
tion analogically, e.g. many neurons never fire, and are engaged in different
activities (see Rakic [1975], Shepherd [1979], Roberts and Bush [1981], Crick
and Asanuma [1986]). To be closer to reality, the digital model of the brain
should thus be supplemented, and substituted by a hybrid one, partly digital
and partly analog. A natural approach seems to be the use of the general pur-
pose analogue computer of p. 111 (Rubel [1985]): neurons or neuron-circuits
that perform the functions of the black-boxes have been already identified, and
thus at least the basic components of the general purpose analog computer are
present in the central nervous system.

It is only fair to note that (some of) the results quoted might be more rel-
evant to the problem of whether machines can think (in the operative sense,
introduced by Turing [1950], of being able to simulate aspects that we believe
to be characteristic of thought) than to our discussion of Superthesis B. It is
not clear whether the models proposed above really describe the brain’s own so-
lutions to problems of unreliability, learning, memorization and organization of
information. However, they are certainly relevant to the following ‘Promethean
irreverence’:

Thesis AI (for ‘Artificial Intelligence’) (Wiener [1948], Tur-
ing [1950]) The mental functions can be simulated by machines.

All work in Artificial Intelligence (pattern recognition, language reproduc-
tion, problem solving, theorem proving, game playing, learning and under-
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standing) produces inductive evidence for Thesis AI.
Note that Thesis AI is not simply the extensional version of Superthesis B.

The step from the latter to the former is not automatic: it requires psycho-
logical materialism, in the form (La Mettrie [1748]) of human thought being
completely determined by the brain, with no intervention of an extraphysical
mind. But, stepping down to the simulation level introduced by Thesis AI, we
are not interested - in our discussion of Church’s Thesis - in its full version,
since our present concern is just mathematical thought.

Constructivism

We thus isolate our real interest in:

Thesis C (for ‘constructive’) (Kleene [1943], Beth [1947])
Any constructive function is recursive.

In view of the discussion in the last part of the previous subsection, even estab-
lishing Superthesis B would not automatically establish Thesis C. Conversely,
failure of Thesis C would not disprove Superthesis B. Also, a failure of Thesis C
does not disprove materialism, unless (the extensional version of) Superthesis
B holds simultaneously.

Actually, establishing both Superthesis B and Thesis AI is probably as far as
we can go toward a possible justification of (the above form of) materialism. It
is obviously impossible to disprove the existence of mind without using Ockham
razor, i.e. beyond showing its unusefulness in explaining thought activities. On
the other hand, as Gödel has suggested (Wang [1974], p. 326), it might be
possible to disprove mechanism by showing that there is not sufficient structure
(at nerve level) to perform all tasks actually performed by man.

We turn now to a discussion of Thesis C. A first step has already been car-
ried out by Turing and Post, with an analysis of routine computations (Section
4). This provides, at the same time, more and less of what we need: it gives an
intensional argument, but it concerns only a portion of the intended meaning
of ‘constructive’. We can however say that in the limited context to which it
applies, this analysis is conclusive. We isolate what is proved in the following:

Superthesis R (for ‘routine’) (Turing [1936], Post [1936])
Any computation performed by an abstract human being working
in a routine way, is isomorphic to a computation performed by a
Turing machine.

But this is still a far cry from Thesis C. We cannot rely on the analysis of
mechanical reasoning given by Turing machines: constructive and mechanical
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are apparently independent concepts. It seems that we understand (by grasp-
ing abstract objects) nonmechanical rules, and do not understand rules which
(although mechanical) are too long or too detailed.

We thus have to lean on analyses of the notion of mathematical constructive
reasoning. There are many of them, based on different approaches. Following
the detailed treatments of (and, for more information, referring to) Gödel [1958]
and Kreisel [1965], [1966], we just hint at the basic features of the most popular,
increasingly more comprehensive ones:

formalism (Frege, Russell) considers as constructive what can be done on
physical objects (symbols), by purely combinatorial (hence mechanical)
means (formal rules of derivation for symbols sequences).

finitism (Hilbert) accepts also what can be seen by pure intuition, provided
only concrete (spatio-temporal) objects are used, and claims that any
thinking process of this kind must be finite (though not necessarily me-
chanical).

intuitionism (Brouwer) allows for whatever is mentally understandable, pos-
sibly using also abstract objects (like higher-type objects, or generalized
inductive definitions).

Nonconstructive reasoning enters only into platonism, which regards math-
ematical objects not as thoughts but as real objects, that the mental process
does not create, but only discovers. Their properties are thus perfectly defined
as those of physical objects, and this justifies use of, for example, tertium non
datur and actual infinity.

Formalism is directly related to Thesis C . On one hand, the very formalistic
program (of compressing mathematical knowledge into formal systems) rests
on the belief that some form of the Thesis holds (that this knowledge can
be mechanically reproduced); on the other hand, since everything computable
in formal systems is recursive (by arithmetization, see I.7.7), each success of
formalism is partial proof of the Thesis validity.

Thesis C is true when constructive is taken in the finitistic meaning as well:
indeed, a finitistically defined arithmetical function is certainly (as shown by
an analysis of computations) finitely defined by a system of equations (Section
2), and hence recursive (by I.7.12).

Thus the whole problem of Thesis C lies in the intuitionistic meaning of con-
structive (law-like) function. Since allowing for abstract objects (which are not
necessarily finitely representable) might make arithmetization of the involved
mental processes troublesome, we will concentrate our discussion on formal
systems capturing aspects of the intuitionistic (constructive) reasoning. The
fact that formal systems usually capture semantical notions of reasoning only
extensionally is not important here, since the Thesis is precisely extensional.
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The technical advantage of formal systems is not only a matter of conve-
nience (of having a syntactical, concrete version for semantical, abstract no-
tions): it could be instrumental in outright proving Thesis C. For this, since
we know that only recursive functions are representable in formal systems (by
arithmetization), it would be enough to find a formal system equivalent to con-
structive arithmetical intuition (by Kreisel [1972], even a recursive transfinite
progression of formal systems would suffice). This is certainly a delicate point:
such an equivalence proof might require unfamiliar principles of evidence, and
would certainly provide a better insight into the notion of constructive valid-
ity. On the other hand, failure of Thesis C would show the unfeasibility of this
reductionist program. Of course, no consistent formal system can be arithmeti-
cally complete in the classical sense, by II.2.17 (and the same holds for recursive
progressions of formal systems, by Feferman and Spector [1962]). But this is
not relevant to the reductionist program, since we do not expect constructive
intuition to be itself classically complete: the problem would be to succeed in
deriving what is constructively valid, not to decide (let alone constructively)
everything.7

The realization of this reductionist program does not appear easy, also in
light of a result of Kreisel [1962], [1965], by which Thesis C implies that the set
of constructively valid formulas of first-order logic is not recursively enumer-
able. In particular, if Thesis C holds then there is no formal system capturing
constructive logical validity : thus, if a formal system capturing constructive
arithmetic validity exists, it cannot be obtained by just extending (by means
of arithmetical axioms) a logical system that can be detached from it by re-
cursive means. We thus have the amusing situation that, in the process of
searching for a complete formalization of constructive arithmetical reasoning,
we might begin by a formulation of the purely logical constructive reasoning,
and discover that we lose the war by overwinning a battle: if we are completely
successful with the logical formalization, then Thesis C does not hold, and we
are bound to fail in the arithmetical formalization. Also, and this is a situation
with no analogue in classical mathematics, constructive validity for first-order
logical formulas somehow depends on what the constructive arithmetical func-
tions are (in particular, on their being or not all recursive). Otherwise said,
first-order constructive validity is actually a second-order notion.

Short of proving Thesis C by the reductionist program, we may consider
related questions, technically more manageable but, as we will see, more mod-
erately interesting. We isolate two of them.

Given an intuitionistic formal system F , we might see whether in F the
recursive functions provide uniformization, in the sense of II.1.13. This is

7Note that, as Gödel himself has admitted (see Wang [1974], p. 324), it might even
be possible to find, or have already found, a formal system equivalent to full, not only
constructive, mathematical intuition, although of course, in this case, not provably so.
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expressed in a weak form by the following rule:

Church’s Rule CR. If `F ∀x∃yR(x, y) then, for some recursive
function f and all x, `F R(x, f(x)).

By Kreisel [1972], CR is actually equivalent to the following:

Constructive ∃-Rule. `F ∃yϕ(y) ⇒ `F ϕ(y), for some y.

To be sure (Kreisel [1972]), there are ad hoc intuitionistic systems for which
CR fails. But this does not automatically disprove Thesis C: it could merely be
a symptom of incompleteness, since ∀xϕ(x, f(x)) might hold for some recursive
f , but we might not be able to prove even its numerical instances in F . On
the other hand, no intuitionistic system is known to be inconsistent with CR,
something that would disprove Thesis C. Moreover, for all current intuitionistic
systems CR has actually been established , even in the stronger form:

`F ∀x∃yR(x, y) ⇒ `F ∃e∀x∃z[T1(e, x, z) ∧R(x,U(z))]

(see e.g. Kleene [1945], Kreisel and Troelstra [1970]). This is however only a
very indirect evidence in favor of Thesis C: it merely excludes the inconsistency
of CR with these systems, and it thus shows that they cannot be used to
disprove the Thesis.

We might be tempted (on the acceptable argument that constructive va-
lidity of an existential statement should exhibit explicit witnesses) to consider
only those systems for which the Constructive ∃-Rule holds. But, since we
know that there must be incompleteness (for any sufficiently strong arithmeti-
cal system, see II.2.17), there is no reason to expect it to show up necessarily
somewhere else than in numerical instantiations of existential theorems. Only a
formal system complete for constructive reasoning would automatically satisfy
the Constructive ∃-Rule (but then not only CR would hold: Thesis C would
indeed be true).

Another property at least formally related to Thesis C, is its formal version:

CT1 ∀f∃e∀x∃z[T1(e, x, z) ∧ f(x) = U(z)]

CT2 ∀x∃yR(x, y) → ∃e∀x∃z[T1(e, x, z) ∧R(x,U(z))].

The former tells, via the Normal Form Theorem, that every function is recursive
and is suitable for second-order systems with functional variables. The latter
is the axiom of choice (extracting a function from a ∀∃ form), plus the fact
that every function is recursive and is also suitable for first-order systems. Of
course, both forms are false in usual classical systems, and thus CT1 and CT2
are not provable in usual intuitionistic systems (in which the corresponding
classical systems are interpretable).
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The relevance of the two principles to our discussion is quite feeble. Even if
we can disprove one of them in a formal system for constructive mathematics,
this would not disprove Thesis C : it would simply mean that it is absurd that
all functions can be proved recursive in the system (not that some functions
are not recursive). Kripke has given a formalization of Brouwer’s theory of the
creative subject, and has shown that it implies the negation of CT. However, for
all current intuitionistic systems (not involving the concept of choice sequence)
the consistency with CT has actually been established (see e.g. Kleene [1945],
Kreisel and Troelstra [1970]). Once again this is not evidence in favor of Thesis
C, not even indirect (as it was for CR): indeed, even a proof of CT would just
show that every function we can talk about in the system is recursive and, once
again, this would be interesting only for a system complete for constructive
reasoning (since these functions would then be all the constructive functions).

The reader will find more information on the philosophical analysis and
(proofs of) the technical results of this subsection in Kreisel [1970], [1972],
Troelstra [1973] and McCarty [1987].

To sum up, the arguments for Thesis C point out how it could be proved
by a formal analysis of constructive reasoning (reductionist program), and dis-
proved by showing - for any acceptable constructive arithmetical formal system
- the inconsistency of closure under Church’s Rule. Both validity and failure
of Thesis C have interesting consequences for constructive mathematics. Ex-
cept for these methodological remarks, we have collected only very weak, and
certainly inconclusive, evidence in favor of Thesis C, whose validity must be
retained as unproved (which is after all not surprising, since we do not even
fully understand it: we still have only a partial grasp of what ‘constructive’
means).

Conclusion

To recapitulate our discussion, recursiveness seems to be a model of discrete,
deterministic processes general enough to account for mechanical phenomena,
according to classical physics. The notion certainly reaches beyond this, e.g.
it takes care of probabilistic phenomena described by Markov’s chains, and of
a wide variety of structurally stable systems. But we have no positive results,
and actually some positive doubts, for what concerns subatomic phenomena
governed by quantum mechanics.

Turning to biological computers, only very rough simplifications allow us
to look at the brain as a kind of machine, and we are still far from a com-
plete theory. The analysis of human computations and reasoning produces a
recursive description only under assumptions of routinnes and formal (at most
finitistic) manipulation of symbols, respectively. It is an open problem whether
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constructive reasoning in intuitionistic sense is recursive.
Despite the weak evidence for some of them, the various theses have been

proposed not out of empire-builder rashness (with the tacit ambition of convinc-
ing, short of proving, that recursiveness is somehow a universally permeating
concept), but rather out of experimenters circumspection (with the manifest
hope of understanding the exact limits of the notion). The validity of Church’s
Thesis (presently proved to some, but certainly not full, extent) is not what
would give importance to Recursive Function Theory, although undoubtedly
it adds to it (to the extent it holds). The notion of recursiveness has more
than sufficient motivations (reviewed in the introduction to this section) to de-
serve a thorough mathematical study, disregarding its - certainly fascinating -
connections with mechanism, neurophysiology, and constructivism. But, inde-
pendently of its practical relevance, work along the line of this section has an
abstract importance. To quote Kreisel [1970]:

The principal interest is philosophical: not to confine oneself to
what is necessary for (current) practice, but to see what is possible
by way of theoretical analysis.

æ



Chapter II

Basic Recursion Theory

This chapter contains the core of Recursion Theory, and introduces its basic
notions, methods and results. We start, in Section 1, with an extension of the
notion of recursiveness, by dropping a weak point in the various definitions of
Chapter I (the request, not effectively verifiable, of totality for an algorithm).
This leads to the class of partial recursive functions and their set-theoretical
counterparts, the recursively enumerable sets. The elementary properties
of these functions and sets are explored throughout the chapter, while a deeper
structural analysis will begin in Chapter III, and continue in Volume II.

Two fundamental tools for nontrivial results are the method of diagonal-
ization and the notion of degree. The former, one of the innovative inventions
of Cantor, is an extremely helpful technique which has become, in various dis-
guises, a pervasive element of Recursion Theory. In Section 2 we introduce
the fundamentals of the method, including a codified version of it called the
Fixed-Point Theorem. This is a powerful and somewhat mysterious result
which underlies the famous undecidability results of the Thirties, also treated
and discussed in Section 2.

The notion of degree is introduced in Section 3, which is devoted to rela-
tive computability as opposed to the absolute computability dealt with so
far. We generalize computations that can be performed solely by machines, and
allow the machine to stop, from time to time, and ask questions. The model
still describes real computations, but the machine is not autonomous anymore,
and may rely on interactions with the external world (that is, also during the
computation and not only, as previously, in the input-output activity). The
distinction between absolute and relative computations is the one between fully
automatic and interactive (man-machine) behavior of computers, the latter be-
ing the common practice in sophisticated (not purely computational) projects,
e.g. in automatic theorem provers, or in Artificial Intelligence tasks. The deci-

125
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sion to relax the autonomy of the machine still leaves various possibilities open
in terms of the amount and the structure of the interaction with the outer
world. In Section 3 we deal with Turing computability, the most general and
fundamental case, imposing no limitation on the help given to the machine,
except for an obvious finiteness requirement. Other, more restrictive, notions
of relative computability will be introduced in Chapter III.

A fundamental property of partial recursive functions is the possibility of
enumerating their programs in an effective way, and thus of assigning indices
to them, according to their place in the enumeration. Indices thus code descrip-
tions of partial recursive functions, and can be used to refer to a function in an
oblique (intensional) way. Section 4 deals with the effective operations that
can be defined intensionally on the (partial) recursive functions (by working
on their indices), and their relations with the partial recursive functionals,
which are their extensional analogues (working directly on functions). Section
5 considers various topics connected with indices.

The results of this Chapter collectively show that the class of partial re-
cursive functions is very comprehensive as a result of its striking closure prop-
erties. First of all, the universal partial function (Theorem II.1.8) provides a
descriptional closure. Second, the recursive functions are closed under recursive
diagonalization, with a two-fold escape from contradiction: for total recursive
functions there is no universal function (Theorem II.2.1), hence any recursive
class of total recursive functions is not exhaustive, and diagonalization just
produces another recursive function, which is not in the given class; for par-
tial recursive functions, diagonalization simply produces particular undefined
values (see p. 152). Finally, and this accounts for the name of the class, the
Recursion Theorems II.2.10 and II.3.15 ensure closure under recursion of any
kind (where ‘recursion’ can be taken to mean, in its greatest generality, the
definition of a function in terms of itself and of known functions).

II.1 Partial Recursive Functions

We have introduced in Chapter I various independent approaches to the notion
of effective computability, and the methods of Section I.7 showed them to be
all equivalent. We might thus be quite satisfied, but there is still a point that
seems a bit out of tune: we have been longing for a precise notion of effec-
tive computable function, and all our definitions have a strongly noneffective
element in them, namely the infinitary restriction that we consider devices com-
puting only total functions. Having a device potentially computing a function,
we did not accept it as an algorithm until we had somehow recognized that it
produces answers for any input: since it is possible to prove (see p. 146) that
this cannot be done in general by any recursive means, the class of recursive
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functions seems to depend on something external to it, and it is even conceiv-
able that it depends on the methods of proof allowed for the recognition of the
totality of an algorithm.

All this might sound quite discouraging, but the final solution to the prob-
lem of characterizing effective procedures is at hand: we only have to set a
missing brick, and the construction will be completed. Since it is the verifica-
tion of totality that troubles us, we simply decide to drop it.

The notion of partial function

A partial function is simply a function that may be undefined for some (and
possibly all) arguments. The set of arguments for which it is defined is called
its domain. Of course a partial function is total on its domain, but here we
give a privileged status to the set of natural numbers, and consider a function
whose domain is properly included in ω as only partially defined.

The step from total to partial functions should be appreciated: it was a
longstanding philosophical position that there cannot be precise logical laws for
propositions about incompletely defined objects, from Aristotle (Metaphysica,
Γ 7, 1012a, 21–24) to this century. It was probably Brouwer [1919] (see also
[1927]) who first corrected this position with his work on choice sequences.

We use Greek letters to indicate partial functions, and an ex-
tended equality relation ‘'’, meaning that both sides are equal as partial
functions (i.e. their respective values are either both undefined, or both defined
and with the same value). Also, ϕ(~x) ↓ means that ϕ is defined (also said:
it converges) for the arguments ~x, while ϕ(~x) ↑ means the opposite (also
said: it diverges). Finally, partial functions can be partially ordered by the
inclusion relation ⊆, naturally defined as:

α ⊆ β ⇔ ∀x[α(x)↓ ⇒ β(x) ' α(x)].

Thus whenever α is defined so is β, and with the same value.

Partial recursive functions

We adapt definition I.1.7 to partial functions:

Definition II.1.1 (Kleene [1938]) The class of partial recursive func-
tions is the smallest class of functions

1. containing the initial functions O, S and Ini
2. closed under composition, i.e. the schema that given γ1, . . . , γm, ψ pro-

duces
ϕ(~x) ' ψ(γ1(~x), . . . , γm(~x)),
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where the left-hand side is undefined when at least one of the values of
γ1, . . . , γm, ψ for the given arguments is undefined

3. closed under primitive recursion, i.e. the schema that given ψ, γ produces

ϕ(~x, 0) ' ψ(~x)
ϕ(~x, y + 1) ' γ(~x, y, ϕ(~x, y))

4. closed under unrestricted µ-recursion, i.e. the schema that given ψ pro-
duces

ϕ(~x) ' µy[(∀z ≤ y)(ψ(~x, z)↓) ∧ ψ(~x, y) ' 0],

where ϕ(~x) is undefined if there is no such y.

At first sight, we may think to define the µ-recursion schema as:

ϕ(~x) ' µy(ψ(~x, y) ' 0).

This would mean to look for the least y such that ψ(~x, y) ' 0 and, for every
z < y,

ψ(~x, z)↓⇒ ψ(~x, z) 6' 0

(thus allowing for ψ(~x, z)↑), but it is unacceptable for various reasons. First, on
a computational ground: to discover whether a given z has the stated property
we can only compute ψ(~x, z), and since the computation gives an answer only
if it converges, this brings us back to the original proposal. Second, there is
no recursive method to decide whether a partial recursive function converges
(see II.2.7), and thus the schema just proposed would have the same flaw of
the regularity condition for the (restricted) µ-recursion. In particular it would
again give rise to a notion which is not self-contained. Finally, even after the
facts the proposal does not work: the partial recursive functions are not closed
under the schema

ϕ(~x) ' µy(ψ(~x, y) ' 0)

(Kleene [1952]). This is easy to see, using later results. Let A be an r.e.
nonrecursive set (II.2.3), and define:

ψ(x, y) ' 0 ⇔ (y = 0 ∧ x ∈ A) ∨ y = 1.

Then ψ is partial recursive (II.1.11), but if

f(x) = µy(ψ(x, y) ' 0)

then f (total) is not partial recursive, otherwise it would be recursive (by II.1.3),
and since

f(x) = 0 ⇔ x ∈ A
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so would be A.
The next theorem shows that we get an equivalent definition of partial re-

cursive function if we consider the schema

ϕ(~x) ' µyR(~x, y)

with R recursive relation (where ϕ(~x) is undefined if there is no y such that
R(~x, y) holds). In terms of later definitions and results, the counterexample
just given above shows that the partial recursive functions are not closed under
the same schema, with R recursively enumerable.

Theorem II.1.2 Normal Form Theorem for partial recursive func-
tions (Kleene [1938]) There is a primitive recursive function U and (for
each n ≥ 1) primitive recursive predicates Tn, such that for every partial re-
cursive function ϕ of n variables there is a number e (called index of ϕ) for
which the following hold:

1. ϕ(x1, . . . , xn)↓ ⇔ ∃yTn(e, x1, . . . , xn, y)

2. ϕ(x1, . . . , xn) ' U(µyTn(e, x1, . . . , xn, y)).

Proof. The proof of Theorem I.7.3 shows exactly this, by using 〈5, a〉 as the
index associated to

ϕ(~x) ' µy[(∀z ≤ y)(ψ(~x, z)↓) ∧ ψ(~x, y) ' 0],

when a is associated to ψ. Note that the computation tree in the case of
µ-recursion uses indeed only the values ψ(~x, z) for z ≤ y. 2

Corollary II.1.3 The recursive functions are exactly the partial recursive func-
tions which happen to be total.

Proof. Obviously, a recursive function is partial recursive and total. Con-
versely, if ϕ is partial recursive then, for some e,

ϕ(x1, . . . , xn) ' U(µyTn(e, x1, . . . , xn, y)).

If ϕ is total then ∀x1 . . .∀xn(ϕ(x1, . . . , xn)↓), hence by the theorem

∀x1 . . .∀xn∃ yTn(e, x1, . . . , xn, y)

and Tn(e, x1, . . . , xn, y) is regular. Then ϕ is recursive by I.1.7. 2

By referring to the corollary there can be no confusion when talking of
total recursive functions, meaning recursive functions as in definition I.1.7,
or partial recursive functions which are total.
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The Normal Form Theorem says that every partial recursive function has
an index, but this was true for the recursive functions as well. The advantage
given by the introduction of partial functions is that we can now invert the
theorem, and consider every number e as the index of the partial recursive
function

U(µy(Tn(e, x1, . . . , xn)),

since the condition of regularity for the application of the µ-operator has been
dropped. This will be applied throughout the book, and we can then set up a
special notation:

Definition II.1.4

1. ϕn
e (or {e}n) is the e-th partial recursive function of n variables:

ϕne (~x) ' {e}n(~x) ' U(µyTn(e, ~x, y))

2. ϕn
e,s (or {e}n

s ) is the finite approximation of ϕne of level s:

ϕne,s(~x) ' {e}ns (~x) '
{
ϕne (~x) if (∃y < s)Tn(e, ~x, y))
undefined otherwise

Intuitively, ϕne,s may be thought of as the approximation to ϕne obtained
by considering the computation of ϕne , and cutting it at step s. Note that if
ϕne,s(~x) ↓ then, by the properties of the coding functions and the fact that a
computation codes everything relevant, inputs and output must be less than s.

For simplicity of notations we will drop the indication of the number of
variables when this is either not important or understood , and just write ϕe
and ϕe,s in that case.

We can now state the symmetric version of the Normal Form Theorem:

Theorem II.1.5 Enumeration Theorem (Post [1922], Turing [1936],
Kleene [1938]) The sequence {ϕne }e∈ω is a partial recursive enumeration of
the n-ary partial recursive functions, in the sense that:

1. for each e, ϕne is a partial recursive function of n variables

2. if ψ is a partial recursive function of n variables, then there is e such that
ψ ' ϕne

3. there is a partial recursive function ϕ of n+ 1 variables such that

ϕ(e, ~x) ' ϕne (~x).
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Proof. Everything follows from the Normal Form Theorem for partial recursive
functions, and the definition of ϕne . It is enough to let

ϕ(e, ~x) ' U(µyTn(e, ~x, y)). 2

The Enumeration Theorem exposes the basic double role of numbers in
Recursion Theory : apart from its intended and natural meaning (as a number),
a number also has a hidden, second-level meaning as a code of a function. This
is the basis of the self-referential phenomena underlying the results of Section
2 (see, in particular, p. 165), and it also produces a natural interpretation of
λ-calculus (see p. 223).

We give now two basic properties related to indices, and refer the reader to
Section 5 for more results on the subject.

Proposition II.1.6 Padding Lemma. Given one index of a partial recursive
function, we can effectively generate infinitely many other indices of the same
function.

Proof. Given an index e for ϕ as a partial recursive function, we get infinitely
many others by attaching to the description coded by e any finite number of
redundant equations. 2

If we fix a certain number of variables in a partial recursive function ψ, we
still get a partial recursive function γ of the remaining variables. Moreover,
given a program for ψ, we can effectively get a program for γ. The next theorem
says that this can be done uniformly in the fixed variables.

Proposition II.1.7 Sm
n -Theorem (Kleene [1938]) Given m,n there is a

primitive recursive, one-one function Smn (e, x1, . . . , xn) such that

ϕSm
n (e,x1,...,xn)(y1, . . . , ym) ' ϕe(x1, . . . , xn, y1, . . . , ym).

Proof. Suppose we have a description (coded by e) of a partial recursive func-
tion ψ(x1, . . . , xn, y1, . . . , ym). We want from it a description of the function
defined as

γ(y1, . . . , ym) ' ψ(x1, . . . , xn, y1, . . . , ym).

We might think to use the description coded by e followed by the above equa-
tion, but then γ would be ambiguously defined (depending on the values of
x1, . . . , xn which appear in its definition). What we want instead is to define a
function for each fixed value of x1, . . . , xn. But then, instead, we must use the
constant 0-ary functions Cx1 , . . . , Cxn , corresponding to these values. Thus we
have to find an index of the function whose description is the one coded by e,
followed by the equation

γ(y1, . . . , ym) ' ψ(Cx1 , . . . , Cxn , y1, . . . , ym).
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This is now a good description of γ, depending uniformly on e and the values
given to x1, . . . , xn. Its index is thus a function Smn (e, x1, . . . , xm), and can be
made primitive recursive by the method of arithmetization used in Section I.7.
It is one-one by its definition and the properties of the coding functions. 2

The Smn -Theorem (also called the Parametrization Theorem, or the It-
eration Theorem) looks, at first sight, innocuous, and simply appears to be
stating that data can be effectively incorporated into a program. But we should
not forget the fundamental double role of numbers in Recursion Theory: data
can code programs themselves, and thus incorporating them into a program
may have the effect that the program interprets them as subprograms. Thus
the Smn -Theorem actually embodies a notion of subcomputation and an effective
version of composition.

In a precise sense, enumeration and parametrization are inverse transla-
tions, and provide the technical tools needed to handle the basic duality of
numbers: by enumeration an index can be considered as an argument, and
by parametrization an argument can be considered as an index. This explains
their fundamental role, analyzed in Section 5.

It should be noted that all the other approaches of Chapter I could be sim-
ilarly adapted to the treatment of partial functions by dropping the totality
requirements. Thus we could consider partial functions computed by Turing
machines, and say that for given inputs a Turing machine computes a value if it
halts in the prescribed way, and it does not otherwise (i.e. if it does not halt, or
it does, but not in the prescribed way). Flowchart programs, Herbrand-Gödel
computability, λ-definability, and so on are treated similarly. As it was the case
for total functions, the various approaches remain equivalent for partial func-
tions as well, with similar proofs. Thus the class of partial recursive functions
retains the absoluteness and stability of the class of recursive functions, and it
has the extra quality of admitting an intrinsic definition, without reference to
nonconstructive notions.

Universal Turing machines and computers ?

The Enumeration Theorem admits a stronger formulation, due to the unifor-
mities of the definition of Tn w.r.t. n.

Theorem II.1.8 Universal Partial Function (Post [1922], Turing
[1936], Kleene [1938]) There is a partial recursive function ϕ(e, x), called
universal partial function, which generates all the partial recursive func-
tions of any number of variables, in the sense that for every partial recursive
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function ψ of n variables there is e such that

ψ(x1, . . . , xn) ' ϕ(e, 〈x1, . . . , xn〉).

Proof. With notations as in the proof of I.7.3, let

ϕ(e, x) ' U(µy(T (y) ∧ (y)1,1 = e ∧ (y)1,2 = x))

and recall that, by definition,

Tn(e, x1, . . . , xn, y) ⇔ T (y) ∧ (y)1,1 = e ∧ (y)1,2 = 〈x1, . . . , xn〉.

Then, for every n,

ϕ(e, 〈x1, . . . , xn〉) ' ϕne (x1, . . . , xn). 2

Any Turing machine computing a universal partial function ϕ is called a
universal Turing machine. Since ϕ is partial recursive, universal Turing
machines exist by I.4.3. This is an indirect proof, and explicit constructions
of universal Turing machines are in Turing [1936], Wang [1957a] and in many
textbooks, e.g. Hermes [1965], Minsky [1967], Arbib [1969], Hopcroft and Ull-
man [1979]. More information on the topic is in Davis [1956], [1957], Shannon
[1956], Rogers [1967] and Priese [1979].

The interest of the notion is that a universal Turing machine is a computer
in the modern sense of the word, and it works as an interpreter , decoding
the program e given to it as data (in the same form as the other inputs) and
simulating it. In other words, a universal Turing machine is not a special-
purpose machine: it is instead programmable in essence, and thus all-purpose.
In particular, all universal Turing machines are equivalent in power, and they
differ only in speed and efficiency.

Conversely, any of the present-day automatic electronic computers (if ab-
stracted from physical malfunctioning) is equivalent to a universal Turing ma-
chine, if it is given the possibility of having a potentially infinite memory (that
is, of always being able to add more memory units, and have access to the units
already used). In addition to unlimited memory, the only necessary properties
of a universal Turing machine are the abilities of performing coding and decod-
ing operations (which enable the machine to read the instructions of a given
Turing machine out of its index), and simulation. Once this level of complexity
is reached, the machine can perform tasks more complicated than those for
which it was directly built (actually, any possible task performable by Tur-
ing machines): the needed complication may be turned over to the software,
and does not need to be built-in. Thus, modulo a universal Turing machine,
hardware and software are interchangeable.



134 II. Basic Recursion Theory

The realization that a machine could be universal-purpose, by being able
to simulate other machines through their programs, antedates both Recursion
Theory and Computer Science: it goes back to Babbage’s [1837] conception of
the analytical engine. This crucial notion appears natural nowadays, but it
did not always look so. This was the case not only in Babbage’s time, but even
after Turing’s abstract development, and well into the process of building real
computers: see e.g. Hodges [1983] for an account of the resistance Turing had
to face in his own computer project, against (in his words)

the tradition of solving one’s difficulties by means of much equip-
ment rather than by thought

which meant a privilege of hardware and special-purpose machines over soft-
ware.

Recursively enumerable sets

Having looked at the notion of partial recursive function, we turn now to its
analogue in terms of sets and relations. For total recursive functions we had no
doubts: the analogues were just those sets and relations whose characteristic
functions were recursive. But since a characteristic function is always total,
partial recursive characteristic functions would again give the recursive sets,
by II.1.3.

Natural sets associated to partial functions are their domains.

Definition II.1.9 (Post[1922], Kleene [1936]) An n-ary relation is recur-
sively enumerable (abbreviated r.e.) if it is the domain of an n-ary partial
recursive function.

We indicate by Wn
e and Wn

e,s, respectively, the domains of ϕne and ϕne,s.

As we have already done for functions, we will drop the mention of the
number of arguments for relations as well, when no confusion arises. Also, we
will identify sets and unary relations, and thus write x ∈ We for W1

e (x).
From the definition we have immediately:

Theorem II.1.10 Normal Form Theorem for r.e. relations (Kleene
[1936], Rosser [1936], Mostowski [1947]) An n-ary relation P is r.e. if
and only if there is a n+ 1-ary recursive relation R such that

P (~x) ⇔ ∃yR(~x, y),

i.e. if and only if there is a number e (called index of P ) such that

P (~x) ⇔ Wn
e (~x) ⇔ ∃yTn(e, ~x, y).
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Proof. If P is r.e. then P is the domain of a recursive function ϕe, i.e. P is
equal to We. Then, by II.1.2,

We(~x) ⇔ ϕe(~x)↓
⇔ ∃yTn(e, ~x, y).

Conversely, if

P (~x) ⇔ ∃yR(~x, y)

with R recursive, then P is the domain of the partial recursive function

ϕ(~x) ' µyR(~x, y). 2

R.e. relations appear naturally and abundantly in mathematics. Consider
e.g. a diophantine equation p(~x, y) = q(~x, y), where p and q are polynomi-
als in ~x, y with coefficients in the natural numbers. The set of non-negative,
integral solutions of the equation, defined as:

y ∈ D ⇔ ∃~x [p(~x, y) = q(~x, y)]

is r.e., by the theorem just proved. Matiyasevitch [1970] has shown that the
converse also holds, and thus the r.e. sets are exactly the sets of non-negative1

integral solutions of diophantine equations. See Matiyasevitch [1972] or Davis
[1973] for an exposition of this remarkable result, which improves the Normal
Form Theorem, and also solves Hilbert’s Tenth Problem (Hilbert [1900]).
A discussion of its significance is in Davis, Matiyasevitch and Robinson [1976],
and an easy proof of a slightly weaker version of it is in Jones and Matiyasevitch
[1984].

The notion of r.e. set has been defined from that of partial recursive func-
tion, but the next result shows that the opposite approach is also possible.

Proposition II.1.11 Graph Theorem. Let ϕ and f be, respectively, a par-
tial and a total function. Then:

1. ϕ is partial recursive if and only if its graph is r.e.

2. f is recursive if and only if its graph is recursive.

Proof. Recall that the graph Gϕ of ϕ is the set so defined:

Gϕ(~x, z) ⇔ ϕ(~x) ' z.

1This condition cannot be eliminated: it is known e.g. that there is no diophantine equa-
tion whose integral solutions are exactly the prime numbers.
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If ϕ is partial recursive then ϕ ' ϕe, for some e. It follows that

Gϕ(~x, z) ⇔ ϕe(~x) ' z

⇔ U(µyTn(e, ~x, y)) ' z

⇔ ∃y[Tn(e, ~x, y) ∧ (∀t < y)¬Tn(e, ~x, t) ∧ U(y) = z]

and thus (by II.1.10) Gϕ is r.e. Conversely, if Gϕ is r.e. then

Gϕ(~x, z) ⇔ ∃yR(~x, z, y)

for some recursive R, again by II.1.10. Thus

ϕ(~x)↓⇔ ∃z∃yR(~x, z, y).

By coding z and y into a single number t = 〈z, y〉, we have

ϕ(~x) ' (µtR(~x, (t)1, (t)2))1 .

Intuitively, this is nothing more than a dovetailed verification of Gϕ(~x, z) for
every z, until one of these verification succeeds. The reason we cannot simply
verify the z’s one by one, is that we could get stuck with the first one which is
not a value of ϕ(~x), and never get to consider the remaining possible values.

If f is recursive, so is Gf :

cGf
(~x, z) =

{
1 if f(~x) = z
0 otherwise.

Conversely, let Gf be recursive. Since

f(~x) = µzGf (~x, z),

and the hypothesis that f is total can be written as

∀~x∃z Gf (~x, z),

we have that f is defined by µ-recursion over a regular predicate (I.1.5), and it
is then recursive. 2

Exercises II.1.12 Partial functions with recursive graph. a) If ϕ is a partial
function, then ϕ has a recursive graph if and only if there is a recursive R such that
ϕ(~x) ' µyR(~x, y).

b) There are partial recursive, nontotal functions with recursive graph. (Hint: let
We be an r.e. set different from ω, and let ϕ(x) ' µs(x ∈ We,s).)

c) There are partial recursive functions with nonrecursive graph. (Hint: let A be
an r.e. nonrecursive set, see II.2.3, and ϕ(x) ' 0 ⇔ x ∈ A.)
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See Chapter VIII for more on this topic.

The close relationship between partial recursive functions and r.e. relations
is also indicated by the following property, defined by Lusin [1930] in a descrip-
tive set-theoretical context.

Proposition II.1.13 Uniformization Property (Kleene [1936])

1. If P is r.e., there is a partial recursive function ϕ such that

∃yP (~x, y) ⇒ ϕ(~x)↓ ∧ P (~x, ϕ(~x))

2. If P is r.e. and regular, there is a recursive function f such that

∀~xP (~x, f(~x)).

Proof. This is similar to part 2 of the proof of II.1.11. Since P is r.e., there is
R recursive such that

P (~x, y) ⇔ ∃zR(~x, y, z).

Then it is enough to let

ϕ(~x) ' (µtR(~x, (t)1, (t)2))1 .

Intuitively, ϕ chooses the first element y such that P (~x, y) has been verified
(which, as the next exercise shows, is not necessarily the first one for which
P holds). If P is regular (I.1.5), then such a y always exists, and ϕ is then
recursive. 2

Exercise II.1.14 If P is recursive, a uniformizing function is simply µyP (~x, y).
This does not hold in general, for P r.e. (Uspenskii [1957]) (Hint: see the remarks
after II.1.1.)

Exercises II.1.15 Choice functions for r.e. sets. a) There is a partial recursive
choice function for the r.e. sets, i.e. a partial recursive function ϕ such that

We 6= ∅ ⇒ ϕ(e)↓ ∧ ϕ(e) ∈ We.

(Hint: uniformize P (e, y) ⇔ y ∈ We.)

b) There is no invariant, partial recursive choice function for the r.e. sets, i.e. a
choice function ϕ such that

Wi = We 6= ∅ ⇒ ϕ(i)↓ ∧ ϕ(e)↓ ∧ ϕ(i) = ϕ(e).
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Thus no partial recursive analogue of Hilbert’s ∈-choice function exists for r.e. sets.
(Kleene [1952]) (Hint: suppose such a function exists. Assume there exists a nonre-
cursive r.e. set A, see II.2.3, and let:

y ∈ Wg(e) ⇔ y = 0 ∨ (y = 1 ∧ e ∈ A)

y ∈ Wh(e) ⇔ y = 1 ∨ (y = 0 ∧ e ∈ A)

Then ϕg(e) and ϕh(e) both converge, and

e ∈ A ⇔ ϕg(e) = ϕh(e),

i.e. A would be recursive.)

c) There is no recursive choice function for the r.e. sets. (Hint: let f be one such,

set Wh(e) = {f(e) + 1} and apply the Fixed-Point Theorem II.2.10.)

Having analyzed the analogies of r.e. sets versus partial recursive functions,
we turn now to the differences between r.e. and recursive sets. We first char-
acterize both notions in terms of enumeration properties, and in so doing we
account for the name ‘recursively enumerable’ (which suggests ranges, more
than domains). The next result is very useful and will be applied repeatedly.

Theorem II.1.16 Characterization of the r.e. sets (Kleene [1936]) The
following are equivalent:

1. A is r.e.

2. A is the range of a partial recursive function ϕ

3. A = ∅ or A is the range of a recursive function f .

Proof. We prove the result in a round robin style.

• 1 ⇒ 2
If A is r.e. then A = We, for some e. Let

ϕ(x) ' x⇔ ϕe(x)↓ .

Then the domain of ϕe is equal to the range of ϕ, and ϕ is partial recur-
sive, e.g. because ϕ(x) ' x+ 0 · ϕe(x).

• 2 ⇒ 3
Let A be nonempty, and the range of a partial recursive function ϕe.
Choose a ∈ A: we would like to set

f(x) =
{
z if ϕe(x)↓ ∧ ϕe(x) ' z
a otherwise.
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As it stands f is not however recursive, because we cannot decide recur-
sively whether ϕ(x) ↓ (see II.2.7). To avoid being stuck while waiting
for some undefined value to converge, we dovetail the computation of all
possible values, and put them in the range of f as soon as they appear,
the value a being used for the stages in which no new value appears (to
keep f total). Thus the following modified version of f is recursive:

f(J (x, s)) =
{
z if ϕe,s(x) ↓ ∧ ϕe,s(x) ' z
a otherwise.

Here J is a recursive, onto pairing function (see e.g. p. 27), and ontoness
is required to have f total.

• 3 ⇒ 1
If A = ∅ then A is the domain of the completely undefined function,
which is obviously partial recursive. If A is the range of a recursive f , we
want a partial recursive ϕ with domain A, i.e.

ϕ(x)↓ ⇔ ∃z(f(z) = x).

Then we can just let ϕ(x) ' µz(f(z) = x). 2

Also the recursive sets can be characterized in terms of enumerating func-
tions.

Proposition II.1.17 The following are equivalent:

1. A is recursive

2. A = ∅ or A is the range of a nondecreasing, recursive function f .

Proof. If A is recursive and nonempty, let a be its smallest element, and

f(0) = a

f(n+ 1) =
{
n+ 1 if n+ 1 ∈ A
f(n) otherwise.

Conversely, if A is finite then it is recursive. If A is infinite and the range
of a nondecreasing recursive function f , to know whether z ∈ A, search for the
smallest x such that f(x) > z (which exists because A is infinite). Since f is
nondecreasing, then

z ∈ A⇔ z ∈ {f(0), . . . , f(x)}. 2
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Exercises II.1.18 One-one enumerating functions. a) An infinite r.e. set is the
range of a one-one recursive function. (Kleene [1936], Rosser [1936]) (Hint: define f
by primitive recursion, looking at each stage for the next element generated in the
set, which has not been previously generated.)

b) An infinite recursive set is the range of an increasing recursive function.

(Kleene [1936]) (Hint: define f by primitive recursion, looking at each stage for

the next element in the set.)

The description of a set consists of the infinitely many facts that tell, for
any given element, if it is in the set or not. In general, although they always
answer yes or no to a question, these facts are just a sequence of accidents, with
no common pattern. The recursive sets are those for which a pattern exists,
and a general procedure to give effective answers can be finitely described. The
recursively enumerable sets present a basic asymmetry between membership,
that can be effectively determined by a finite amount of information, and non-
membership, whose determination may instead require an infinite amount of it
(the partial test for membership of a given element being simply to recursively
generate the set, and wait for that element to appear). The r.e. sets are thus
somehow only ‘half-recursive’.2

The distinction between recursive and recursively enumerable can then be
traced back to the informal distinction between a decision procedure and a
generating procedure, envisaged once again by Leibniz [1666], when he talked
of ars iudicandi (checking the correctness of a proof) and ars inveniendi
(finding a proof).

Another reason to see the r.e. sets as half-recursive is given by the next re-
sult, which also characterizes recursiveness in terms of recursive enumerability.
It is sometimes called Post’s Theorem, and it will be used repeatedly.

Theorem II.1.19 (Post [1943], Kleene [1943], Mostowski [1947]) A
set is recursive if and only if both the set and its complement are recursively
enumerable.

Proof. If A is recursive then both A and A are r.e., since e.g. functions with
domain A and A are

ϕ(x) '
{

1 if cA(x) = 1
↑ otherwise

ψ(x) '
{

0 if cA(x) = 0
↑ otherwise.

2For this reason the r.e. sets are sometimes called semirecursive. We will use this term in
a different context, see p. 294.
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Let now both A and A be r.e., and suppose they are nonempty (if one is
empty the other is ω, and they are already both recursive as wanted). Then
there are recursive functions f and g generating them:

A = {f(0), f(1), . . .}
A = {g(0), g(1), . . .}.

The two lists are disjoint and exhaustive, and to know whether a given x is in
A or in A is enough to generate them simultaneously, until x appears in one of
the two lists.

More formally, if A and A are r.e., there are recursive relations R and Q
such that

x ∈ A ⇔ ∃yR(x, y)
x ∈ A ⇔ ∃yQ(x, y).

Since
∀x∃y(R(x, y) ∨Q(x, y))

holds, the function
f(x) = µy(R(x, y) ∨Q(x, y))

is recursive, and exactly one of R(x, f(x)) and Q(x, f(x)) holds. Then A is
recursive, since

cA(x) =
{

1 if R(x, f(x))
0 otherwise 2

Proposition II.1.20 (Post [1944]) Every infinite r.e. set has an infinite re-
cursive subset.

Proof. Let A be infinite, and the range of a recursive function f . Define g
recursive and increasing as:

g(0) = f(0)
g(n+ 1) = the first element generated in A and greater than g(n)

= f(µy(f(y) > g(n))).

Then the range of g is recursive by II.1.17, and it is an infinite subset of A by
definition. 2

Infinite sets which do not have infinite r.e. (equivalently, by the previous
proposition, infinite recursive) subsets are called immune, and will be studied
in Sections 6 and III.2.
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Proposition II.1.21 Set-theoretical properties of r.e. sets (Post [1943],
Mostowski [1947])

1. With respect to set-theoretical inclusion, the r.e. sets form a distributive
lattice with smallest and greatest element, and with the recursive sets as
the only complemented elements.

2. The property of being r.e. is preserved under images and inverse images
via partial recursive functions.

Proof. Smallest and greatest elements are clearly ∅ and ω. The part relative
to complementation follows from II.1.19. Finally, if A and B are r.e. then so
are A ∩ B and A ∪ B: generate A and B simultaneously, put in A ∩ B the
elements appearing in both lists, and in A ∪B those appearing in at least one
list.

Given A r.e. and ϕ partial recursive, ϕ(A) consists of all elements ϕ(x), for
x ∈ A. To generate ϕ(A) is thus enough to generate A and, simultaneously, to
dovetail the computations of ϕ(x), for the various x’s which are found to be in
A. Similarly, ϕ−1(A) consists of all x such that ϕ(x)↓ and ϕ(x) ∈ A. 2

Corollary II.1.22 Set-theoretical properties of recursive sets.

1. With respect to set-theoretical inclusion, the recursive sets form a Boolean
algebra.

2. The property of being recursive is preserved under inverse images via
recursive functions.

Proof. If A is recursive both A and A are r.e., and then so are f−1(A) and
f−1(A). But f−1(A) = f−1(A), and so both f−1(A) and its complement are
r.e., and f−1(A) is recursive by II.1.19. 2

Note that if A and f are recursive, then f(A) is r.e. by the proposition
above, but is not necessarily recursive. Indeed, any nonempty r.e. set A is the
range of a recursive function f , and thus the image of ω (which is recursive)
via f , but not every r.e. set is recursive (see II.2.3).

A detailed study of the set-theoretical structure of both recursive and r.e.
sets will be made in Volume II. For now we just prove an additional property,
defined by Kuratowski [1936] in a descriptive set-theoretical context.

Proposition II.1.23 Reduction Property (Rosser [1936], Kleene
[1950]) The union of two r.e. sets can be reduced to the union of two dis-
joint r.e. sets. Precisely, given two r.e. sets A and B there are two r.e. sets
A′ ⊆ A and B′ ⊆ B such that

A′ ∩B′ = ∅ and A′ ∪B′ = A ∪B.
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Proof. Given A and B r.e., the only problem is to decide where to put the
elements of A ∩ B. We let speed of generation decide: if z ∈ A ∩ B and z is
generated by A faster than by B, then z goes into A′, otherwise it goes into
B′. More formally, if

x ∈ A ⇔ ∃yR(x, y)
x ∈ B ⇔ ∃yQ(x, y)

with R and Q recursive, let

x ∈ A′ ⇔ ∃y[R(x, y) ∧ (∀z ≤ y)¬Q(x, z)]
x ∈ B′ ⇔ ∃y[Q(x, y) ∧ (∀z < y)¬R(x, z)]. 2

Exercise II.1.24 The reduction property follows from the uniformization property .

R.e. sets as foundation of Recursion Theory ?

We have derived the notion of recursive enumerability from that of partial
recursive function, but we have already noted that, by II.1.11, the opposite is
also possible: the partial recursive functions are those with an r.e. graph. What
is needed to avoid circularities, is an independent characterization of recursive
enumerability.

This has been provided by Post [1922], [1943] (incidentally, quite before
the notion of recursiveness had been isolated). His formulation comes from an
analysis of derivations in formal systems, and it is thus the natural conclusion
of our journey of Chapter I (see p. 18). The underlying idea is that effective
mathematical and, more generally, linguistical activity can be seen as a way of
generating words from words (of a given language), according to rules. With
considerations similar to those of Section I.4, one is quickly led to restrict
attention to canonical systems consisting of finite alphabets (possibly with
distinguished symbols), finite sets of axioms and finite sets of finitary rules
(called productions), telling how to decompose a word and rearrange its parts
(by possibly dropping some and adding others). Formally, a production has
the form

x0 1 x1 · · · xn−1 n xn −→ y0 i1 y1 · · · ym−1 im ym

where ij ∈ {1, . . . , n}, with the meaning: if a word can be decomposed in
the way written on the left (by somehow filling up the boxes), then it can be
transformed into the word written on the right (where the boxes on the right
with a given label are supposed to contain exactly what the boxes on the left
with the same label did). Since decompositions of words are usually not unique,
productions are not deterministic rules.
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It is possible to show that the sets of words produced by canonical systems
are exactly (under suitable coding) the r.e. ones (one direction comes by arith-
metization; the other can be seen by noting that Turing machines transitions
between successive configurations can be written as productions, operating on
words expressing the configurations).

Post also showed that systems with multiple-premise productions are
reducible to canonical systems, and that these are in turn reducible to normal
systems, with just one axiom, and with productions of the very specific form

x 1 → 1 y.

For a proof of this and a treatment of the whole subject, see Minsky [1967].
The approach sketched above is relevant not only to computability but

also (and even more naturally) to linguistics, and it provides a framework
for studying structural descriptions of sentences, in formal approximations to
natural languages. A system with productions only of the form

1 x 2 → 1 y 2

(that can be written simply as x→ y), is called a grammar (Thue [1914]). The
notion is sufficiently general, since the simulation of Turing machines referred
to above can be naturally carried out by means of grammar productions (in-
structions act only locally on the tape of a Turing machine). Chomsky [1956],
[1959] has introduced a hierarchy on the types of grammar productions, which
has turned out to be strongly connected with machine models. We will only
prove some scattered results (see Chapter VIII) and thus refer to Hopcroft and
Ullman [1979] for a detailed study of the subject, and to Greibach [1981] for a
broad overview and an historical account.

A programming language based on r.e. sets ?

Although Post’s productions are intended to provide a basis for recursive enu-
merability, they can be used directly to define partial algorithms for partial
functions on strings, by introducing restrictions that make the production pro-
cess deterministic.

A finite sequence of grammar productions (some of which are singled out
as final) computes a partial function on strings ϕ if, given any string w, the
following partial algorithm produces the string ϕ(w): at each step (starting
from w), search for the first production in the sequence which can be applied
(i.e. such that the premise of the production matches a substring of the given
string), and apply the production to the leftmost possible substring to which it
can be applied; then stop the process if the production is a final one, and repeat
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the process otherwise. This approach has been introduced by Markov [1951],
[1954] and it is easily seen (Detlovs [1953], [1958]) to be equivalent to partial
recursiveness (one direction follows as sketched above for Turing machines, the
other by arithmetization). It is usually referred to as Markov algorithms.

This suggests the possibility of using the production approach as a basis for
a programming language for string operations, which has been done with the
introduction of SNOBOL (String Oriented Symbolic Language) by Farber,
Griswold and Polonsky [1964] (see Sammett [1969] and Wexelblat [1981] for
history and references). The instructions of this language are labelled, and are
either assignment statements (giving values to the variables) or replacement
statements (telling to substitute the leftmost occurrence of a substring in a
string by another string), the latter together with conditional jump instruc-
tions (sending to other instructions, depending on whether the given substi-
tutions was successfully applied, or could not be applied). The language is
thus unstructured (see p. 64), and it does not need any primitive operation
(pattern matching being sufficient for all purposes: the needed operations can
be specified each time, as production rules).

II.2 Diagonalization

In this section we introduce one of the basic methods of proof in Recursion
Theory: diagonalization. We will give a number of applications, but the method
will be used throughout the book either directly or in some codified way (like
the unsolvability of the Halting Problem, or the Fixed-Point Theorem, both
proved below).

The essence of diagonalization

Given a set S, a function d : S → S which is never the identity on S (i.e.
d(a) 6= a for every element a of S) and an infinite matrix of elements of S

a0,0 a0,1 a0,2 · · ·
a1,0 a1,1 a1,2 · · ·
a2,0 a2,1 a2,2 · · ·
. . . . . . . . . . . .

we get a transformed diagonal sequence of elements of S

d(a0,0) d(a1,1) d(a2,2) · · ·

which is not equal to any row of the matrix, because it differs from the n-th
row on the n-th element (by the hypothesis on d). That’s all.
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The ingredients of the method are two:

1. the use of the diagonal {an,n}n∈ω
This was systematically done by Du Bois Reymond, in his study of orders
of infinity (see Hardy [1910] for a neat exposition).

2. the use of the switching function d
This crucial part was introduced by Cantor [1874] to prove his celebrated
theorem that the set of subsets of ω is not denumerable.

In many applications, like the results proved or quoted from p. 165 on, the two
ingredients take the form of self-reference and negation.

Recursive undecidability results

As a sample application of the method we prove a constructive analogue of
Cantor’s Theorem, whose original form can be stated by saying that there is
no function on ω which enumerates all subsets of ω (or, equivalently, the set of
characteristic functions, i.e. the set of total functions from ω to {0, 1}).

Proposition II.2.1 Recursive version of Cantor’s Theorem (Kleene
[1936], Turing [1936]) There is no recursive function which enumerates (at
least one index of) each recursive (0,1-valued) function.

Proof. Let f be a recursive function such that ϕf(x) is total for every x, and
define

g(x) ' 1− ϕf(x)(x).

Then g is a 0,1-valued function, which is partial recursive by the Enumeration
Theorem II.1.5, and total by the hypothesis on f . Moreover, g is different from
ϕf(x) (on the element x) for every x, and thus no index of g is in the range of
f . 2

The proof just given falls under the general framework of diagonalization,
by letting ai,j = ϕf(i)(j), and d(a) = 1− a. It also implies that the set

Tot = {x : ϕx is total}

is not r.e. In particular it is not recursive, and thus there is no recursive way
to detect whether a number codes a total recursive function or not .

Note that we expressed our results in terms of 0,1-valued functions, and not
of sets. This is because there are many different ways to associate numbers to
recursive sets, and different results hold for them (see p. 226).



II.2 Diagonalization 147

Exercises II.2.2 a) A function is called potentially recursive (Church [1936]) if
it has a total recursive extension. There is a partial recursive function which is not
potentially recursive. (Kleene [1938]) (Hint: let ϕ(x) ' 1− ϕx(x).)

b) There is a recursive, not primitive recursive set . (Sudan [1927], Ackermann

[1928]) (Hint: consider 0,1-valued functions, and use the function of I.7.4.)

We now prove one of the crucial results of Recursion Theory.

Theorem II.2.3 Combinatorial core of the undecidability results
(Post [1922], Gödel [1931], Kleene [1936]) There is an r.e. nonrecursive
set. Explicitly, the set defined by

x ∈ K ⇔ x ∈ Wx ⇔ ϕx(x)↓

is r.e. and nonrecursive.

Proof. By the Enumeration Theorem II.1.5, there is a partial recursive func-
tion ϕ such that

ϕ(x) ' ϕx(x).

Then K is r.e., because
x ∈ K ⇔ ϕ(x)↓ .

To show that K is not recursive we give two different proofs, based on
the two equivalent definitions of K given above (in terms of partial recursive
functions and of r.e. sets).

• If K were recursive, so would be the function

f(x) =
{

0 if x ∈ K
undefined otherwise.

Then f ' ϕe for some e, and

ϕe(e)↓ ⇔ e ∈ K,

contradicting the definition of K.

• If K were recursive, then K would be r.e. But

x ∈ K ⇔ x 6∈ Wx,

and so K differs on the element x from the xth r.e. sets, and cannot be
itself r.e. 2
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The argument to show that K is not recursive falls under the general frame-
work of diagonalization, by letting

ai,j =
{

1 if j ∈ Wi

0 otherwise,

and d(a) = 1− a.
K obviously resembles the set used in Russell’s paradox (Russell [1903]),

namely the set of sets not belonging to themselves (see p. 82). Here K is the
set of numbers not belonging to the r.e. sets they code. There is no paradox
here because Russell’s argument simply shows that such a set is not r.e. itself.

We have used the word ‘undecidability’ in the theorem head, and we will
use it over and over again throughout the book, interchangeably with the word
‘unsolvability’. In both cases we really mean undecidability and unsolvability
by recursive means. The reason we do not write this down explicitly is that
there are good reasons to suspect that in fact something much stronger is
involved here, namely absolute undecidability and unsolvability. The step from
recursive to absolute unsolvability requires an appeal to Church’s Thesis (see
Section I.8, and p. 104 in particular).

We now strengthen the theorem just proved. The starting point is the fact
that A is recursive if and only if both A and A are r.e. (II.1.19). This suggests
the possibility of extending the theory of r.e. sets to pairs of disjoint r.e. sets.
The next property is a recursive version of one defined by Lusin, in a descriptive
set-theoretical context.

Definition II.2.4 (Kleene [1950], Trakhtenbrot [1953]) Two disjoint
sets A and B are called:

1. recursively separable if there is a recursive set C such that A ⊆ C and
B ⊆ C

2. recursively inseparable if they are not recursively separable.

Clearly, A is recursive if and only if A and A are recursively separable. The
existence of a disjoint pair of recursively inseparable r.e. sets is thus a stronger
result than the simple existence of r.e. nonrecursive sets.

Theorem II.2.5 (Rosser [1936], Kleene [1950], Novikov, Trakhten-
brot [1953]) There are two disjoint, recursively inseparable r.e. sets.

Proof. We give two different proofs, which generalize the two of Theorem II.2.3.

• Define two disjoint r.e. sets as

x ∈ A ⇔ ϕx(x) ' 0
x ∈ B ⇔ ϕx(x) ' 1.
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Suppose there is a recursive set C such that A ⊆ C and B ⊆ C. Then
the function

f(x) =
{

1 if x ∈ C
0 otherwise

is recursive. If e is an index for it, we get a contradiction:

ϕe(e) ' 0 ⇒ e ∈ A⇒ e ∈ C ⇒ ϕe(e) ' f(e) ' 1
ϕe(e) ' 1 ⇒ e ∈ B ⇒ e ∈ C ⇒ ϕe(e) ' f(e) ' 0.

• Define two r.e. sets as

x ∈ A ⇔ x ∈ W(x)1

x ∈ B ⇔ x ∈ W(x)2 .

They are not necessarily disjoint, but A − B and B − A are recursively
inseparable. Indeed, suppose that A− B ⊆ C and B − A ⊆ C, for some
recursive set C. Let C = Wa and C = Wb (since both C and C are r.e.),
and set x = 〈b, a〉. Then x 6∈ A ∩B, because

x ∈ A⇔ x ∈ Wb ⇔ x ∈ C
x ∈ B ⇔ x ∈ Wa ⇔ x ∈ C.

Moreover,

x ∈ A⇒ x ∈ C (contradicting A−B ⊆ C)
x ∈ B ⇒ x ∈ C (contradicting B −A ⊆ C),

and so C cannot exist.
The only trouble is that A − B and B − A are not necessarily r.e., but
clearly any two disjoint r.e. supersets of them will still be recursively
inseparable. Then it is enough to reduce (II.1.23) A and B, to get a pair
of disjoint r.e. sets which extend A − B and B − A, and which are thus
recursively inseparable. 2

Exercises II.2.6 a) Another proof of the existence of recursively inseparable r.e. sets
can be obtained by first getting an enumeration {(An, Bn)}n∈ω of the disjoint pairs
of r.e. sets, and then letting

x ∈ A ⇔ x ∈ Ax
x ∈ B ⇔ x ∈ Bx.

(Hint: for the first part, consider a double enumeration of the r.e. sets, and reduce
each pair uniformly. Then prove that there cannot be a pair (Aa, Ba) such that
A ⊆ Ba and B ⊆ Aa.)

b) Any two disjoint co-r.e. sets A and B are recursively separable (Sierpinski

[1924], Laventrieff [1925]). (Hint: reduce A and B, and show that the reduced sets

are complementary, and hence recursive, r.e. sets.)
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Limitations of mechanisms ?

A slight reformulation of Theorem II.2.3 is the following, which rules out the
existence of a recursive procedure to decide whether a partial recursive function
converges for given arguments. The name comes from its original formulation,
which was in terms of Turing machines, and in that setting it shows that there
is no Turing machine that decides whether a universal Turing machine halts or
not on given arguments.

Theorem II.2.7 Unsolvability of the Halting Problem (Turing [1936])
The set defined by

〈x, e〉 ∈ K0 ⇔ x ∈ We ⇔ ϕe(x)↓

is r.e. and nonrecursive.

Proof. K0 is shown to be r.e. as in II.2.3, by the Enumeration Theorem. And
if K0 were recursive so would be K, because

x ∈ K ⇔ 〈x, x〉 ∈ K0. 2

Actually, the unsolvability of the Halting Problem is just the tip of the
iceberg. To measure the complexity of a problem about recursive functions, we
introduce the following notion.

Definition II.2.8 A set A is the index set of a class A of partial recursive
functions if

A = {x : ϕx ∈ A}.

If A is the index set of A, we write A = θA.

Index sets contain all possible programs that compute functions belonging
to a given class, and are useful in classifying the complexity of such classes.
In particular, a class of partial recursive functions is called completely re-
cursive if its index set is recursive (Dekker [1953a], Rice [1953]). Completely
recursive classes of partial recursive functions correspond to (recursively) solv-
able problems about them, and are characterized by the next result.

Theorem II.2.9 Rice’s Theorem (Rice [1953]) A class of partial recursive
functions A is completely recursive if and only if it is trivial, i.e. either empty
or containing all partial recursive functions.

Proof. If A = ∅ then its index set is ∅, and if A contains all partial recursive
functions then its index set is ω. Suppose then that A is nontrivial: there are
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a, b such that ϕa ∈ A and ϕb 6∈ A. If the completely undefined function is not
in A, let f be a recursive function such that

ϕf(x) =
{
ϕa if x ∈ K
undefined otherwise.

Then
x ∈ K ⇔ ϕf(x) ∈ A ⇔ f(x) ∈ A,

where A is the index set of A. Then A is not recursive, otherwise so would
be K. The case of the completely undefined function being in A is treated
similarly, this time using ϕb, and showing that A is not recursive. 2

Rice’s Theorem is quite powerful, since it incorporates a number of unde-
cidability results. Its content is that any nontrivial property of partial recur-
sive functions is undecidable. Thus, undecidability proofs of given properties
are reduced to proofs of nontriviality, which are usually immediate. E.g., the
following problems for partial recursive functions are undecidable: being the
completely undefined function, being defined for a given fixed argument, being
total, having a given number as value, being onto, being equal to a given partial
recursive function, and so on.

A mechanism is a device with a predictable local behavior, in the sense
that each move is governed by a mechanical rule. The unsolvability results
just proved show that the behavior of a mechanism does not need to be globally
predictable, and that a purely mechanical analysis of mechanisms is bound to
fail.

This has consequences for the possible description of mechanisms (Von
Neumann [1951], [1966]). These are of two kinds: purely descriptive (telling
how the device is made, out of its constituent parts), and operational (telling
how it behaves in given situations). The two descriptions do not need to be at
the same logical level: the former is always a number (the index of the machine),
but the latter is a number only if the mechanism has a sufficiently simple
behavior (describable by a recursive function, and thus again by a number).
This is however not necessary: in general the behavior is not recursive, and
then a function is needed to describe it for every possible input. Thus for
sufficiently complicated mechanisms, the device itself is its own best (logically
simplest) description, and it might be impossible to effectively say substantially
more about it than how it is made.

To measure the complexity of (codes of) finite objects, we can introduce the
so called Kolmogorov complexity (Kolmogorov [1963], [1965], Solomonov
[1964], Chaitin [1966]):

K(x) def= µe(ϕe(0) ' x),
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whose intuitive meaning is to pick up the smallest description of the number x
in terms of programs printing it (on a fixed input, like 0), and thus to measure
the quantity of information carried by x. A number x and the object coded
by it are called random (Church [1940]) if x is its shortest description, i.e. if
x ≤ K(x). Randomness of an object can be determined by reasons antithetical
in nature, but indistinguishable: extreme structural complexity and chaos.
Thus a sufficiently complicated mechanism is a random object , and II.2.7 can
be taken to mean a universal Turing machine is a random object. See p. 261
for a discussion of random numbers and their properties.

The confusion between the two meanings of predictability is somewhat
widespread and harmful. For example, scientific theories describing local me-
chanical behavior of biological (Darwin [1859]), historical (Marx and Engels
[1848]) and psychological (Freud [1917]) evolution, are often rejected or op-
posed on social grounds, on the false belief that the local mechanisms explained
by them might imply global predictability (i.e. a forecast of the final outcome
of evolution), something which might be felt as antihumanistic.

Fixed-Point Theorem

We try now to generalize the proof of II.2.1 and, given a recursive function f ,
we try to get a partial recursive function ψ which is not in the set {ϕf(x)}x∈ω.
Of course we do not suppose anymore that the ϕf(x) be always total, since we
have already disposed of this case. The natural idea is to diagonalize as in
II.2.1, and let

ψ(x) ' 1− ϕf(x)(x).

The trouble here is that ψ, although partial recursive, is not necessarily dif-
ferent from ϕf(x), since this might be undefined on x, and then so would be
ψ too. Thus the notion of partial recursive function seems to have a built-in
defense against diagonalization. That it is indeed so is the content of the next
theorem, one of the most tricky and useful applications of the diagonal method.

Io sentiva osannar di coro in coro
al punto fisso che li tiene alli ubi3

(Dante, Paradiso, XXVIII)

Theorem II.2.10 Fixed-Point Theorem (Kleene [1938]) Given a recur-
sive function f , there is an e such that e and f(e) compute the same function,
i.e.

ϕe ' ϕf(e) and hence We = Wf(e).

3I heard ‘Hosanna’ sung, from choir to choir,
to that fixed point that holds each to his place.
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Proof. We give two different proofs.

1. We start with an informal argument. Since f can be thought of as a
program transformation, it would be enough to take a program as follows:

transform this very program according to f , and then apply
the result to x.

If e codes this program then, by definition, ϕe ' ϕf(e). But this program
is self-referential, and thus not well-formed. We have to unravel the self-
reference, which we will achieve by two successive diagonalizations.

Since we are searching for a code e of the program written above, we
know that e must also code the program:

transform the program with number e according to f , and then
apply the result to x.

First of all we compute a number coding the program just written. This
number will depend on e, and it will thus be h(e), for some recursive
function h. If h ' ϕa, this number will be ϕa(e). We now know that if
such a program exists, it must have a number of the form ϕa(e), for some
a and e, and this number must code the program:

transform the program with number ϕa(e) according to f , and
then apply the result to x.

Now this program depends on two parameters a and e, and if we compute
a number coding it we are going to add a new one, and so on. If we want
to avoid an infinite regress, we have to stop adding parameters. We
thus try to find a program with code number of the form ϕe(e) (first
diagonalization), since this depends on just one parameter, and it has
the right form. In other words, we consider the program:

transform the program with number ϕe(e) according to f , and
then apply the result to x.

Now there is a recursive function ϕb giving the code of this program
depending on e, and the program has thus number ϕb(e).

We now just have to let e = b (second diagonalization), since then
ϕb(b) codes the program:

transform the program with number ϕb(b) according to f , and
then apply it to x.
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Apart from the motivation, we can extract from the argument just given
a formal proof. Let b be an index of the recursive function defined as:

ϕϕb(e) ' ϕf(ϕe(e))

(i.e. of a function giving a code of the program coded by f(ϕe(e)), as a
function of e). Then, for e = b, we have

ϕϕb(b) ' ϕf(ϕb(b)).

Thus ϕb(b) is a fixed-point of f .

2. (Owings [1973]) Referring to the general framework for diagonalization
given at the beginning of the section, note that the diagonal method can
also be expressed in a contrapositive form: given a function d : S → S
and a matrix {ai,j}i,j∈ω of elements of S, if the transformed diagonal
sequence is a row of the matrix, then d has a fixed-point, i.e. there is
a ∈ S such that d(a) = a.

Let d(ϕe) ' ϕf(e): we want a fixed-point for d, that is an e such that
d(ϕe) ' ϕe. Let then S be the set of partial recursive functions. Since
f ' ϕa for some a, the values of d are of the form ϕϕa(e). Then consider
the matrix

ai,j = ϕϕi(j)

where, if ϕi(j) diverges, ai,j is the completely undefined function. The
transformed diagonal sequence is

ϕf(ϕ0(0)) ϕf(ϕ1(1)) · · ·

and this is a recursive sequence of partial recursive functions, and thus a
row of the matrix. Then a fixed-point for d exists.

If we also want to know exactly what the fixed-point is, just note that it
must be the element of the transformed sequence that lies on the diagonal.
So let g be a recursive function (which exists by the Enumeration Theorem
and the Smn -Theorem) such that

ϕg(e) ' ϕf(ϕe(e)).

If b is any index of g, then g(b) = ϕb(b) is a fixed-point for f , since

ϕg(b) ' ϕf(ϕb(b)) ' ϕf(g(b)). 2

Some remarks might be worthwhile. First, if ϕg(e) ' ϕf(ϕe(e)) then g(e)
is not f(ϕe(e)): indeed g(e) is always defined, as an index of ϕf(ϕe(e)), while
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f(ϕe(e)) is undefined when ϕe(e) is, in which case g(e) is an index of the
completely undefined function.

Second, f does not need to be extensional , i.e. it does not need to induce a
map of functions such that

ϕe ' ϕi ⇒ ϕf(e) ' ϕf(i).

In particular, in the second proof of the theorem the diagonal function d need
not be a function on the set {ϕϕi(j)}i,j∈ω as a set of partial recursive functions,
but this does not affect the proof.

Third, the proofs of the Fixed-Point Theorem given above are uniform and
constructive: they not only tell that a fixed-point exist, but they also explicitly
produce it, in a way depending only on (an index of) the given function f .
Thus there actually exists a recursive function h such that

ϕa total ⇒ ϕh(a) ' ϕϕa(h(a)).

Finally, the constructions of fixed-points in the proofs given above are noth-
ing else than a version of the fixed-point operator Y in λ-calculus (see I.6.1),
with the complications produced by the fact that we have to distinguish be-
tween numbers as arguments, and numbers as codes of functions. Specifically,

ϕe(e) corresponds to xx
ϕf(ϕe(e)) corresponds to y(xx)
ϕb(e) corresponds to λx. y(xx)
ϕb(b) corresponds to (λx. y(xx))(λx. y(xx)).

Here the two diagonalizations are explicit, in the form of terms applied to
themselves.

Exercises II.2.11 a) Fixed-Point Theorem with parameters. If f is a recur-
sive n+ 1-ary function, there is a recursive n-ary function h such that

ϕf(x1,...,xn,h(x1,...,xn)) ' ϕh(x1,...,xn).

Moreover, h may be taken to be one-one. (Hint: for the last part recall, from II.1.7,
that the Smn functions can be taken to be one-one.)

b) Double Fixed-Point Theorem. If f, g are recursive functions of two vari-
ables, there are a and b such that

ϕa ' ϕf(a,b) and ϕb ' ϕg(a,b).

(Muchnik [1958a], Smullyan [1961]). (Hint: first get h such that ϕh(x) ' ϕf(h(x),x),
by part a). Then get b such that ϕb ' ϕg(h(b),b), and let a = h(b).) Note that it is
in general impossible to find a such that ϕa ' ϕf(a) ' ϕg(a), since f and g could be
constant functions giving indices of two different functions.
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Exercises II.2.12 Sets of fixed-points. a) No recursive function has only finitely
many fixed-points. (Rogers [1967]) (Hint: if f has only a finite set A of fixed-points,
let ψ be a partial recursive function different from all those whose index is in A. Then
the recursive function g such that

ϕg(x) '
{

ψ if x ∈ A
ϕf(x) otherwise

would have no fixed-point.)
b) There are nontrivial recursive sets which are sets of fixed-points of some recur-

sive function. (Hint: let

ϕf(x) '
{

ϕx if x ∈ R
undefined otherwise,

with R a recursive set not containing any index for the completely undefined function.)
c) There are nontrivial recursive sets which are not sets of fixed-points of any re-

cursive function. Actually, a recursive set is not a set of fixed-points if its complement
is. (Shore) (Hint: if R,R are sets of fixed-points for f, g, and

ϕh(x) '
{

ϕg(x) if x ∈ R
ϕf(x) otherwise,

then h has no fixed-point.)

d) There are nonrecursive sets of fixed-points of recursive functions, e.g. the set

of indices of the constant function 0. In a sense this is a worst-case example, since

(with terminology to be introduced later, see IV.1.6) it is Π0
2-complete, and a set of

fixed-points must be Π0
2.

We now give an equivalent form of the Fixed-Point Theorem, with Kleene’s
original proof. The reason for the name is purely contingent, namely the order
of presentation in Kleene’s classical book [1952]. The First Recursion Theorem
will be given in II.3.15.

Theorem II.2.13 Second Recursion Theorem (Kleene [1938]) If ψ is
a partial recursive function, there is an index e such that

ϕe(x) ' ψ(e, x).

Proof. Fix any recursive function h: since the function ψ(h(e), x) is partial
recursive, it has an index a (depending on h). By the Smn -Theorem,

ψ(h(e), x) ' ϕS1
1(a,e)(x).

In particular, this holds for h(e) = S1
1(e, e), for the appropriate a:

ψ(S1
1(e, e), x) ' ϕS1

1(a,e)(x).
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Then
ψ(S1

1(a, a), x) ' ϕS1
1(a,a)(x). 2

Exercise II.2.14 The Fixed-Point Theorem and the Second Recursion Theorem are

equivalent . (Hint: in one direction use the Smn -Theorem, in the other the Enumera-

tion Theorem.)

Although the results are equivalent, the proofs of the Fixed-Point and the
Second Recursion Theorems require different tools: the Smn -Theorem is used
in both, but the first also uses the Enumeration Theorem. Thus versions of
the Second Recursion Theorem and the Fixed-Point Theorem may respectively
hold and fail for classes of functions having the Smn , but not the enumeration
property (like the primitive recursive functions, see Chapter VIII).

The Fixed-Point Theorem, in any of its forms, and the extensions considered
in the exercises, assure that it is possible to define (any finite number of) partial
recursive functions in a (simultaneous) self-referential way , by using the indices
of the functions in their own recursive definitions. Otherwise said, the partial
recursive functions are closed under fixed-point definitions. But more is true,
as the following result shows.

Theorem II.2.15 (Kleene [1952]) The class of partial recursive functions
is the smallest class of functions:

1. containing initial functions and predecessor

2. closed under composition

3. closed under definition by cases

4. closed under fixed-point definitions.

Proof. By definition by cases we mean the schema that produces

f(~x) =
{
g(~x) if t(~x) = 0
h(~x) otherwise

from g, h and t. Note that, having composition, closure under definition by
cases follows by adding the following to the initial functions:

f(x, y, z) =
{
x if z = 0
y otherwise.

Let C be the smallest class of functions satisfying the stated conditions.
Clearly C is contained in the class of the partial recursive functions, by the
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Fixed-Point Theorem, and because case definition is a primitive recursive op-
eration. To prove the converse, we proceed by induction on the definition
of partial recursive function. Since identities, successor, and composition are
given, we only have to consider:

1. primitive recursion
If

f(~x, 0) = g(~x)
f(~x, y + 1) = h(~x, y, f(~x, y))

then f can be defined as the fixed-point of the following equation:

f(~x, y) =
{
g(~x) if y = 0
h(~x, y − 1, f(~x, y − 1)) otherwise.

This uses only predecessor, definition by cases, and composition.

2. µ-recursion
If

f(~x) = µy[g(~x, y) = 0],

let h be the fixed-point of the following equations:

h(~x, y) =
{
y if g(~x, y) = 0
h(~x, y + 1) otherwise.

Then, as already shown in the proof of Theorem I.2.3,

f(~x) = h(~x, 0).

This uses only O, S, definition by cases, and composition. 2

It follows that the Fixed-Point Theorem, together with composition and case
definition, generates the partial recursive functions, in an approach with in-
dices. Usually this is done indirectly, by postulating the Smn -Theorem and the
Enumeration Theorem (see Section 6 for a discussion of the central role of these
two properties in Recursion Theory), since from these the Fixed-Point Theo-
rem follows immediately, as in II.2.13. This approach has been taken by Kleene
[1959], and it has proved useful in contexts like recursion on higher types (see p.
199) or on abstract domains (see p. 203), where no analogue of the µ-operator
is available.

For further comments on the role of the Fixed-Point Theorem, see pp. 182
and 184.



II.2 Diagonalization 159

Limitations of formalism ?

We are now ready to prove the celebrated results of the Thirties on the limita-
tions of formalism. They rest on two main foundations:

1. a combinatorial argument
This is embodied in Theorem II.2.3, whose proof, as we have already
noted, is a positive recasting of the diagonalization used by Russell in his
paradox, but actually goes back to much older paradoxes (see the next
subsection).

2. an analysis of formal systems expressiveness
This is the content of the next theorem, which determines exactly what
is representable and what is not in sufficiently powerful formal systems.
This provides the link with the combinatorial part, by allowing the rep-
resentation of r.e. nonrecursive sets in formal systems.

We now prove the missing result, which has interest on its own: it points out
another difference between recursiveness and recursive enumerability, this time
in terms of representability notions. The reader interested only in Theorem
II.2.17 should note that, for its proof, only part 1 of the next result is needed
(and it has already been established, see I.7.12). Part 2 can thus be skipped,
if wanted, but it will provide a different proof of II.2.17.

Theorem II.2.16 Expressiveness of formal systems (Gödel [1931],
[1936], Mostowski [1947], Tarski, Mostowski and Robinson [1953],
Ehrenfeucht and Feferman [1960], Shepherdson [1960]). In any consis-
tent formal system extending R:

1. a relation is representable if and only if it is recursive

2. a relation is weakly representable if and only if it is recursively enumer-
able.

Proof. The part relative to recursiveness is immediate, from previous results:
the remarks following definition I.3.4 show that, by the axioms of R, a relation
is representable if and only if its characteristic function is representable, and
this last condition is equivalent to recursiveness (of the characteristic function,
and hence of the relation itself), by I.7.12.

Again immediate is the fact that if P is weakly representable in a formal
system F , then P is r.e. Suppose indeed that

P (x1, . . . , xn) ⇔ `F ϕ(x1, . . . , xn),

for some ϕ. By arithmetization, the predicate

T (x1, . . . , xn, y) ⇔ y codes a proof of ϕ(x1, . . . , xn) in F
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is recursive, and so P is r.e. by the Normal Form Theorem, since

P (x1, . . . , xn) ⇔ ∃yT (x1, . . . , xn, y).

The only real thing to prove is thus the weak representability of P r.e.,
in any consistent formal system F extending R. For simplicity of notations,
we restrict ourselves to the case of sets. There is a recursive R such that
P (x) ⇔ ∃yR(x, y) and, by the part of the theorem already proved, there must
be ϕ which represents R:

R(x, y) ⇒ `F ϕ(x, y)
¬R(x, y) ⇒ `F ¬ϕ(x, y).

• The idea would be to represent P by the formula

ψ(x) ⇔ ∃yϕ(x, y).

One direction follows immediately: if P (x) holds, then so does R(x, y),
for some y, and thus `F ϕ(x, y). In particular, `F ψ(x).

But suppose now that `F ∃yϕ(x, y): if we could deduce that, for some y,
`F ϕ(x, y), then we would have R(x, y), and hence P (x). But

`F ∃yϕ(x, y) ⇒ for some y, `F ϕ(x, y)

is a strong assumption: it would follow from an infinitary axiom of the
kind

y = 0 ∨ y = 1 ∨ y = 2 ∨ · · ·
But in R we only have the finitary axioms

y < n+ 1 ↔ y = 0 ∨ · · · ∨ y = n,

from which it only follows

`F (∃y ≤ n)ϕ(x, y) ⇒ for some y, `F ϕ(x, y).

Actually, we would just need the weaker assumption

`F ∃yϕ(x, y) ⇒ for some y, not `F ¬ϕ(x, y),

because then, from `F ∃yϕ(x, y), we would know that, for some y, not
`F ¬ϕ(x, y). Since ϕ strongly represents R, for that y it could not be
¬R(x, y), otherwise `F ¬ϕ(x, y) would follow, and hence R(x, y) would
hold, which is what we wanted.

But even this weaker assumption is a strong one, called ω-consistency
(Gödel [1931], Tarski [1933]), and it does not follow from simple consis-
tency. Thus we have only proved the theorem for ω-consistent systems.
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• We now modify this naive approach, and define a new formula ψ(x) that
still says ∃yϕ(x, y), but which moreover safely bounds y below a numeral,
whenever it is provable (recall that this is exactly where we ran into
troubles above, and that bounded quantifiers can be handled in R). But
what exactly do we know when ψ(x) is provable? Precisely this, and then
we play a trick (the Rosser trick) and use a number coding a proof for
it, to bound y: to be sure we stay below the number of any proof, we
pick up only those y’s which do not bound any number coding a proof of
ψ(x). This is the intuition behind the definition that follows:

ψ(x) ⇔ ∃y [ϕ(x, y) ∧ (∀z ≤ y)(z does not code a proof of ψ(x))].

If we succeed in defining such a formula (which, as it stays, is self-
referential), then we pay a price by having a more difficult proof for the
direction that was trivial before, but we win in the troublesome direction:

1. If P (x) holds, then so does R(x, y) for some y, and `F ϕ(x, y) by
strong representability of R. Suppose ψ(x) is not provable: then
no number z codes a proof for it, and in particular this is true for
z ≤ y, and it is provable in F because the predicate ‘coding a proof’
is recursive, and thus strongly representable. By the axioms on R,
we can also show (see e.g. the proof of I.3.3)

(∀z ≤ y)(z does not code a proof of ψ(x)).

Since we know already that we can prove ϕ(x, y), we can then prove
ψ(x), contradiction. Then ψ(x) is provable.

2. If ψ(x) is provable, there is a number z coding a proof of it and (by
strong representability of the recursive predicate ‘coding a proof’)
we can prove this in F . But then the definition of ψ implies that
`F (∃y < z)ϕ(x, y). This time we can indeed apply the axioms of
R, and get `F ϕ(x, y), for some y. Hence R(x, y) and P (x) hold.

It only remains to show how to find such a formula ψ. We use diago-
nalization as in the Fixed-Point Theorem: let {ψn}n∈ω be an effective
enumeration of the formulas of F with two free variables, and ϕ1(z, x, n)
be a formula strongly representing the recursive predicate ‘z codes a proof
of ψn(x, n)’. Let e be such that

ψe(x, n) ⇔ ∃y [ϕ(x, y) ∧ (∀z ≤ y)¬ϕ1(z, x, n)]

(where, recall, ϕ strongly represents R). Then

ψ(x) ⇔ ψe(x, e)
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satisfies the requirements (since then ϕ1(z, x, e) represents the predicate
‘z codes a proof of ψe(x, e)’, i.e. ‘z codes a proof of ψ(x)’).

Following the informal sketch given above, it should now be easy to for-
malize the argument and show that ψ weakly represents P . 2

The proof of this theorem uses a number of the arguments we have in-
troduced until now: arithmetization (in showing that the predicate ‘coding a
proof’ is recursive), diagonalization in self-referential form, like in the Fixed-
Point Theorem (in the construction of ψ), and the so called Rosser trick (used,
in a simpler context, in the proof of the Reduction Property II.1.23). For
similar proofs, see the next subsection.

The difficulty that lies behind the theorem just proved is that weak repre-
sentability, unlike representability, is not preserved in consistent extensions: if
x ∈ A ⇔ `F ϕ(x), and A is not recursive, then A is not strongly representable.
Thus there must be x ∈ A for which `F ¬ϕ(x) fails. If we take the consistent
system F ∪ {ϕ(x)}, then ϕ no longer weakly represents A in it.

We now have all the necessary results to approach Gödel’s First Theo-
rem in a modern version. This is one of the jewels of logic in this century, and
it should be contemplated with due reverence.

Leva dunque, lettore, all’alte ruote
meco la vista4. . .

(Dante, Paradiso, X)

Theorem II.2.17 Limitations of logical systems (Post [1922], Gödel
[1931], [1934], Rosser [1936], Church [1936], Tarski, Mostowski and
Robinson [1953])

1. Every consistent extension F of R (i.e. any consistent set of formulas
closed under logical consequence, and containing all axioms of R) is un-
decidable.

2. If, moreover, F is a formal system (i.e. the set of its theorems is r.e.),
then F is incomplete.

Proof. We give two proofs, exploiting different properties of F .

• Let {ψn}n∈ω be an effective enumeration of the formulas in the language
of F , with one free variable. If F is decidable, the diagonal set

n ∈ F ⇔ `F ψn(n)
4Then, reader, lift your eyes with me to see
the lofty wheels . . .



II.2 Diagonalization 163

is recursive, and then so is F . Every recursive set is representable in F , by
the proof of II.2.16 (which does not use, in this direction, the fact that F
is a formal system) and hence, by consistency of F , weakly representable.
Then there is an a such that

n ∈ F ⇔ `F ψa(n).

For n = a we get a contradiction.

If, moreover, F is a formal system then, by arithmetization, the set of
its theorems is an r.e. set. If F were complete then we would know that
either a sentence is a theorem, or its negation is. But then F would
be decidable: to know whether a sentence is a theorem, generate the
theorems until either the sentence or its negation appear.

• This second proof works only for formal systems. Since K is r.e., by the
proof of II.2.16 there is a formula ϕ that weakly represents it:

x ∈ K ⇔ `F ϕ(x).

Then F cannot be recursively decidable, as otherwise K would be recur-
sive, contradicting II.2.3.

Moreover, K cannot be strongly represented by ϕ, otherwise it would be
recursive. Then there is at least one x such that

x ∈ K ∧ not `F ¬ϕ(x).

By weak representability, from x ∈ K we also have

not `F ϕ(x).

Then F is incomplete, since ϕ(x) and ¬ϕ(x) are not provable. 2

The two proofs of the theorem are quite different. The first requires only
the weak representability of all recursive sets, which is given by I.7.12, as well
as a simple diagonal argument, given directly in the proof (showing that the
set of non-theorems of any consistent system is not weakly representable in
it). The second requires the weak representability of some nonrecursive set,
and thus the full version of II.2.16, whose proof uses the Fixed-Point Theorem
techniques. For a discussion of the two methods of undecidability proofs, see
p. 352.

As far as incompleteness is concerned, the proofs given in II.2.17 are in-
direct, and do not explicitly exhibit undecidable sentences, which are nei-
ther provable nor disprovable. To obtain this, even under the hypothesis of
ω-consistency, a full use of the self-referential diagonalization must be made
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(see the next subsection), but even the examples thus obtained have been re-
garded as somewhat artificial, from a mathematical point of view. Great efforts
have been made to obtain natural undecidable sentences, for various systems
in common use: two extreme and classical examples are the Continuum Hy-
pothesis for Set Theory (Gödel [1938], Cohen [1963]), and a finite version
of Ramsey’s Theorem for Peano Arithmetic (Paris and Harrington [1977]).
See Harrington, Morley, Sčedrov and Simpson [1985] for an account of recent
results in this area, due mainly to H. Friedman.

The fatal consequences for formalism embodied in Theorem II.2.17 can be
expressed as follows: any classical formal system is inadequate, being either
inconsistent, or undecidable (and hence also incomplete), or not sufficiently
strong (to prove at least the elementary arithmetical facts expressed by the
axioms of R). Turing (see Hodges [1983], p. 361) interprets these facts as

saying almost exactly that if a machine is expected to be infallible,
it cannot also be intelligent

thus isolating in the rigid, purely deterministic approach to knowledge the
source of formal systems limitations.

A limitation of a different kind (which holds, by Gödel’s First Theorem, for
every sufficiently strong, consistent formal system) comes from the following
observation: in any undecidable formal system there are infinitely many theo-
rems with arbitrarily long proofs, with respect to the length of their statements.
Indeed, take any recursive function f . If f(n) were a bound for the length of at
least one proof of any theorem of length n, then the system would be decidable:
to find out, for a formula of length n, whether it is a theorem or not, produce
all the proofs of length at most f(n), and see if one proves it. Thus there must
be (infinitely many) n for which a theorem of length n has its shortest proof
longer than f(n).

The combinatorial part of Gödel’s Theorem (II.2.3), together with the Mati-
yasevich result quoted on p. 135, shows that arithmetic is already complicated
at low levels of complexity: there is no decision method for one-quantifier
formulas in the language of plus and times. Consider indeed a diophantine
representation of K:

y ∈ K ⇔ ∃~x [p(~x, y) = q(~x, y)].

If we could decide one-quantifier formulas, then K would be recursive.

We conclude our presentation of limitation results by proving another fa-
mous one: Church’s Theorem. It concerns first-order Predicate Calculus,
and shows that the dream of Leibniz [1666], of having a calculus ratiocina-
tor that would decide the logical truths, is an unfulfillable dream.



II.2 Diagonalization 165

Theorem II.2.18 Unsolvability of the Entscheidungsproblem (Church
[1936a], Turing [1936]) The Predicate Calculus is undecidable.

Proof. Let Q be Robinson Arithmetic (p. 23): since Q is a consistent exten-
sion of R, it is undecidable. Let ψ be the conjunction of its axioms (recall,
and this is the crucial point, that Q is finitely axiomatized). By the Deduction
Theorem of Predicate Calculus, `R ϕ holds if and only if ψ → ϕ is provable
in Predicate Calculus, and thus any decision procedure for this would give one
for Q, contradicting II.2.17. 2

The extent of undecidability and decidability of subsystems of the Predicate
Calculus has been thoroughly analyzed. See Ackermann [1954], Dreben and
Goldfarb [1979] for the former, and Lewis [1979] for the latter.

Self-reference ?

And God said unto Moses:
‘I am that I am’.

(Exodus, III, 14)

The Fixed-Point Theorem can be used directly to find programs exhibiting
self-referential features. E.g., by considering f recursive such that ϕf(e)(x) = e,
we get an index e such that ϕe(x) = e, which can be interpreted as the code of
a program printing itself (Lee [1963]). Thatcher [1963] has explicitly written
down such a program. A more sophisticated self-referential program, able not
only to print itself, but also to simulate any given recursive function g, is coded
by e such that ϕe(x) = 〈e, g(x)〉, and can be obtained in a similar way.

The technique underlying the Fixed-Point Theorem (or its equivalent form,
the Second Recursion Theorem) is the tool allowing the unraveling of self-
referential statements, and their replacement by incontrovertible versions. In
particular (being obviously impossible to have a finite phrase with itself as a
proper part) self-reference is never direct: it comes from a controlled confusion
of two levels of meaning for integers, which are seen both as numbers and as
names for formulas. Then a formula telling some arithmetical fact about an
integer may be seen as the translation - by arithmetization - of a metamathe-
matical property.

It is easy to adapt the methods used in II.2.10 to build a sentence that, for
a given property P weakly representable in an extension of R, says of itself that
it has the property P (Carnap [1934], Gödel [1934]). It is enough to consider
an enumeration {ψn}n∈ω of the formulas with one free variable, and let (with
the notations of p. 145)

d(ψ) = the sentence ‘ψ has the property P ’
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ai,j = the sentence ‘ψj has the property expressed by ψi’.

The transformed diagonal sequence is still a row of the matrix (up to provable
equivalence), and thus there is a ψ such that d(ψ) is provably equivalent to ψ,
i.e. ψ says of itself that it has the property P .

An old example of paradoxical self-reference goes back to Epimenides (sixth
century B.C.), a Cretan who said that Cretans are always liars. This is known
as the liar paradox, and it was quoted (not very sympathetically) by Paul
(Epistle to Titus, 1.12), as an example of teaching by

unruly and vain talkers and deceivers,5 . . . whose mouths must be
stopped, who subvert whole houses, teaching things which they
ought not, for filthy lucre’s sake.

For more elaborated discussions of the liar paradox, see Martin [1978], [1984].
The modern version of the liar paradox is the positive result (usually referred
to as Tarski’s Theorem), that truth cannot be weakly representable in any
consistent extension of R (Gödel [1934], Tarski [1936]): otherwise its negation
would be weakly representable too, and by the general result obtained above
we would get a contradictory sentence asserting its own falsehood.

Provability is instead weakly representable in consistent extensions of R,
and in this case the general result obtained above gives a sentence asserting
its own unprovability (Gödel [1931]), an explicit example of a sentence not
provable in a system which proves only truths, and hence true. From this we
immediately get the limitation results already proved in the previous subsec-
tion. Specifically:

1. undecidability of any consistent extension F of R (Church [1936], [1936a])
Suppose F is decidable: this means that ‘being a theorem of F ’ is recur-
sive, hence representable (since F extends R) by some ψ:

`F ψx ⇒ `F ψ(x) (II.1)
not `F ψx ⇒ `F ¬ψ(x). (II.2)

Let now ψx assert its own unprovability, i.e.

`F ψx ↔ ¬ψ(x). (II.3)

Then
`F ψx ⇒ `F ψ(x) ⇒ `F ¬ψx

by II.1 and II.3, contradicting consistency, and

not `F ψx ⇒ `F ¬ψ(x) ⇒ `F ψx

by II.2 and II.3, contradiction. Thus F cannot be decidable.
5Presumably including, nowadays, the logicians.
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2. an explicit example of incompleteness, for any ω-consistent formal system
F extending R (Gödel [1931])
Since F is a formal system, ‘y codes a proof of ψx’ is recursive, and so
representable (since F extends R) by some ϕ:

y codes a proof of ψx ⇒ `F ϕ(x, y)
y does not code a proof of ψx ⇒ `F ¬ϕ(x, y).

Then the formula
ψ(x) ⇔ ∃yϕ(x, y)

weakly represents provability in F (see the proof of II.2.16, where the
hypothesis of ω-consistency is used to show this).

Let now ψx assert its own unprovability, i.e.

`F ψx ↔ ¬ψ(x) (II.4)

Then:

• ψx is not provable in F : if it were, both ψ(x) and ¬ψ(x) would be
provable (contradicting consistency), the former because ψ weakly
represents provability, the latter because of II.4.

• ¬ψx is not provable in F : if it were, II.4 would imply that ψ(x)
is provable, and ψx would then be provable (contradicting consis-
tency), because ψ weakly represents provability.

Note that we can decide, from the outside, that ψx is true: it is not
provable, and it asserts its own unprovability.

3. an explicit example of incompleteness, for any consistent formal system
F extending R (Rosser [1936])
Let ϕ be as above, ψneg x ⇔ ¬ψx, and

ψ(x) ⇔ ψx is provable before ¬ψx is
⇔ ∃y [ϕ(x, y) ∧ (∀z ≤ y)¬ϕ(neg x, z)].

We cannot assert that ψ weakly represents provability in F (see II.2.16
for a formula that does this). But at least we do have

`F ψx ⇒ `F ψ(x). (II.5)

Suppose indeed that ψx is provable. Then `F ϕ(x, y), for some y. By
consistency of F , ¬ψx is not provable, and hence `F ¬ϕ(neg x, z), for
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every z ≤ y. By the axioms of R, `F (∀z ≤ y)¬ϕ(neg x, z). Thus
`F ψ(x).

Let now ψx assert that it is not provable before its own negation, i.e.

`F ψx ↔ ¬ψ(x). (II.6)

Then:

• ψx is not provable in F , otherwise so would be ψ(x)and ¬ψ(x),
respectively by II.5 and II.6, contradicting consistency.

• ¬ψx is not provable in F , otherwise so would be ψ(x) and ¬ψ(x)
(contradicting consistency), the former by II.6, the latter by the
following reasoning. Note that

¬ψ(x) ⇔ ∀y[ϕ(x, y) → (∃z ≤ y)ϕ(neg x, z)].

If ¬ψx is provable, let z code a proof of it. Then `F ϕ(neg x, z).
By the axioms of R, y < z ∨ z ≤ y, for any y. In the first case y is
a numeral less than z, by the axioms of R, and thus `F ¬ϕ(x, y),
because if ϕ(x, y) holds then ψx would be provable, contradicting
consistency. In the second case `F (∃z ≤ y)ϕ(neg x, z), because
`F ϕ(neg x, z). Then

`F (∀y)[¬ϕ(x, y) ∨ (∃z ≤ y)ϕ(neg x, z),

and hence `F ¬ψ(x).

As before, ψx is true because it is not provable, in particular not provable
before its negation.

It is interesting to note that the sentence asserting its own unprovability
is equivalent to the assertion of consistency of the system: if the system is
consistent then ψx is not provable (otherwise both ψ(x) and ¬ψ(x) would
follow, the first by the properties of ψ, the second by definition of ψx), and
hence ψx holds; and if ψx holds then it is not provable, and the system is
consistent (otherwise everything would be provable). This equivalence proof
is informal, and the simple assumption of representability of provability in F
is not sufficient to reproduce the proof inside the system. But under some
stronger assumptions (see below), it is possible to prove it inside F , i.e.

`F ConF ↔ ψx,

where ConF is a formal translation of consistency, for example the assertion
that ‘0 = 1’ is not provable. It then follows, from the unprovability of ψx, that
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the consistency of a consistent formal system is not provable inside the system
itself (Gödel [1931]), a result known as Gödel’s Second Theorem, and which
destroyed Hilbert’s program of justifying abstract mathematics by proving the
consistency of formal systems of common use by elementary (finitary) means,
e.g. in PA, or in any other sufficiently weak formal system in which only
finitistically acceptable reasoning could be formalized.

The assumptions on the provability predicate ψ needed for the proof of
Gödel’s Second Theorem (Gödel [1933], Hilbert and Bernays [1939], Löb [1955],
Jeroslow [1973]) are worth examining also for another reason, directly related
to the subject of self-reference. Since they are outside the scope of Recursion
Theory, because not purely extensional, we just quote them:

1. `F ψx ⇒ `F ψ(x)
This says that if a formula is a theorem of F , we can prove inside F that
it is. It expresses half of the condition for weak representability of the
provability predicate.

2. `F ψ(x) → ψ(pr(x))
where ψpr(x) = ψ(x). The first condition was external to F , saying that
any single provable formula can be recognized to be provable by F . This
second condition is internal to F , and says that F is aware of the first
condition: inside F we know that if a formula is provable, then we can
prove this fact.

3. `F ψ(x) ∧ ψ(impl(x, y)) → ψ(y)
where ψimpl(x,y) = ψx → ψy. This says that F is aware of the fact that
the provability relation is closed under modus ponens.

These conditions are satisfied by usual first-order formal systems extending
PA (see Bezboruah and Shepherdson [1976] for a version of Gödel’s Second
Theorem for Q), and can be loosely stated as: in F we can prove that a provable
formula is provable, and we are aware of this fact and of modus ponens.

Going back to self-reference, we have seen that the sentence asserting its own
unprovability is true and not provable. We now want to show that, under the
conditions stated above, the sentence asserting its own provability is true and
provable. This provides an example of true self-referential statement which
makes no use of negation. The general result is that, under the conditions
stated above, a sentence ψ(x) → ψx (asserting that if ψx is provable then it
is true, and thus expressing a form of soundness) is provable if and only if ψx
is (Löb’s Theorem, Löb [1955]). The only nontrivial direction is to prove
that if ψ(x) → ψx is provable then so is ψx. Suppose ψx is not provable.
Then F ∪ {¬ψx} is consistent, and its consistency cannot be proved in it, by
Gödel’s Second Theorem. I.e. we cannot prove in it that ψx cannot be proved
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in F , which is expressed by the formula ¬ψ(x). But if F ∪{¬ψx} cannot prove
¬ψ(x) then, by the Deduction Theorem and contrapositive, F cannot prove
ψ(x) → ψx.

Since the formula that asserts its own provability has the property that
`F ψ(x) ↔ ψx, we have in particular that ψ(x) → ψx is provable, and then
so is ψx itself, by Löb’s Theorem. A similar example, relying on the same
conditions on the provability predicate but not using Gödel’s Second Theorem,
is the sentence asserting of itself that if it is provable then it is true, i.e.

`F ψx ↔ (ψ(x) → ψx).

Suppose ψx is provable. Then `F ψ(x) by representability of provability, and
`F ψ(x) → ψx by definition of ψx. By modus ponens, `F ψx. Thus we have
proved that if ψx is provable, i.e. if ψ(x) holds, then so does ψx. This establishes
that if ψx is provable then it is true. By ψx asserts exactly this, and thus it is
true and provable.

For more information on the topics of this subsection, see Smorynski [1977].

Self-reproduction and cellular automata ?

Vergine madre, figlia del tuo figlio6

(Dante, Paradiso, XXXIII)

On a linguistic level, to build self-reproducing objects is not difficult. A
nontrivial example (quoted by Hofstadter [1985]) is:

Alphabetize and append, copied in quote, these words: ‘these ap-
pend, in Alphabetize and words: quote, copied’

which both lists its parts at the word level, and tells how to put them together
to reconstitute itself. By acting according to the rules stated in it on the words
quoted in it we get the same sentence, but this is somewhat unsatisfactory as
an example of self-reproduction, since it obviously requires an external agent
that understands the rules and performs them.

On a mechanical level, at first sight it might appear that a machine can
only reproduce less complicated machines, since the building machine must
somehow contain a complete description of the built one, together with some
additional device to do the actual building. This was a stumbling block for
Descartes [1637], who thought that animals and human bodies are machines,
but had to resort to miracles to explain biological reproduction. The crucial
point missed by the above discussion is that descriptions of machines are at
a lower logical level than machines themselves, and can be brought down to

6Virgin mother, daughter of your son
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the same logical level of their inputs. Thus a machine can reproduce itself,
whenever it is able to build machines by following their descriptions, and is
fed its own description. When this minimal complexity is attained, obstacles
are removed not only for self-reproduction, but even for reproduction of more
complicated machines. In this subsection we flesh out these observations.

The ideas of the Fixed-Point Theorem can be used to build a self-reproduc-
ing mechanical automaton (Von Neumann [1951]). The first machine we
need is a universal constructor A, with the property that, when it is fed the
description dX of a machine X, it searches in the surrounding environment for
the needed mechanical parts, and builds X. In symbols:

(A, dX) −→ X.

Of course universality refers to a fixed class of machines, all particular specimen
from a common species, that can be described in a uniform way. Thus A has
the ability to understand all plans of a given type, and realize them. A alone is
not yet self-reproducing because, when it is given its own description, it does
build a copy of itself, but the result is lacking the description that was fed at
the beginning:

(A, dA) −→ A.

We thus introduce a second machine B, with the simple task of reproducing
any description given to it:

(B, dX) −→ dX .

To coordinate the two machines A and B, a third one C is introduced, and the
compound machine A + B + C will now work in the following way. Given a
description dX , A builds a copy of X, while B reproduces a copy of dX ; then
the copy of X is fed the copy of dX :

(A+B + C, dX) −→ (X, dX).

Then, if we call D the resulting machine A+B + C, we get

(D, dD) −→ (D, dD).

Thus S = (D, dD) is self-reproducing.
The same ideas allow not only for self-reproduction, but even for production

of more complicated machines (a sort of evolutionary process). Indeed, it
is enough to insert in D a description dD+F of a machine composed of D and
some other machine F . Then S will produce itself, together with F .

Some observations on the ideas used in the construction just sketched are in
order. First, note that there is no circularity involved, since we first obtained
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D, and then we fed it its own description; also, none of the three parts A,B,C
is self-reproducing by itself, but their combination is. Second, the crucial fact
that circumvents the difficulties pointed out at the beginning is that B, while
being of fixed size, can copy descriptions of any length: thus the description of
the constructed machine need not be incorporated in the parent machine, but
only coupled to it. Third, descriptions (i.e. indirect reproductions) are neces-
sary in actual realizations: if we wish to reproduce a machine X directly, piece
by piece, we need to interfere with it (to know how it is built) in some possi-
bly disrupting way, while the reproduction process presupposes an unchanging
original. For similar reasons, descriptions must be directly given, and cannot
in general be deduced by machine observation. Note that descriptions are used
at two different levels: one time they are purely duplicated (and so used as raw
material), and another time they are followed as projects (and so interpreted
as instructions). Finally, alterations of some parts of S might produce different
effects: a change in D itself might inhibit or perturb the whole production
process; a change in dD+F might affect the constructed machine, directly in
the copy of D (thus producing a machine that might not be self-reproducing
anymore), or possibly only in the by-product F .

Note that real life reproduces exactly this way : living cells contain universal
constructors, basically the same for plants and animals, and only the genetical
material (the program) is different. More precisely, a suggestive biological
reinterpretation of the construction of S is the following: dX works like a
gene (a segment of DNA) that codifies the reproduction information; B (a
special enzyme - RNA polymerase) has the function of duplicating the genetic
material into a segment of RNA; A (a set of ribosomes) builds proteins by
following (a segment of RNA containing) the reproduction information; S is
a self-reproducing cell. This is thus an abstract, simplified representation of
genetical reproduction. One of the simplifications occurs in the fact that
the gene has only a partial codification of the reproduction information, and
this allows for a partial modification of the reproduced object. The additional
parts possibly produced are the analogues of enzymes that the gene produces,
or whose production it stimulates. The effect of alterations on S are reminis-
cent of mutations: they may be lethal or sterilizing (killing the organism or
inhibiting reproduction), produce modified (and possibly sterile) successors, or
produce fertile successors with changed hereditary strain (generating different
by-products). See Watson [1970] for general information, Arbib [1969a] for a
discussion of the relevance of self-reproducing automata in biological contexts,
and Burks and Farmer [1984] for a model of DNA sequences as automata.

The troublesome part in the discussion above lies in the assumption of the
existence of a universal constructor. We might reason by analogy, and think
that an argument like the one used for universal Turing machines (p. 132) might
suffice. However, for Turing machines the actions needed for universality are of
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quite limited complexity (writing, reading, moving), and at the same level as
those of the simulated machines. For actual constructors much more is certainly
needed (recognizing, moving, manipulating and assembling components). Thus
the possibility again arises of an infinite regress, in the sense of needing an
additional level of complexity, to build machines at a certain level.

Von Neumann [1966] was, however, able to solve the problem by abstracting
some of the properties of the mechanical model seen above. He noted that
constructions can be seen as series of events taking place in a space, and he thus
considered - by a sort of cartesian representation - a space of cells that can be in
a certain number of states (intended to represent presence or absence of certain
parts of the mechanical model, so that motion of parts is represented by change
of state in cells). Von Neumann thus used particular cellular automata,
which are simply potentially infinite, directed graphs (spaces), whose nodes
(cells) are finite state machines (see p. 53): the global behavior consists of the
simultaneous and coordinated behavior (change of state) of the single cells. Von
Neumann’s particular automaton consisted of a planar space with 29-state cells
of a single type, each connected to the four orthogonally adjacent neighbors:
what he did was to find a finite quiescent configuration (of around 200,000
cells) that, given any other finite quiescent configuration, reproduces it in a
different part of the space, without erasing itself: he thus found a universal
constructor for the class of quiescent configurations. See some of the essays
in Burks [1970] for more explanations on this model, Codd [1968] and Arbib
[1969] for improved treatments (with opposite emphasis: the former on local
simplicity of cells, the latter on global simplicity of construction), and Langton
[1984] for a simple, nontrivial (although not construction universal) cellular
model of self-reproduction.

The simplest automaton admitting self-reproducing configurations we know
of is Conway’s Life automaton, so called because modelled on life-like behav-
ior. It consists of a planar space, with each cell connected to the eight adjacent
ones. The cells have just two states: 0 (death) and 1 (life), and the Life rules
are the following: a dead cell gets born when exactly 3 neighbors are alive; a
live cell survives if 2 or 3 neighbors are alive, and it dies otherwise (by over-
population or starvation). Conway (see Berlekamp, Conway and Guy [1982])
has shown that there are self-reproducing Life configurations, and that the Life
automaton is universal , in the sense that any cellular automaton can be con-
structed by taking sufficiently large squares of Life cells as its basic cells. These
results are also interesting because, unlike other cellular automata admitting
self-reproductive behaviors, Life’s rules were not introduced with the purpose
of making self-reproduction possible. Also, Life is about as simple as it can be
(it is known that 2-state cells with a Von Neumann neighborhood do not ad-
mit nontrivial self-reproduction), and it shows that self-reproduction does not
need a complicated universe (since it is logically possible from simple physical
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models). For more information on Life, see Poundstone [1985].
A notion somewhat opposite to self-reproduction is the impossibility of be-

ing reproduced. A finite pattern in a cellular automaton is called a Garden-of-
Eden configuration if it cannot be obtained from any previous configuration:
it corresponds to a machine that cannot be built, in the sense that it cannot
arise as a result of any past state of its universe. Obviously, a self-reproducing
configuration (being obtainable from itself) cannot contain any Garden-of-Eden
configuration: this places limits on the possibilities of universal constructors
(since it exhibits nonconstructible configurations), as well as on the possible
patterns of self-reproducing machines (this being relevant for the determina-
tion of the simplest possible conditions for self-reproduction, and hence for
the computation of the probability of getting living organisms by chance in-
teraction of nonliving ones). Garden-of-Eden configurations exist on a cellular
automata (satisfying some general conditions) if and only if the automata is not
backwards-deterministic, i.e. if there are configurations that can be obtained in
more than one way (Moore [1962], Myhill [1963]). This condition obviously
applies when erasing is possible, erasing being an irreversible process that loses
information.

Note that cellular automata are quite general devices: given any Turing
machine, it is possible to build a cellular automaton that simulates the compu-
tation of the machine on any given input (the automaton is a linear tape; the
state of each cell will reflect the situation of the corresponding cell in the tape
by telling which symbol is written there, and whether the head is scanning such
a cell or not and, if so, in which state the machine is). In particular, a cellular
automata can simulate a universal Turing machine (Smith [1972]). The uni-
versal constructor we have been quoting above can be made complex, in the
sense of being simultaneously able to simulate a universal Turing machine (and
thus being both computation and construction universal).

For more on cellular automata see Toffoli and Margolus [1987], and the
papers in Burks [1970], Farmer, Toffoli and Wolfram [1984], Demongeot, Golès
and Tchuente [1985], and Wolfram [1986]. Actual computer machines modelled
on cellular automata are studied in Preston and Duff [1984], and Toffoli and
Margolus [1987]. Problems of reversibility for cellular automata, analogous
to those considered on p. 51 for Turing machines, are considered in Toffoli
[1977], [1981] (where the existence of computation and construction universal,
reversible cellular automata is shown).

II.3 Partial Recursive Functionals

In Chapter I we introduced the notion of recursive functions, in various equiv-
alent formulations. In Section II.1 we then extended this notion to encompass
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the case of partial functions. Here we present a further, substantial generaliza-
tion of recursiveness by considering effective procedures that act not only on
numbers, but on functions as well. That is, we extend the notion of recursive-
ness from functions to functionals.

Oracle computations and Turing degrees

Let us revisit the definition of recursiveness: we had a set of initial functions,
and a set of operations, transforming given functions into new functions. The
idea was that the initial functions were effectively computable, and the opera-
tions transformed effectively computable functions into effectively computable
ones. If a function g is added to the initial functions, then the class obtained
is the same if g is recursive, but it is otherwise more comprehensive.

Definition II.3.1 (Turing [1939]) If g is a total function, the class of func-
tions recursive in g is the smallest class of functions

1. containing the initial functions and g

2. closed under composition, primitive recursion and restricted µ-recursion.

If A is a set, the class of functions recursive in A is the class of functions
recursive in cA.

A predicate is recursive in g or A if its characteristic function is.

The extension of recursiveness relative to a given function corresponds to
the algebraic procedure of transcendental extension. The functions recursive
in g are not all outright computable, unless g itself is, but they are still ‘com-
putable modulo g’. A pictorial way to express this state of affairs is to say that
they are computable with the help of an oracle, a term introduced by Turing
[1939] and now standard.

χαὶ δή πoτε χαὶ ειζ ∆ελϕoὺζ ελϑὼν
ετ óλµησε τoυ̃τo µαντεύσασϑαι·
τ ί πoτε λέγει o ϑεóζ;
oυ γὰρ δήπoυ ψεύδεταί γε·7

(Πλατω, Aπoλoγια Σώχρατoυσ)

The oracle, as the word emphasizes, is an extrarecursive entity, helping the
computation of any function recursive in g in its troublesome spots, when a
call to g (which could be effectively answered only if g were recursive) is made.
The oracle supplies the answer to any such call for free.

7And thus once, gone even to Delphi, he dared to consult the oracle on this: what does
the god say? He certainly does not lie.
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An oracle f may also help the computation of f itself, in some nontrivial
way. For example, some of the information coded by f may be redundant, and
recoverable from the rest of it in various ways (see III.5.9 and V.5.15 for some
precise formulations).

Definition II.3.2 Given two functions f and g, we say that:

1. f is Turing reducible to g (f ≤T g) if f is recursive in g

2. f is Turing equivalent to g (f ≡T g) if f ≤T g and g ≤T f .

Note that ≤T is a reflexive and transitive relation, and thus ≡T is an equiv-
alence relation. Although trivial, this is a crucial fact for later development,
since then ≡T partitions the class of total functions (and in particular the class
of characteristic functions, i.e. the class of sets) into equivalence classes, called
degrees of unsolvability.

Definition II.3.3 (Post [1948]) The equivalence classes of total functions
w.r.t. Turing equivalence are called Turing degrees (or T -degrees). (D, ≤)
is the structure of Turing degrees, with the partial ordering ≤ induced on them
by ≤T .

Two functions are Turing equivalent (in the same T -degree) when they are
recursive in each other: thus, they help each other’s computation, and they are
in the same relationship as the recursive functions are among themselves. The
continuum is thus classified from a recursion-theoretical point of view, and the
study of such a classification (and of related ones) is one of the main subjects
of our book.

Exercises II.3.4 a) Every T -degree contains a set . (Hint: consider the graph of a
given function, and code it into a set.)

b) There is a smallest T -degree. (Hint: the degree of recursive sets.)

The notion of relative recursiveness is easily generalized to partial functions:

Definition II.3.5 If β is a partial function, the class of functions partial
recursive in β is the smallest class of functions

1. containing the initial functions and β

2. closed under composition, primitive recursion and unrestricted µ-recur-
sion.
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Relative partial recursiveness is still called Turing reducibility, and we still
write α ≤T β when α is partial recursive in β.

By substituting the concept of recursiveness with its version relativized to a
given (total) function or set, notions and results dealt with so far generalize.
For example, we can define a set as r.e. in A if it is the domain of a function
partial recursive in A, and prove that

A ≤T B ⇔ both A and A are r.e. in B.

In the following we will refer to theorems in relativized form when needed,
but it must be clear that the fact that a result relativizes should not be taken
for granted : claiming a relativized form of a result which holds unrelativized
requires a proof, even if only a check that everything relativizes in the original
proof. In Chapter V we will actually see that some results do not relativize
(V.7.13).

The notion of functional

A functional is simply a function whose variables range over numbers or over
functions of numbers, and whose values are numbers. For simplicity of nota-
tions, we will mostly consider the function variables of a functional to range
over unary functions, and will leave to the reader the care of extending no-
tions and results to the general case. Our convention is not a restrictive one,
since any function with many variables can be recursively reduced to a unary
function by coding its arguments into a single one.

We may suppose that the function variables of a functional range only over
total functions, or we may allow them to range over partial functions as well.
We use the word functional to refer to the latter case, and talk of restricted
functional in the former.

As for functions, a functional can be undefined for some of its arguments.
We call total functional a functional which is always defined whenever its
function arguments are total. Thus a total functional can be undefined for
some of its partial arguments, but a total restricted functional is always defined.
Examples of total and nontotal functionals are, respectively, the application
functional

Ap(α, x) ' α(x),

and the (unrestricted) µ-operation schema

Mu(α, x) ' µy(α(〈x, y〉) ' 0).

It is precisely the existence of nontotal, restricted functionals that makes the
consideration of nonrestricted functionals natural.

We can also talk of (restricted) relations of numbers and functions,
by just referring to the characteristic (restricted) functional.
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Partial recursive functionals

We now use the notion of relative partial recursiveness to introduce the idea of
recursive functional.

Definition II.3.6 (Kleene [1952], [1969], Sasso [1971]) The functional
F (α1, . . . , αn, ~x) is a partial recursive functional if it can be obtained from
α1, . . . , αn and the initial functions by composition, primitive recursion and
unrestricted µ-recursion.

A relation of function and number variables is recursive if its characteristic
functional is.

The definition just given contains more than the mere fact that the func-
tion λ~x. F (α1, . . . , αn, ~x) is partial recursive in the αi’s for each choice of
its functions variables. This is certainly implied, but more is true: actually
λ~x. F (α1, . . . , αn, ~x) is uniformly partial recursive in the αi’s, in the sense
that there is a master way of showing the partial recursiveness of it in the αi’s,
in which these appear as parameters.

Exercises II.3.7 a) β is partial recursive in α if and only if there is a partial recur-
sive functional F such that β(x) ' F (α, x).

b) There are functions f and g such that f is recursive in g, but there is no
partial recursive, total functional F such that f(x) = F (g, x). (Post [1944]) (Hint:
from II.3.10 we will get a notion of index for partial recursive functionals. Let Fe
be the functional with index e, and A be the set of indices of partial recursive, total
functionals of one function variable and one number variable. If

x ∈ B ⇔ x ∈ A ∧ Fx(cA, x) = 0

then B ≤T A, but the existence of a partial recursive, total functional F such that

cB(x) = F (cA, x) leads to a contradiction.)

The partial recursive functionals are closed under composition in a strong
form, which allows for substitution not only in the number arguments, but also
in the function ones.

Proposition II.3.8 Substitution Property (Kleene [1952]) If F (α, z)
and G(β, x) are partial recursive functionals, then so is

H(α, x) ' G(λz. F (α, z), x).

Proof. By induction on the definition of G. From a computational point of
view, this is quite clear: when we get to a call of β in the computation of
G, we substitute it by the corresponding call of λz. F (α, z), and continue the
computation. Thus the only calls to the oracle which are not discharged are
those relative to α. 2
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Exercises II.3.9 a) Substitution holds for partial recursive, restricted total function-
als. (Kleene [1955])

b) Substitution fails for partial recursive, restricted functionals. (Kleene [1963],

Kreisel) (Hint: let G(f, x) ' 0, and F (x, z) ' 0 ⇔ x ∈ Kz Then the function

H(x) ' G(λz. F (x, z), x) would converge if and only if λz. F (x, z) is total, i.e. when

x 6∈ K, and K would be recursive.)

Theorem II.3.10 Normal Form Theorem for partial recursive func-
tionals (Kleene [1952], [1969], Davis [1958], Sasso [1971]) There is a
primitive recursive function U and (for each m,n ≥ 1) recursive predicates
Tm,n such that, for every partial recursive functional F of m function variables
and n number variables, there is a number e (called index of F ) for which the
following hold:

1. F (α1, . . . , αm, x1, . . . , xn)↓ ⇔ ∃yTm,n(e, x1, . . . , xn, α1, . . . , αm, y)

2. F (α1, . . . , αm, x1, . . . , xn) ' U(µyTm,n(e, x1, . . . , xn, α1, . . . , αm, y)).

Proof. We cannot use the functions αi in computations, since they might not
be recursive, and we then use finite approximations to them. We refer to the
proofs of I.7.3 and II.1.2, and just indicate the appropriate changes to be made.

1. The index of a partial recursive functional can be defined by just adding
clauses for the function arguments αi’s, as if they were initial functions.

2. Computations are put in canonical form as usual. Now some of the nodes
can be expressions of the kind αi(x) = z.

3. Numbers to nodes of the computation trees are assigned in the form

〈e, 〈x1, . . . , xn〉, 〈a1, . . . , am〉, z〉

where e is the index of the functional, and ai is the code of a fixed finite
approximation to αi, e.g. of the following function:

ãi(x) '
{
exp(ai, px)− 1 if exp(ai, px) > 0
undefined otherwise.

Numbers to computations are assigned in the usual way.

4. The definition of T remains the same, except for a local modification of
clause B, to take care of the new case corresponding to nodes of the kind
αi(x) = z, where the evaluation is made by means of the finite function
âi, in place of αi.
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5. Tm,n is the predicate defined as:

Tm,n(e, x1, . . . , xn, α1, . . . , αm, y) ⇔ T (y)∧
(y)1,1 = e ∧ (y)1,2 = 〈x1, . . . , xn〉 ∧
ln((y)1,3) = m ∧ (∀i)1≤i≤m(αi|(y)1,3,i).

Here α|a means that α extends the finite function coded by a, i.e.

(∀x ≤ a)(exp(a, px) 6= 0 ⇒ exp(a, px) = α(x) + 1).

6. Finally, since now nodes are quadruples, and the value is the last compo-
nent,

U(y) = (y)1,4. 2

In the case of restricted functionals, we get a smoother version (where,
recall, ĝi is the course-of-value of gi, see I.7.1):

Theorem II.3.11 Normal Form Theorem for partial recursive restrict-
ed functionals (Kleene [1952], Davis [1958]) There is a primitive recursive
function U and (for each m,n ≥ 1) primitive recursive predicates Tm,n of only
numerical variables such that, for every partial recursive restricted functional
F of m function variables and n number variables, there is a number e (called
index of F ) for which the following hold:

1. F (g1, . . . , gm, ~x)↓ ⇔ ∃yTm,n(e, ~x, ĝ1(y), . . . , ĝm(y), y)

2. F (g1, . . . , gm, ~x) ' U(µyTm,n(e, ~x, ĝ1(y), . . . , ĝm(y), y)).

Proof. It is enough to modify, in the previous theorem, the definition of Tm,n
as:

Tm,n(e, x1, . . . , xn, z1, . . . , zm, y) ⇔ T (y)∧
(y)1,1 = e ∧ (y)1,2 = 〈x1, . . . , xn〉 ∧ ln((y)1,3) = m ∧
(∀i)1≤i≤m(Seq(zi) ∧ ln(zi) = y + 1 ∧ zi|(y)1,3,i).

Here z|a now means

(∀x ≤ a)(exp(a, px) 6= 0 ⇒ exp(a, px) = (z)x+1 + 1).

The idea is that we have to take a computation coded by y, consider the finite
functions used in it (coded by (y)1,3,i < y), and note that only values up to
y of the function arguments gi can be needed in the computation. But these
values are all coded in the sequence numbers ĝi(y). The definition of Tm,n is
slightly complicated by the fact that the gi’s do not appear directly in it, but
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only through the numbers ĝi(y), whose role is taken by zi. 2

Of course the improved normal form does not work for nonrestricted func-
tionals, since α̂(y) could be undefined for partial α (when α(z) ↑ for some
z < y), even if all the converging values of α needed for the computation are
relative to arguments up to y.

There is a special case which is going to be particularly useful, and we
introduce special notations for it, in analogy with the notations used for partial
recursive functions (II.1.4). It is the case of oracle computations w.r.t. a set A.

Definition II.3.12

1. ϕA
e (or {e}A) is the e-th function of n variables, partial recursive in A:

ϕAe (~x) ' {e}A(~x) ' U(µyTn,1(e, ~x, ĉA(y), y))

2. ϕA
e,s (or {e}A

s ) is the finite approximation of ϕAe of level s:

ϕAe,s(~x) ' {e}As (~x) '
{
ϕAe (~x) if (∃y < s)Tn,1(e, ~x, ĉA(y), y))
undefined otherwise

First Recursion Theorem

The Normal Form Theorem for partial recursive functionals implies that a
computation tree of F (α, x) is finite, and thus uses only a finite number of
values of α. We state explicitly the basic properties of oracle computations
that can be deduced from it. These are key to the proof of the First Recursion
Theorem.

Corollary II.3.13 (Kleene [1952], Davis [1958]) If F (α, x) is a partial
recursive functional, and F (α, x) ' y, then:

1. compactness: for some finite function u ⊆ α, F (u, x) ' y

2. monotonicity: if α ⊆ β, then F (β, x) ' y.

Proof. By definition of Tm,n, a value of F is computed by using a finite
approximation of α. Thus compactness is immediate, and monotonicity follows
from the fact that a finite approximation of α is also a finite approximation of
any extension of it. 2

Exercise II.3.14 Compactness and monotonicity are equivalent to the unique con-
dition

F (α, x) ' y ⇔ (∃u finite)(u ⊆ α ∧ F (u, x) ' y).
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We can define a function α by writing down conditions that its values must
satisfy. If these conditions involve α itself, then the definition takes the general
form

α(x) ' F (α, x),

for some partial functional F (not necessarily recursive). Any function sat-
isfying the equation just written is called a fixed-point of F , and could be
considered as defined by the given conditions. But the usual intent of a defini-
tion is not only to specify all the necessary information, but also to rule out all
additional, not explicitly stated information. Thus we may consider a function
as defined by the given conditions if it is the least fixed-point of F : in this
case the function does not contain arbitrary information, on top of what is
directly implied by the definition.

Let us consider some examples:

1. F (α, x) ' α(x).
Every partial function is a fixed-point of F , and the least fixed-point
is thus the completely undefined function. In particular, F is a total
functional with total fixed-points, but the least one is not total.

2. F (α, x) ' α(x) + 1,
Now there is exactly one fixed-point, the completely undefined function.
In particular, F is a total functional with no total fixed-point.

3. Given R(x, y) recursive, let

F (α, x, y) '
{
y if R(x, y)
α(x, y + 1) otherwise.

Then F is a partial recursive functional, and if α is the smallest fixed-
point, then α is partial recursive and

α(x, y) ' µz(z ≥ y ∧R(x, z)).

In particular, α(x, 0) ' µyR(x, y) (see also p. 158).

Theorem II.3.15 First Recursion Theorem (Kleene [1952]) Every par-
tial recursive functional F (α, x) admits a least fixed-point, and this is recursive.
In other words, there is a partial recursive function α such that:

1. ∀x(α(x) ' F (α, x))

2. ∀x(β(x) ' F (β, x)) ⇒ α ⊆ β.

Proof. Define by induction :
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α0 everywhere undefined
αn+1(x) ' F (αn, x) .

Intuitively, we first take all the values of F that can be computed without any
call to α (i.e. by using the completely undefined function as oracle). Then,
at any given stage, we compute those values that use calls to α that can be
answered because they have already been computed at previous stages.

By induction on n, we show that αn ⊆ αn+1.

• For n = 0 this follows because α0 is completely undefined.

• If αn ⊆ αn+1, let αn+1(x) ' F (αn, x) ' y. By monotonicity we have
F (αn+1, x) ' y. Then αn+2(x) ' y, and αn+1 ⊆ αn+2.

It thus makes sense to consider the limit α of the αn’s:

α(x) ' y ⇔ ∃n(αn(x) ' y).

α is partial recursive, because the αn’s are partial recursive, uniformly in n.
Moreover:

1. α is a fixed-point of F .
If α(x)↓ then, for some n,

α(x) ' αn+1(x) ' F (αn, x).

Since αn ⊆ α, by monotonicity α(x) ' F (α, x).
If F (α, x)↓ then, by compactness, only finitely many values of α are used
in the computation, and thus αn, for a big enough n, will suffice. Then

F (α, x) ' F (αn, x) ' αn+1(x) ' α(x).

2. α is the smallest fixed-point of F .
Suppose F (β, x) ' β(x), for all x. By induction on n we have αn ⊆ β,
and thus α ⊆ β:

• α0 ⊆ β because α0 is completely undefined.

• If αn ⊆ β then, by monotonicity,

αn+1(x) ' F (αn, x) ' F (β, x) ' β(x)

and thus α ⊆ β. 2
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The proof of the First Recursion Theorem gives a computation procedure for
the least fixed-point of F (α, x): take the usual computation tree for F , and any
time a node calling for a computation of a value α(z) is reached, continue the
computation by substituting F (α, z) to α(z). If every branch of the tree comes
to an end, then α has been completely discharged, and the value is obtained.

This shows that there is nothing mysterious about the definition of a func-
tion in terms of itself. What actually happens is that the values are defined
in terms of previously obtained ones (in a precise sense, although not always
a trivial one, like in the case of primitive recursion). Of course, in general,
there will be values which can be computed without any call to previous val-
ues. Otherwise the function is really defined circularly, and it is then the
completely undefined function.

As for the Fixed-Point Theorem, the First Recursion Theorem, together
with composition and case definition, generates the partial recursive functions.
Kleene [1978], [1981a], [1985] reverses our approach, and develops Recursion
Theory by taking the least fixed-point as a primitive schema. This approach is
quite natural, and it accounts for the name ‘recursive’ for functions whose values
are somehow defined (by recurrence) using other values of the same function.
The disadvantage of this approach is that it needs partial recursive functionals
for the definition of partial recursive functions, and thus it does not provide
an intrinsic characterization of the latter (which is defined simultaneously with
the former). The approach with indices and the Fixed-Point Theorem (II.2.15)
is similar, but without this drawback.

This brings us to the obvious analogies and differences between the First
Recursion Theorem and the Fixed-Point Theorem II.2.10 (or, equivalently, the
Second Recursion Theorem II.2.13). The former produces not only a fixed-
point, but the least one. The latter has a wider range of application, since it
does not require any extensionality (in the sense that ϕf(e) is not necessarily
a functional on partial recursive functions, see p. 155). Actually, a case can
be made that the Second Recursion Theorem is more general than the First
Recursion Theorem:

Proposition II.3.16 (Rogers [1967]) Let F (α, x) be a partial recursive func-
tional, and ψ be the partial recursive function

ψ(e, x) ' F (ϕe, x).

The fixed-point of ψ produced by the proof of the Second Recursion Theorem is
the least fixed-point of F .

Proof. First note that ψ is indeed partial recursive, by the Substitution Prop-
erty II.3.8. Let e be the fixed-point of ψ produced by the proof of II.2.13:
then

ϕe(x) ' F (ϕe, x),
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and ϕe is a fixed-point of F .
Recall that ϕe(x) ' ϕS1

1(a,a)(x) for an appropriate a and, by definition of
Smn (see II.1.7), to compute ϕS1

1(a,a)(x) we must first compute ψ(S1
1(a, a), x),

i.e. ψ(e, x). In other words, whenever ϕe(x) converges, its computation is longer
than that of ψ(e, x).

To see that ϕe is the least fixed-point of F , let β be any fixed-point of F .
We show that ϕe ⊆ β, by induction on the length of computations. Suppose
ϕe(x)↓: then F (ϕe, x)↓ and, by compactness, only a finite subfunction u of ϕe is
used in the computation. Choose u minimal: obviously, all the values of u have
to be computed before we get ψ(e, x) ' F (ϕe, x). Thus all the computations
of values of u have length smaller than the length of computation of ϕe, and
by induction hypothesis we have u ⊆ β. Then

ϕe(x) ' F (ϕe, x) ' F (u, x) ' F (β, x) ' β(x),

by monotonicity. 2

The last result shows that the fixed-point operator defined by the proof of
II.2.10 (which is the analogue of the fixed-point operator Y in λ-calculus) is
actually a least fixed-point operator .

Recursive programs ?

Let us look at extended ‘while’ programs (I.5.5), obtained by adding to the
assignment statements the name P (for an unspecified program). A recursive
‘while’ program is an extended ‘while’ program, preceded by an instruction
of the kind:

procedure P .

The program is interpreted as follows: the extended ‘while’ program defines
a program depending on the unspecified program P , and the recursive clause
added at the beginning tells that P must be the program defined by the ex-
tended ‘while’ program itself. Thus P is a program with a self-referential flavor.

As ‘while’ programs define partial recursive functions, extended ‘while’ pro-
grams define partial recursive functionals. The First Recursion Theorem tells
that there is a ‘while’ program defining a recursive function which is the least
fixed-point of the extended ‘while’ program. Thus recursive programs are in
principle avoidable, in the sense of being equivalent to usual ‘while’ programs
(or flowcharts) with no recursive calls. A direct method to translate recursive
programs into flowcharts equivalent to them is given by Strong [1971].

However, in practice, using recursive programs is a very useful tool, since
it often allows us to write easy and concise programs (with self-referential
calls), in situations which might require elaborate nonrecursive programs. Thus
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recursive programs are widely used (after McCarthy [1963]) in programming
languages allowing definitions (like those of the ALGOL family, and LISP), as
well in languages naturally suited for recursive calls (like PROLOG).

A computational approach to recursive programs can be deduced from the
remarks after the First Recursion Theorem: it corresponds to substituting ev-
ery occurrence of P in the computation, with the whole program (complete
replacement). A detailed study of computation procedures more efficient than
this (i.e. requiring less substitutions), but still sufficient to compute the least
fixed-point of a recursive program, can be found in Manna [1974].

Topological digression

An instructive way to look at the results on partial recursive functionals is by
taking a more general stand, and considering the set P of partial (unary) func-
tions as a topological space, following Uspenskii [1955] and Nerode [1957] (see
Kelley [1955] for a reference on topology). This is easily done, by noting that
P can be viewed as a product space Sω, with S = ω ∪ {↑}, ↑ being a distin-
guished element (for the undefined value). A natural topology on S is defined
by taking as open sets all subsets of ω, and the space S (thus no nontrivial
open set contains ↑, and S is not a Hausdorff space). Then P can be given the
product topology. This is called the positive information topology, since
a countable basis for it consists of the finite functions (together with P itself),
which contain a finite amount of positive information (specifying the values for
a finite set of arguments). More precisely, the basic open sets are

û = {α : u ⊆ α},

where u is a finite function. These sets form a basis because they are closed
under intersection:

û ∩ v̂ = {α : u ∪ v ⊆ α},

where u∪ v is undefined on x if both u(x) and v(x) are undefined, or both are
defined and different.

Proposition II.3.17 X ⊆ P is open if and only if both of the following hold:

1. α ∈ X ⇒ for some finite u, u ∈ X ∧ u ⊆ α.

2. α ∈ X ∧ α ⊆ β ⇒ β ∈ X.

Proof. Let X be open. Then X is a union of û’s. If α ∈ X, then α ∈ û for
some û ⊆ X. But then u ⊆ α, and u ∈ X because u ∈ û. If moreover α ⊆ β,
then u ⊆ β and β ∈ û, so β ∈ X.
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Suppose now that the two conditions hold for X. Then X is the union of
the û’s such that u ∈ X (and hence it is open), because: if α ∈ X then, by 1,
there is u ∈ X such that u ⊆ α, so α ∈ û; and if α ∈ û for some u ∈ X, then
u ⊆ α and α ∈ X by 2. 2

An equivalent way to restate the characterization of open sets is: X is open
if and only if

α ∈ X ⇔ (∃u finite)(u ∈ X ∧ u ⊆ α).

We call X effectively open if the set of finite functions belonging to it is
r.e. This requires the identification between finite functions and numbers in
any effective way, e.g. let u be the number coding the finite function ũ in the
following way:

(∀x ≤ u)(exp(u, px) 6= 0 ⇔ ũ(x)↓ ∧ exp(u, px) = ũ(x) + 1).

In the following, for simplicity of notations, we will not distinguish between a
finite function ũ and the number u coding it.

Proposition II.3.18 (Uspenskii [1955], Nerode [1957]) A function
F : P → P is continuous if and only if it is compact and monotone.

Proof. Since the û’s are a basis for the topology, F is continuous if and only
if F−1(û) is open, for every finite u.

• Let F be continuous, and F (α)(x) ' y (note that F (α) is a function from
ω to ω). The finite function u(x) ' y (undefined otherwise) defines the
open set û, so F−1(û) is open, and α is in it. By the characterization
of open sets, α ∈ v̂ for some v̂ ⊆ F−1(û): since v ∈ F−1(û), we have
F (v)(x) ' y and v ⊆ α, hence F is compact. If moreover α ⊆ β, then
v ⊆ β and β ∈ v̂, so F (β)(x) ' y, and F is monotone.

• Let now F be compact and monotone. We want to show that F−1(û) is
open, using the characterization of open sets given above.

If α ∈ F−1(û) then u ⊆ F (α): u is finite, and for each pair (xi, yi) such
that u(xi) ' yi is F (α)(xi) ' yi. By compactness of F , F (ui)(xi) ' yi
for some finite ui ⊆ α. Let w be the union of the ui’s: then w ⊆ α and
u ⊆ F (w), so w ∈ F−1(û) and 1 of II.3.17 is verified.

If α ∈ F−1(û) and α ⊆ β, F (α) ∈ û and so u ⊆ F (α). By monotonicity
of F , u ⊆ F (β). So β ∈ F−1(û) and 2 of II.3.17 is verified. Then F−1(û)
is open. 2



188 II. Basic Recursion Theory

The behavior of a continuous function on P is then completely determined
by its behavior on finite functions:

F (α) =
⋃
{F (u) : u finite ∧ u ⊆ α}.

The function β(u) ' F (u) for finite u’s is called the modulus of continuity
of F , and under suitable coding can be thought of as a partial function from ω
to ω. We call a function effectively continuous if its modulus of continuity
is partial recursive.

We have considered functionals, i.e. functions from P × ω to ω, but there
is an obvious correspondence between functionals and functions from P to P:
if F (α, x) is a functional then λx. F (α, x) is such a function, and if F is such a
function then F (α)(x) is a functional. Thus the result just proved shows that:

Proposition II.3.19 (Uspenskii [1955], Nerode [1957]) The partial re-
cursive functionals are effectively continuous.

On the other hand, the converse fails.

Proposition II.3.20 (Sasso [1971], [1975]) There are effectively continuous
functionals which are not partial recursive.

Proof. The idea is simple: define F (α) on x by using two possible values of
α, e.g.

F (α)(x) '
{

0 if α(2x) ' 0 ∨ α(2x+ 1) ' 0
undefined otherwise.

Then F is effectively continuous, but it should not be partial recursive, because
a computation tree of F (α)(x) might get stuck on one undefined value of α,
even when the other is defined. To turn this into a proof, we build α in such a
way that F (α) is not the value of any partial recursive functional. Let

Fe(α) ' λx.U(µyT1,1(e, x, α, y))

be an enumeration of the partial recursive functionals of one function variable.
We want α such that F (α) 6' Fe(α) for every e, and we define it by stages.
Start with α0 being the completely undefined function. Having αn, choose x
such that both 2x and 2x + 1 are greater than all the values for which αn is
defined, as well as those for which αn is and must remain undefined because
so required by the construction at previous stages. Consider Fn(αn)(x). There
are two cases:

• Fn(αn)(x)↓.
Then only values of αn which have already been defined have been used
in the computation. Since αn ⊆ α, Fn(α)(x)↓ by monotonicity. It is then
enough to have F (α)(x)↑, and this only requires leaving α undefined on
both 2x, 2x+ 1 at this and later stages.
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• Fn(αn)(x)↑.
Then either it diverges by using only convergent values of αn in the
computation, and then it will remain divergent, or some value of αn used
in the computation is undefined. In the latter case, pick up one: it is
enough that also α be undefined on it, to force Fn(α)(x)↑ as well, since
the computation is always going to be stuck on this value. We then want
F (α)(x)↓, and this is ensured but letting one of α(2x) or α(2x+ 1) be 0.
Since one of 2x, 2x+ 1 is free (because both were at the beginning of this
stage, and at most one of them is required to remain so by the previous
work), define αn+1 as the extension of αn that gives it value 0.

Then α =
⋃
n∈ω αn satisfies the requirements. 2

An equivalent way of looking at P is by considering it as a partially ordered
set, under ⊆. In this case P is a chain-complete partial ordering, in the
sense that every linearly ordered chain has a least upper bound (which is just
the union of the chain). We can state the First Recursion Theorem in full
generality, by considering any chain-complete partial ordering (D,v).8 Call t
the l.u.b. operation, and ⊥ the least element (which exists, being the l.u.b. of
the empty chain). A function f : D → D is:

monotone if it preserves the partial ordering

continuous if it preserves l.u.b.’s of chains.

A continuous function is monotone, since

x v y ⇒ y = x t y
⇒ f(y) = f(x) t f(y)
⇒ f(x) v f(y).

The general existence theorem for least fixed-points is the following:

Theorem II.3.21 (Knaster [1928], Tarski [1955], Abian and Brown
[1961]) If (D,v) is a chain-complete partial ordering, and f is a monotone
function on it, then f has a least fixed-point.

Proof. Iterate f transfinitely, starting with ⊥ and taking l.u.b.’s at limit stages
(which always exist, since D is chain-complete):

x0 = ⊥
xα+1 = f(xα)
xβ =

⊔
α<β f(xα), if β limit.

8The partial ordering v should not be confused with the partial ordering of sequence
numbers introduced on p. 90.
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This defines a nondecreasing chain in D (because f is monotone), whose length
cannot exceed the maximal length of chains of D. Let xα0 be its last element,
which must exist by the definition at limit stages (otherwise the l.u.b. of the
chain would produce a bigger member). Then f(xα0) = xα0 , otherwise xα0

would not be the last element of the chain.
And xα0 is not only a fixed-point of f , but the least one: if y is any fixed-

point of f , by induction we have xα v y for each α (in particular xα0 v y):

• x0 v y, because ⊥ is the least element of D

• if xα v y then, by monotonicity and the fact that y is a fixed-point of f ,

xα+1 = f(xα) v f(y) = y

• if xα v y for all α < β, then xβ v y by definition of l.u.b. 2

In particular, continuous functions on a chain-complete partial ordering
have least fixed-points. Continuity being stronger than monotonicity, we might
however expect a stronger result. Indeed, if f is continuous then only ω itera-
tions are necessary to reach the least fixed- point :

f(xω) = f(
⊔
n∈ω

xn) =
⊔
n∈ω

f(xn) =
⊔
n∈ω

xn+1 = xω.

Exercises II.3.22 More on Fixed-Points. a) Call f expansionary if x v f(x).
Every expansionary function on a chain-complete partial ordering has a fixed-point .

b) A complete lattice is a partially ordered set in which every subset has l.u.b.
and g.l.b. There is a purely algebraic proof of the existence of least fixed-points for
monotone functions on a complete lattice. (Knaster [1928], Tarski [1955]) (Hint:
consider the set {x : f(x) v x}, which contains every fixed-point of f . Its g.l.b. is the
least fixed-point of f .)

c) A nonmonotone function on a chain-complete partial ordering need not have a
least fixed-point . (Hint: on P, consider

F (α, x) '
{

1 if α(x) ' 0
0 otherwise.

Note that F (α, x) is defined also when α(x) is not.)

Before we can apply II.3.21 to P, we have to show that the two notions of
continuity obtained by viewing it as a topological space and as a chain-complete
partial ordering coincide.

Proposition II.3.23 For a functional F on P the following are equivalent:

1. F is compact and monotone
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2. F preserves l.u.b.’s of (countable) chains.

Proof. Let F be compact and monotone, and {αβ}β<β0 be a chain of partial
functions with l.u.b. α. We want

F (α) =
⋃
β<β0

F (αβ).

By monotonicity, from αβ ⊆ α we have F (αβ) ⊆ F (α), and thus⋃
β<β0

F (αβ) ⊇ F (α).

Suppose now F (α)(x) ' y: by compactness, F (u)(x) ' y for some finite
function u ⊆ α. There must be β such that u ⊆ αβ . By monotonicity we then
have F (αβ)(x) ' y, and hence

F (α) ⊆
⋃
β<β0

F (αβ).

Thus F preserves l.u.b.’s of arbitrary chains.
Let F now preserve l.u.b.’s of countable chains. It is automatically mono-

tone (see p. 189). For compactness, suppose F (α)(x) ' y. Since α is the l.u.b.
of a chain {αn}n∈ω of finite functions (e.g. αn can be taken to be the restriction
of α to the arguments from 0 to n), we have

F (α) =
⋃
n∈ω

F (αn),

and thus F (αn)(x) ' y for some finite αn ⊆ α. 2

We then have the general fixed-point existence result:

Theorem II.3.24 (Uspenskii [1955], Nerode [1957]) Let F be a func-
tional on P:

1. if F is continuous, F has a least fixed-point

2. if F is effectively continuous, its least fixed-point is partial recursive.

We have proved the results of this subsection by using only a few particular
properties of P, namely:

1. Two partial functions are compatible if they have a common extension.
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2. A chain of partial functions is a set of compatible elements, containing
the l.u.b. of every pair of functions in it.

3. Every chain has a l.u.b.

4. Every function is the least upper bound of a chain of finite subfunctions.

We can then guess that the results just proved would extend to partial
orderings with similar properties: we only have to turn them into definitions.
Consider a partially ordered set (D,v). Two elements are compatible if they
have a common extension. A non-empty set of compatible elements is directed
if it contains, together with each pair of elements, a common extension of them.
D is a complete partial ordering (c.p.o.) if every directed set has a l.u.b.
in D. A function on D is continuous if it preserves l.u.b.’s of directed sets.

To be able to extend property 4 above we need a notion of finite element
in D. The idea comes from the observation that in P the finite functions are
exactly those functions which, whenever covered by the l.u.b. of a chain of
functions, are already covered by some element of the chain. We then call an
element of D compact if, whenever it is bounded by the l.u.b. of a directed
set A, it is already bounded by an element of A. The compact elements play
the role of finite elements, and we call D algebraic if, for every element x, the
set of elements below it form a directed set with l.u.b. x. Different names used
for algebraic c.p.o.’s are complete f0-spaces (Ershov [1972]) and domains
(Scott [1982]).

Having defined a notion of finite element we can now impose on D the Scott
topology (Scott [1972]), generated by the basic open sets

û = {x : u compact ∧ u v x},

and consider the associated notion of continuity. On algebraic c.p.o.’s the two
notions of continuity coincide, and the behavior of a continuous function is
completely determined by its behavior on compact elements.

To be able to extend the notion of effective continuity, we need the possibil-
ity of effectively manipulating the compact elements. We call D an effective
algebraic c.p.o. if there is an enumeration (see p. 238) of the set of compact
elements, which makes the relations of partial ordering and of compatibility, as
well as the operation of l.u.b. for compatible elements, recursive. A continuous
function on D is then effectively continuous if its modulus of continuity is
partial recursive, w.r.t. the given enumeration.

Iteration and fixed-points ?

The method of proof used for the First Recursion Theorem and its refinements
is an old and fruitful one. It was first applied by Newton [1669] to obtain zeros
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of differentiable real functions f , by starting from any point x0 and iterating

F (xn) = xn −
f(xn)
f ′(xn)

.

By the geometrical interpretation of derivative this procedure converges to a
fixed-point x of F such that f(x) = 0, whenever the starting point x0 is suffi-
ciently close to x and the derivative of f is not zero (under these hypotheses,
each step doubles the number of the correct decimal digits of the approxima-
tion).

It is natural to ask whether the method would always produce a zero, start-
ing from any point x0. Cayley [1879] showed that for quadratic functions on
the complex plane every point not on the line bisecting the segment connecting
the two zeros converges to one of them. Barna [1956] showed that in general
Newton’s method works for real polynomials with real zeros, except on a set
of measure 0. The result fails for complex coefficients (Curry, Garnett, and
Sullivan [1983]).

This prompts the more general question of when the iteration of a given
function with fixed-points would lead to one of them (in our setting that is
always the case if f is expansionary, see II.3.22.a). A modern study case is
the iteration of the quadratic function x2 + c on the complex numbers, which
has at most two fixed-points. For a given c, the set of points whose set of
iterations is bounded (containing in particular the points converging to a fixed-
point, and those with a periodic behavior) has an interesting boundary, called
the Julia set Jc (Julia [1918]), which is either connected or pulverized. The
shapes of these sets describe, for different c’s, an incredible variety of forms,
whose behavior is related to the position of c in Mandelbrot set, defined
as the set of c such that Jc is connected (Mandelbrot [1980]). This amazing
set contains, on a smaller scale, a reproduction of all Julia sets Jc. It also
has a sort of universality, since it appears in the study of the iteration of a
great number of functions (precisely, of any function one of whose iterations
behaves like x2 in some portion of the plane). One aspect of Julia (and, less
stringently, of Mandelbrot) sets is their self-resemblance: they contain copies of
themselves and present, at any scale of observation, the same global character.
Sets with this property are called fractals, and are useful to describe natural
phenomena involving chaotic behavior. See Mandelbrot [1982] and Peitgen and
Richter [1986] for more on this.

Another example of a situation in which the iteration of a function always
produces a fixed-point is the one described by Banach Fixed-Point Theo-
rem (Banach [1922]): a contraction function on a complete metric space has
a unique fixed-point, given by the limit of the iterations of f starting on any
point , where f is a contraction if |f(x) − f(y)| ≤ c · |x − y| for some fixed
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constant c such that 0 < c < 1 (|x − y| being the distance between x and y).
Indeed, given any x then, by induction,

|f (n+1)(x)− f (n)(x)| ≤ cn · |f(x)− x|.

By the triangle inequality,

|f (n+m)(x)− f (n)(x)| ≤
∑
i<m

|f (n+i+1)(x)− f (n+i)(x)|

≤ (
∑
i<m

cn+i) · |f(x)− x|.

Thus {f (n)(x)}n∈ω, and hence {f (n+1)(x)}n∈ω, converge to a point x0. Since
f is continuous, the latter also converges to f(x0), and thus f(x0) = x0. More-
over, if x1 is another fixed-point of f then

|x0 − x1| = |f(x0)− f(x1)| ≤ c · |x0 − x1|

and, being c > 0, it must be x0 = x1.

Models of λ-calculus (part I) ?

The only objects of λ-calculus are terms, and thus a model will be a set D
over which terms are interpreted, in such a way that provably equal terms are
interpreted by the same object. The presence of the λ-operator forces some
terms to be interpreted as functions acting on terms, and thus some elements
of D will have to be interpreted as functions on D, i.e. an appropriate set
[D → D] of functions from D to D will have to be identified with a subspace of
D. This rules out, by cardinality considerations, the naive approach of taking
as [D → D] the set of all functions from D to D. Finally, both λ-abstraction
and functional application will have to be interpreted over D, the first being
a term formation operator, the second because of the β-conversion rule. See
p. 223 and Meyer [1982] for a discussion of the notion of model of λ-calculus.

Methods and results of the last subsection are all relevant to the present
subject. To start with, P is a model of λ-calculus, when [P → P] is taken
to be the set of continuous functionals (this model is connected to the graph
model of Plotkin [1972] and Scott [1975], see below). The reason is that
continuous functionals are completely determined by their behavior on finite
functions, and thus they can be coded by a single function (the modulus of
continuity). The only additional piece of information needed to turn this into
a model of λ-calculus is to note that functional application of continuous func-
tionals is continuous, and thus again representable in P. This also applies to
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λ-abstraction, as well as to the operator Fix, that produces the least fixed-
point of continuous functionals. By II.3.16, the interpretation of Fix coincides
with the interpretation of the combinator Y (Park [1970]). What P does not
automatically provide for, is a model of extensionality (η-rule, p. 83, according
to which every term is identified with a function): the embedding of [P → P]
into P does not cover P itself (not every continuous function is a modulus of
continuity).

As it might be expected, there is nothing special about P: its place can
be taken by any other reflexive c.p.o., i.e. any (algebraic) c.p.o. in which the
set [D → D] of continuous functions is embeddable (meaning that there are
continuous functions

i : D → [D → D] and j : [D → D] → D

such that i ◦ j is the identity on [D → D]). E.g., in the literature P is usually
replaced by P(ω), the set of subsets of ω, with the positive information topology
generated by the finite sets. Here functions are represented by their graphs,
hence the name ‘graph model’ quoted above.

To get models of extensionality as well, we need not only to embed [D → D]
into D, but to identify the two. This obviously sounds like a fixed-point, and
we do have a general existence theorem (II.3.21). To be able to apply it, we
need to consider the function F (D) = [D → D] as monotone over a giant
chain-complete partial ordering, whose members are (algebraic) c.p.o.’s. We
thus need an appropriate partial ordering on them, and it turns out that the
following natural one will work:

D �D′ ⇔ there are continuous functions
i : D → D′ and j : D′ → D

such that j(i(x)) = x and i(j(y)) v y.

The intuition behind this definition is that D′ is supposed to contain more
information than D, and D has to be embedded into it. So i(x) is the element
in D′ that corresponds to x in D and, going back, we simply recover it (since x
and i(x) have the same information content). But an element y in D′ might not
correspond to any element in D, and j(y) is only the closest approximation to
it in D: going back, we might lose some information, and thus only i(j(y)) v y
holds.

With this notion of partial ordering for c.p.o.’s, it is easy to show that
the l.u.b.’s of a chain {Dn}n∈ω exists: we just have to take the c.p.o. D∞
that sums up exactly the information contained in the chain. Note that if
jn : Dn+1 → Dn, then jn(x) is an element in Dn that approximates x. Thus
we only need to consider chains 〈xn〉n∈ω such that xn ∈ Dn and jn(xn+1) = xn,
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as elements of D∞. Then xn may be thought of as the approximation of the
chain at stage n (think of x as a real number given by its decimal expansion:
then xn is the expansion truncated at the n-th digit, and the projection jn
simply cuts out the last digit of xn+1).

F is first of all a function on c.p.o.’s (since [D → D] can be turned into a
c.p.o. by ordering its elements pointwisely). Second, F commutes with l.u.b.’s
of chains (and it is thus continuous). Moreover, F is expansionary, in the sense
that F (D) � [D → D]. Thus not only F admits least fixed-points, and they
can be reached in at most ω iterations of F : they exist above any given D.
Thus any (algebraic) c.p.o. D can be embedded in an extensional model D∞ of
λ-calculus (Scott [1972]).

All this machinery can be appropriately formalized in the cartesian closed
category of (algebraic) c.p.o.’s (where continuous functions, l.u.b.’s and mono-
tonicity of F become, respectively, morphisms, inverse limits and functorial
covariance, and D is a reflexive object if DD�D). Again, there is nothing spe-
cial about this category: any reflexive object with enough points in a cartesian
closed category gives rise to a model of λ-calculus and, conversely, any model of
λ-calculus is a reflexive object with enough points in a cartesian closed category
(the condition of having enough points basically meaning that different func-
tions must behave differently on some point) (Scott [1980a], Koymans [1982]).
This completely characterizes the models of λ-calculus.

For history, exposition, and philosophy see Scott [1973], [1975], [1975a],
[1976], [1977], [1980], [1980a]. For technical development and other models see
Stoy [1977], Barendregt [1981], Beeson [1985], Hindley and Seldin [1986].

Different notions of recursive functionals ?

We have defined partial recursive functionals, obtained from a uniformization
of the notion of relative recursiveness ≤T for partial functions. The topological
approach developed above suggests the consideration of the broader class of
effectively continuous functionals as well. These are expressible in the form

F (α, x) ' z ⇔ (∃u)(u ⊆ α ∧ ϕ(x, u) ' z),

with ϕ partial recursive and u, here and in the following, (code of a) finite
function. By II.1.11, an equivalent formulation is

F (α, x) ' z ⇔ (∃u)(u ⊆ α ∧R(x, u, z)),

with R r.e. Of course, such an expression defines a functional only if the relation
R (that embodies the graph of the continuity modulus) gives consistent answers.
We thus have two ways to turn this general form into a definition of functional:
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1. A partial recursive operator (Myhill [1961a], Rogers [1967]) is a func-
tional F that can be defined as

F (α, x) ' z ⇔ (∃u)(u ⊆ α ∧R(x, u, z)) ∧
(∀u′)(∀z′)(u′ ⊆ α ∧R(x, u′, z′) ⇒ z = z′),

with R r.e. relation.

2. A recursive operator (Davis [1958], Rogers [1967]) is a functional F
that can be defined as

F (α, x) ' z ⇔ (∃u)(u ⊆ α ∧R(x, u, z))

with R consistent r.e. relation, i.e. such that

R(x, u, z) ∧R(x, u′, z′) ∧ u, u′ compatible ⇒ z = z′.

Thus the difference between partial recursive operators and recursive oper-
ators is in the consistency condition required on R: only relative to the input
function for partial recursive operators, and global for recursive operators.

It is clear that, from a computational point of view, the first notion is not
satisfactory, since it requires a consistency check relative to a given partial
function. It is not surprising that there is no Enumeration Theorem for partial
recursive operators. A better way of thinking of partial recursive operators is in
terms of functionals on multivalued functions or, better still, sets, rather than
on partial functions, and the associated reducibility notion for sets is called
enumeration reducibility:

A ≤e B ⇔ for some r.e. relation R,
x ∈ A⇔ (∃u)(Du ⊆ B ∧R(x, u)).

The structure of degrees associated with this reducibility (called partial de-
grees) will be studied in Volume II.

An Enumeration Theorem for recursive operators (Rogers [1967]) can easily
be obtained by stepping from an enumeration {W3

e }e∈ω of all the r.e. ternary
relations, to an enumeration {W3

f(e)}e∈ω of the consistent ones, where W3
f(e) is

obtained from an enumeration ofW3
e , by dropping the triple (x, u′, z′) whenever

a triple (x, u, z) with u, u′ consistent has already been generated.
The basic difference between recursive operators on the one hand, and par-

tial recursive functionals on the other, is computational: the latter are serial,
and a computation gets stuck if it tries to query the oracle for an undefined
value; the former are parallel, and can get around undefined values by dove-
tailing computations (for general discussions of parallelism, see Elgot, Robinson
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and Rutledge [1967], Shepherdson [1975], Cook [1982]). We thus arrive at the
notion of partial recursive functional by relativizing deterministic approaches
to computability, like recursiveness (by adding a function to the initial ones, as
we did in this section), Turing machine computability (by adding an additional
state that calls for the oracle, Turing [1939]) or flowchart computability (by
adding assignment instructions of the kind

X := g(Y1, . . . , Yn)

?
as in Ianov [1958]). On the other hand, we arrive at the notion of (partial) recur-
sive operator by relativizing nondeterministic approaches, like Herbrand-Gödel
computability, or representability in formal systems (by adding a functional
letter to the constants of the language, Kleene [1943]).

We then have three notions of relative computability for partial functions:
if α ' F (β), we say that

α ≤T β if F is a partial recursive functional
α ≤wT β if F is a recursive operator
α ≤e β if F is a partial recursive operator.

They are respectively called Turing, weak Turing and enumeration re-
ducibilities.

Proposition II.3.25 (Myhill [1961a], Sasso [1971])

1. α ≤T β ⇒ α ≤wT β, but not conversely

2. α ≤wT β ⇒ α ≤e β, but not conversely

3. ≤T ,≤wT and ≤e coincide on total functions.

Proof. The first two implications are obvious, and II.3.20 gives a counterex-
ample to the converse of the first. A counterexample to the converse of the
second is given by

F (α, x) ' z ⇔ (z = 1 ∧ α(2x) ' 1) ∨
(z = 0 ∧ α(2x+ 1) ' 1).

Clearly, F is not consistent in general, but it is consistent for those α’s coding
a set A in the following way:

α(2x) '
{

1 if x ∈ A
undefined otherwise

α(2x+ 1) '
{

1 if x 6∈ A
undefined otherwise.
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In this case F (α) is the characteristic function of the set coded by α, and
F (α) ≤e α. But if F (α) ≤wT α, then F (α) ≤wT β for any β extending α, (this
uses the consistency property, and it fails in general for ≤e). In particular,
this holds e.g. when β is the constant function with value 1, and then α codes
a recursive set (because F (α) is the characteristic function of this set, and it
is recursive since β is). Thus, if α codes a nonrecursive set, F (α) ≤e α but
F (α) 6≤wT α.

To show that the three reducibilities agree on total functions, suppose that
α ≤e g, i.e.

α(x) ' z ⇔ (∃u)(u ⊆ g ∧R(x, u, z))

with R r.e. Then there is Q recursive such that

α(x) ' z ⇔ (∃u)(∃y)(u ⊆ g ∧Q(x, u, z, y)),

and
α(x) ' (µt[(t)1 ⊆ g ∧Q(x, (t)1, (t)2, (t)3)])2 .

This is a correct application of the µ-operator, since u ⊆ g is recursive in g
(because we know that g is total, and we only have to check the values). Thus
α ≤T g. Note that, when β is partial, u ⊆ β would only be r.e. in β, and thus
the µ-operator could not be directly applied. 2

Since we are only dealing with degrees of sets, we will not study the degrees
of partial functions under ≤T and ≤wT . We refer to Sasso [1975] for a survey
of results (see also Casalegno [1985] for later advances). For degrees under ≤e,
see Volume II.

Higher Types Recursion Theory ?

Let Tn, the set of objects of type n, be defined as:

T0 = ω
Tn+1 = total functions from

⋃
i≤n Ti to ω.

We have so far introduced notions of recursiveness for objects of type 1 (func-
tions) and 2 (functionals). Recursiveness can be successively extended to ob-
jects of higher types by iterating the process that has led to the theory of this
section, namely by relativizing in a uniform way the notion at lower types.
This has led (at least for restricted functionals, defined only on total objects)
to a highly developed theory, begun by Kleene in two epochal papers ([1959],
[1963]).

A basic fact which is a source of divergence with the classical theory, and of
technical complications, is the failure of compactness: a computation tree still
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has finite branches when a value is defined, but it does not need to be finitely
branching (and hence finite), since a higher type object might need to know
infinitely many values of its arguments, already at level two, as for:

E(f, x) '
{

0 if (∀z)(f(z) = 0)
1 otherwise.

This rules out a Normal Form Theorem (since a computation can no longer be
coded by a number), and the µ-operator loses its central role (as it is restricted
to a search on ω, and as no natural analogue is available at higher levels).
The normal form is replaced by the Enumeration Theorem, which states that
a functional may see one of its number arguments as an index and simulate the
functional coded by it. This principle is taken as primitive, something which
requires an index approach from the very beginning, see p. 158. The µ-operator
is partly replaced by Selection Theorems (Gandy [1967]), which are analogues
of the Uniformization Theorem II.1.13, and provide for choice operators at the
number level (the choice being now made according to the stage of generation
in the inductive definition of the predicate to be uniformized).

Another source of trouble is equality for objects of a given type, which is
recursive only at the integer (type 0) level. The theory has shown a dichotomy
between objects strong enough to compute equality at the level of their argu-
ments (normal objects, for which strong regularity results - like the Selection
Theorems quoted above - hold, and which are, from a topological point of view,
effectively discontinuous, see Grilliott [1971], Hinman [1973]), and those which
are not (see below). A treatment of various parts of Recursion Theory for nor-
mal, higher types objects may be found in Hinman [1978], and Fenstad [1980].
For an elegant introduction, see Kechris and Moschovakis [1977].

A completely different way to extend Recursion Theory to higher types is
by taking compactness and monotonicity, and hence continuity, as a basis. This
has been proposed by Davis [1959], Kleene [1959a], and Kreisel [1959], and has
led to a theory of countable functionals, quite similar to the one of this
section. The basic aspect is that computation trees are still finite, and hence
at the same level of numbers. A functional F (g) of type 2 is continuous if and
only if its values are determined by finite pieces of its arguments: this can be
formally coded by an associate f : ω → ω which, on increasingly long segments
of g, takes value 0 for a certain time, and a constant greater than 0 from a
certain point on. Thus

F (g) = f(ĝ(n))− 1, for any sufficiently large n.

This notion can easily be generalized to higher types. If F is of type n+ 1, and
G of type n, an associate for F is any function f as above such that, for any
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associate g of G,

F (G) = f(ĝ(n))− 1, for any sufficiently large n.

A (recursive) countable functional is any functional with a (recursive) associate.
Note that countable functionals act on finite pieces not of their arguments
(at type > 2), but of associates for them. Thus associates are algorithms to
compute functionals, that act on algorithms for their arguments.

It is clear that a notion of continuity is underlying that of countable func-
tionals. One way to make this precise (Hyland [1979]) is to consider filter
spaces (see Kelley [1955]), i.e. sets with collections of abstract approximations
for each element (each approximation being a filter of sets, and at least the
following being approximations to an element: the principal ultrafilter gener-
ated by that element, as well as any filter including an approximation to it).
A continuous function between filter spaces is a function that respects approx-
imations. Products and sets of continuous maps on filter spaces are still filter
spaces, and they nicely commute. Thus a hierarchy, coinciding exactly with
that of countable functionals, can be obtained inductively, by starting with ω
(organized as a filter space by taking, as only approximation to n, the principal
ultrafilter containing n).

Another way to look topologically at the countable functionals (Ershov
[1972]) is via effective algebraic c.p.o.’s (see p. 192). Products of and sets
of continuous maps on effective algebraic c.p.o.’s are still such, and they nicely
commute. Then a class C of partial continuous functionals of higher type
can be defined inductively, by letting:

C0 = finite sets with the canonical enumeration
C(σ,τ) = Cσ × Cτ
Cσ→τ = [Cσ → Cτ ].

The objects in these spaces are not, in general, extensional or total. The
(effective) extensional, hereditarily total functionals are exactly the (recursive)
countable functionals (Ershov [1974]). The condition on totality is required
because the countable functionals are, by definition, restricted functionals.

Other approaches to countable functionals can be found in Feferman [1977],
Normann [1981], Longo and Moggi [1984]. For an exposition of the theory, see
Ershov [1977], and Normann [1980], [1981].

There are relationships between the two extensions of recursiveness to higher
types quoted above, surveyed in Gandy and Hyland [1977]. In one direction,
a recursive higher type object restricted to countable arguments is countable
(Kleene [1959]). In the other direction, there are recursive countable functionals
which are not recursive as higher type objects, e.g. the functional that gives
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a modulus of continuity for any continuous functional of type 2 on compact
sets of functions (Tait). However, the countable functionals can be generated
by an extension of the schemata generating the higher type recursive objects
(Normann [1981]).

Computability on abstract structures ?

Recursion Theory is a notion of computability on the structure of the natural
numbers. Recursiveness relative to given oracles suggests one possible way of
extending the notion of computability to abstract structures

〈A, f1, . . . , fn, R1, . . . , Rm〉

with a given domain A, and functions and relations on it. Of course, the
various approaches to relative computability, which are equivalent in the case
of the structure of natural numbers (see p. 198), generalize in ways which
are not necessarily equivalent on abstract structures. We briefly describe the
most popular ones, and leave to Kreisel [1971], Ershov [1981] and Shepherdson
[1985] the discussion of other possible approaches, including the case of partial
structures.

Formalized algorithmic procedures (fap) (Ianov [1958], Ershov [1960],
Luckham and Park [1964], Paterson [1968], Friedman [1971a], Kfoury
[1974]) are finite lists of labelled instructions (called program schemata),
each one of the following kind:

y := fi(~x)
if Rj(~x) go to p, else go to q

stop.

This is an extension of (unstructured) flowchart computability, using the
functions and relations of the structure as primitives, and with the vari-
ables ranging over the elements of the domain. See Manna [1974] for an
extensive treatment.

Fap with counting (fapc) (Friedman [1971a], Kfoury [1974]) are extensions
of fap using also natural numbers, over which range special variables
X,Y, . . . The following counting instructions are also available:

X := 0
X := X + 1

if X = Y go to p, else go to q.

This is equivalent to expanding the given structure to a structure

〈A ∪ ω, f1, . . . , fn, R1, . . . , Rm, 0, pd,S〉
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(with pd and S the predecessor and successor functions for natural num-
bers), and considering fap over it.

Recursive schemata (McCarthy [1963], Platek [1966]) are based on fixed-
points, and allow for functions explicitly definable over the structure by
case definitions (on the relations of the structure), and fixed-point oper-
ators. Alternatively, one could simply use recursive schemata

g1( ~x1) = if P1( ~x1) then h1,1( ~x1) else h1,2( ~x1)
· · ·
gp( ~xp) = if Pp( ~xp) then hp,1( ~xp) else hp,2( ~xp),

where the Pi’s are predicates in their variables over the structure, and
the h’s are terms in their variables over the structure, possibly using the
gi’s.

Generalized Turing algorithms (Friedman [1971a]) are programs for ex-
tended Turing machines which, on top of performing the usual operations
and working with their own alphabet, can also handle elements of the do-
main of the structure on the tape, in the following way. First, the inputs
are placed on the tape at the beginning, in adjacent cells to the left of
the head, the rest of the tape being empty. Elements on the tape can be
moved around, and possibly copied, one cell at a time. A new element
can be introduced in the scanned cell, but only if it is the value of one
of the functions of the structure for the arguments, placed in consecutive
cells to the right of the head. Finally, the machine can test the validity
of a predicate of the structure for the arguments, placed in consecutive
cells to the right of the head.

Effective definitional schemata (Friedman [1971a], Gordon [1974]) are r.e.
sequences of specifications, each giving a value (in the form of a term over
the structure) under mutually exclusive conditions, expressed as quanti-
fier free formulas over the structure. They correspond to effective in-
finitary case definitions, and generalize the approach to recursiveness by
systems of equations (see p. 39).

Prime computability (Moschovakis [1969]) extends the original definition
of (relative) recursiveness reformulated, as on p. 158, with indices and
enumeration. The approach with indices is used because the µ-operator
obviously works only for well-ordered structures. Indices are here ele-
ments of the domain of the structure, and to make this approach work
we also need a coding mechanism. This is obtained by considering the
schemata for recursion on the expanded structure

〈A ∪ I, f1, . . . , fn, R1, . . . , Rm, 0, pd,S,J ,R,L〉,
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where I is a set of indices containing ω, J is a one-one pairing function
on I, and K and L are its decoding functions.

Search computability (Moschovakis [1969]) adds to prime computability an
unordered search operator, performed by an oracle that searches through
arbitrarily large parts of the domain. This requires an approach with
multiple-valued functions because the effect of the search operator is to
take all elements satisfying a given condition, instead of selecting one
(since there is, in general, no canonical choice). Prime and search com-
putability correspond, respectively, to deterministic and nondeterministic
computations on the given structure.

Despite the great variety of approaches, some of the equivalences which
hold for the classical notions retain their validity. E.g., generalized Turing
algorithms, effective definitional schemata, and prime computability are equiv-
alent (Friedman [1971a], Gordon [1974]). We thus have only five notions avail-
able, namely fap, fapc, recursive schemata, prime and search computability.
It should be clear that both fapc and recursive schemata extend fap, in in-
comparable ways, and prime computability extends both. Obviously, search
computability is stronger than prime computability.

The obvious problem at this point is to choose the ‘right’ notion of com-
putability on an abstract domain, among the nonequivalent ones. By Friedman
[1971a] and Kfoury [1974], fap’s are equivalent to fapc’s if the structure has
analogues of the natural numbers, and the counting instructions can be defined .
By Moldestad, Stoltenberg-Hansen, and Tucker [1980a], fapc’s are equivalent
to prime computability if term evaluation is fapc-computable (uniformly in the
number of variables). Thus these four approaches are equivalent for sufficiently
rich structures (like all the infinite algebraic structures of common use, e.g.
rings and fields of characteristic zero). It seems to be a reasonable assump-
tion to allow the use the natural numbers in computations as an auxiliary tool
(think, for example, about the order of an element in a group, or the charac-
teristic of an element in a field), and to have term evaluation as a computable
function. Under these assumptions, the four notions discussed above coincide
with prime computability.

Search computability is also equivalent to a great number of other notions,
see Moschovakis [1969a], Gordon [1970], [1974], and Grilliot [1971a]. In particu-
lar, it coincides with extended effective definitional schemata, using existential
formulas in place of quantifier free ones. Also, for countable domains (with
computable equality) search computability coincides with the very natural no-
tion of ∀-recursiveness (Lacombe [1964]), so defined. Since the structure is
countable, there are one-one onto functions between the domain and ω, each
of which allows us to translate functions and relations from the domain to ω.
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A function or relation over the domain is ∀-recursive if its translation is, for all
one-one onto translating functions.

It thus seems that prime and search computability are the natural notions
of deterministic and nondeterministic computability on an abstract domain.

II.4 Effective Operations

The previous section introduced various notions of functionals, with the com-
mon characteristic that the function arguments are treated extensionally. This
is not avoidable in general, but for the particular case of partial recursive func-
tions we could also treat the arguments intensionally, through (codes for) their
programs. In this section we study the intensional version of extensional recur-
sive functionals, and their mutual relationships.

Effective operations on partial recursive functions

Having studied (effective) continuity on P, it is natural to look at the same
notion on its effective part, namely the set PR of partial recursive functions.
We will consider functionals on PR or, equivalently, extensional functions on
indices, where f is extensional if

ϕe ' ϕe′ ⇒ ϕf(e) ' ϕf(e′).

One approach consists in seeing PR as a subspace of P. This automati-
cally induces a topology, whose (effectively) open sets are the intersections of
(effectively) open sets of P, and whose (effectively) continuous functionals are
the restrictions of (effectively) continuous functionals on P.

Another approach exploits the fact that the members of PR have indices.
We call a class of partial recursive functions a completely r.e. class if its index
set (see p. 150) is r.e. (Dekker [1953a], Rice [1953]). The Ershov topology
on PR (Ershov [1972]) is the topology generated by taking the completely
r.e. classes of partial recursive functions as basic open sets. Thus open sets
are unions of completely r.e. classes, and effectively open sets can be defined
as r.e. unions of basic open sets (since r.e. unions of r.e. sets are still r.e.,
the effectively open sets are just the completely r.e. classes). Unraveling the
definition of continuity shows that a function f induces a continuous functional
if, for every e and every r.e. index set A such that f(e) ∈ A, there is an r.e. index
set containing e and included in f−1(A). This suggests the following notion
of effective continuity, obtained by considering extensional recursive functions
(since then f−1(A) is itself r.e.).
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Definition II.4.1 An effective operation on PR is a functional F on PR
induced by a recursive function, i.e. F (ϕe) ' ϕf(e) for some extensional, re-
cursive function f .

We now wish to compare the two approaches just introduced. To start
with, the next result implies that the two topologies on PR (and hence the
two notions of continuity) coincide. Recall (see p. 187) that we identify finite
functions and numbers by explicitly coding the graphs of finite functions in
some effective way.

Theorem II.4.2 (Myhill and Shepherdson [1955], McNaughton,
Shapiro) A class A of partial recursive functions is completely r.e. if and
only if there is an r.e. set A such that

ϕe ∈ A ⇔ (∃u finite)(u ∈ A ∧ u ⊆ ϕe).

Proof. If there is such an r.e. set A, then A is completely r.e. To see if ϕe ∈ A,
generate simultaneously A and the graph of ϕe, and wait until, for some u ∈ A,
the graph of the finite function coded by u (which can be completely decoded
from u in finitely many steps) is contained in the part already generated of the
graph of ϕe.

Conversely, let A be nonempty and completely r.e., and θA be its index
set. The obvious guess for an r.e. set of finite functions generating A is the set
of its finite functions: they are indeed an r.e set (let g(u) be an index of the
finite function (coded by) u: to see if u ∈ A, it is enough to see if g(u) ∈ θA,
because θA contains all indices of any function in A). We then have to prove
the following.

1. A is monotone on partial recursive functions, i.e. if α ∈ A, β is partial
recursive, and α ⊆ β, then β ∈ A.
Suppose that α and β are partial recursive functions such that α ∈ A,
α ⊆ β, but β 6∈ A. Let f be a recursive function such that

ϕf(e)(x) ' y ⇔ α(x) ' y ∨ [e ∈ K ∧ β(x) ' y].

The function ϕf(e) is well-defined, because α ⊆ β. Then

e ∈ K ⇔ ϕf(e) ∈ A.

Indeed, if e ∈ K then ϕf(e) ' β, while if e 6∈ K then ϕf(e) ' α.

Since A is completely r.e., K is r.e., contradiction.
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2. A is compact, i.e. if α ∈ A then, for some finite function u ⊆ α, u ∈ A.
Suppose that α is a partial recursive function such that α is in A, but no
finite subfunction of it is. Let f be a recursive function such that

ϕf(e)(x) ' y ⇔ e 6∈ Kx ∧ α(x) ' y.

Then
e ∈ K ⇔ ϕf(e) ∈ A.

Indeed, if e ∈ K then e ∈ Kx for all sufficiently big stages x, and hence
ϕf(e) is a finite subfunction of α, and cannot be in A. Conversely, if e 6∈ K
then e 6∈ Kx, for any x, and ϕf(e) ' α.

Since A is completely r.e., K is r.e., contradiction. 2

By the definition of an effectively open set of functions (p. 187), the result
shows that a completely r.e. class is the intersection of PR with an (effectively)
open set of P. Conversely, it is immediate that the intersection of PR with
a basic open set of P is completely r.e. This shows the coincidence of the
two topologies (and hence of the two notions of continuity) on PR introduced
above. Moreover, the effectively open sets (in both topologies) are exactly the
completely r.e. classes. It only remains to show that the two notions of effective
continuity coincide as well.

Theorem II.4.3 (Myhill and Shepherdson [1955], Uspenskii [1955])
The effective operations on PR are exactly the restrictions to PR of effectively
continuous functionals on P.

Proof. Let F be an effectively continuous functional: then the function
ϕ(e, x) ' F (ϕe, x) is partial recursive because, for some r.e. relation R,

F (ϕe, x) ' z ⇔ (∃u finite)(u ⊆ ϕe ∧R(x, u, z)),

and thus the graph of ϕ is r.e. (see II.1.11). By the Smn -Theorem, there is f
recursive such that

ϕf(e)(x) ' ϕ(e, x) ' F (ϕe, x),

and F is an effective operation.
Let now f define an effective operation F on PR. It is enough to show that

F is compact and monotone on PR, i.e. that for some r.e. relation R,

F (ϕe, x) ' z ⇔ (∃u finite)(u ⊆ ϕe ∧R(x, u, z)).

Then we can extend F to all of P, by just letting

F (α, x) ' z ⇔ (∃u finite)(u ⊆ α ∧R(x, u, z)).
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But since
F (ϕe, x) ' z ⇔ ϕf(e)(x) ' z,

for fixed x and z the class

{ϕe : F (ϕe, x) ' z}

is completely r.e. Then all the work has already been done in II.4.2: there is
an r.e. set A such that

F (ϕe, x) ' z ⇔ (∃u finite)(u ⊆ ϕe ∧ u ∈ A).

This holds, as said, for fixed x, z. But they appear as parameters in the argu-
ment, and then A depends uniformly on them. In other words, A is really an
r.e. relation R depending on u, x, z. Then, this time for every x and z,

F (ϕe, x) ' z ⇔ (∃u finite)(u ⊆ ϕe ∧R(x, u, z))

as wanted. 2

Note that the proof shows that every effective operation is induced by a
unique continuous functional (which turns out to be recursive), since its values
are completely determined by the behavior on finite functions (which are all
partial recursive). This, in turn, uniquely determines a continuous functional.

Exercise II.4.4 There is a continuous functional whose restriction to PR is not an
effective operation. (Dekker and Myhill [1958]) (Hint: there are only countably many
effective operations on PR, so it is enough to build uncountably many continuous
functionals, with distinct restrictions to PR. Given a partial function β, let

Fβ(α) '
{

constant function 1 if dom α ∩ dom β 6= ∅
completely undefined otherwise.

If dom β0 ∩ dom β1 6= ∅, then Fβ0 and Fβ1 differ on PR.)

Effective operations on total recursive functions

The notion of effective operation can be generalized from PR to any class A
of partial recursive functions:

Definition II.4.5 An effective operation on a set A of partial recursive
functions is a functional F mapping A to A and such that, for some partial
recursive function ψ,

ϕe ∈ A ⇒ ψ(e)↓ ∧ F (ϕe) ' ϕψ(e).
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Under which conditions for A does an analogue of Theorem II.4.3 hold? We
first prove an important special case, and then discuss the general situation.
In the following, R is going to be the class of total recursive functions.

Theorem II.4.6 (Kreisel, Lacombe and Shoenfield [1957], Čeitin
[1959]) The effective operations on R are exactly the restrictions of the ef-
fectively continuous functionals mapping R to R.

Proof. As in the previous theorem, an effectively continuous functional map-
ping R to R induces an effective operation on R. Let now F be an effective
operation on R. We approximate the result by a series of steps.

1. If f is recursive and F (f, x) = z, for any preassigned length k there is a
function u of finite support (i.e. 0 almost everywhere) which agrees with
f up to k, and such that F (u, x) = z.
This provides a sort of compactness, with functions of finite support
taking place of finite functions (which cannot be considered here because
they are not total). Suppose the claim fails: then a recursive function t
can be defined, such that ϕt(e) agrees with f up to the maximum of k and
(if e ∈ K) the least stage in which e in generated in K, and afterwards
agrees with a function u of finite support and such that F (u, x) 6= z
(which exists by the hypothesis that the claim fails). Then, by definition,

e ∈ K ⇔ F (ϕt(e), x) = z,

and K is recursive, contradiction.

2. If f is recursive and F (f, x) = z, there is a fixed length kf (which can
be found effectively) such that, for any function u of finite support which
agrees with f up to kf , F (u, x) = z.
This provides a sort of modulus of continuity : the value of F (f, x) is
determined by the initial segment of f up to kf . The existence proof is the
same as given above (dropping k), but we want to obtain kf effectively.
Then define ϕt(e) as above, but as a partial function (i.e. look for the
appropriate u, and if this is found, proceed as above). Notice that the
set

e ∈ C ⇔ F (ϕt(e), x) ' z

is r.e. If a is an index for it, it cannot be a ∈ K, otherwise by construction
ϕt(a) = f : then a ∈ C = Wa, and hence a ∈ K. Thus it must be a ∈ K:
let kf be the least stage in which a is generated in K. There cannot exist
a function u of finite support which agrees with f up to kf , and such that
F (u, x) 6= z, otherwise ϕt(a) would be one such, forcing a 6∈ C, against
the fact that a ∈ K. But F is defined for any recursive function, and then
if u agrees with f up to kf , it must be F (u, x) = z.
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3. The two parts just shown prove that, for f recursive,

F (f, x) = z ⇔ (∃u of finite support)
(u agrees with f up to ku ∧ F (u, x) = z).

One direction follows from part 1, since if F (f, x) = z there are functions
u of finite support, agreeing with f up to any preassigned length, and
such that F (u, x) = z.

Conversely, let u agree with f up to ku, and F (u, x) = z. By part 1 there
is v of finite support, agreeing with f up to the maximum of kf , ku. By
part 2 then F (v, x) = F (f, x), because v agrees with f up to kf . And
F (v, x) = F (u, x) because v agrees with u up to ku (since v agrees with
f up to ku, and so does u).

4. F can then be extended to an effectively continuous functional on all of
P, by letting

F (α, x) ' z ⇔ (∃u of finite support)
(u agrees with α up to ku ∧ F (u, x) = z)

for any partial function α. 2

Note that the condition that an effectively continuous functional map R to
R is weaker than totality (which requires mapping any total function to a total
function, not only recursive ones).

Exercise II.4.7 There is an effective operation on R, which is not the restriction to
R of any total effectively continuous functional . (Rogers [1967]) (Hint: let F (α, x)
be the smallest z such that z ∈ K and α(z) = ϕz(z), if it exists. F is an effective
operation on R, but if G is a total effectively continuous functional agreeing with F
on R, let

α(z) =

{
ϕz(z) + 1 if z ∈ K
0 otherwise.

Consider any value G(α, x), the finite part of α used in the computation, and a

function β agreeing with α on that part, and equal to ϕa(a) otherwise, with a the

first element generated in K and different from G(α, x). Then F (β, x) is both equal

and different to a, contradiction.)

Effective operations in general ?

An analysis of the proofs of Theorems II.4.3 and II.4.6 from a constructive
point of view has been provided by Beeson [1975], and Beeson and Sčedrov
[1984]. In particular, both results are derivable in Intuitionistic Arithmetic
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from Markov’s Principle, but without this principle they are not derivable even
in Intuitionistic Set Theory. Both results describe phenomena which hold in
settings much more general than those here considered.

For the first, given an effective algebraic c.p.o. X (p. 192) we can
consider its effective part Xe, consisting of the elements for which the set of
compact approximations is r.e. (w.r.t. the given enumeration). The enumera-
tion of the compact elements of X generates an enumeration of Xe, and we can
then impose on it the Ershov topology, with the completely r.e. sets (w.r.t.
the enumeration of Xe) as basic sets. Then II.4.2 and II.4.3 are respectively
generalized as: Ershov’s topology on Xe is induced by Scott’s topology on X,
and the morphisms on Xe as an enumerated set (i.e. functions commuting with
the enumeration, through a recursive function) are exactly the restrictions to
Xe of effectively continuous functions on X (Ershov [1973]).

For the second, Čeitin [1959], [1962] and Moschovakis [1964] show that it
holds on every effective complete separable metric space, i.e. a space with
a recursive metric function on the recursive reals (see p. 213), with a dense r.e.
subset, and in which one can effectively compute limits of recursive, recursively
convergent Cauchy sequences. A more general framework for the theorem is
the notion of effective topological space, see Nogina [1966], [1978].

Spreen and Young [1984] give a uniform generalization of both results
above by considering countable T0-spaces satisfying certain effectivity re-
quirements, which hold for both PR and R.

We return now to the question formulated above, and look for conditions
on A ensuring that the effective operations on A are exactly the restrictions of
effectively continuous functionals mapping A to A. The positive results proved
above apply to more general situations, but some conditions on A are necessary.

Exercises II.4.8 The effective operations on A are exactly the restrictions of effec-
tively continuous functionals mapping A on A, in the following cases:

a) A is completely r.e. (Myhill and Shepherdson [1955]) (Hint: see II.4.3.)

b) A is the intersection of a completely r.e. class with R. Such classes are called

totally r.e. (Kreisel, Lacombe and Shoenfield [1957], Čeitin [1959]) (Hint: see II.4.6

and, when defining ϕt(e), use functions of finite support which are in A.)

Proposition II.4.9 (Pour El [1960], Myhill) There is an effective oper-
ation on a class A, which is not compact (and thus not the restriction of a
continuous functional).

Proof. Let A consist of the constant functions 0 and 1, and of the recursive
functions which take a value different from 0 for an argument smaller than their
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minimal index. Let f be such that

ϕf(e)(x) '
{

0 if (∀z ≤ e)(ϕe(z) ' 0)
1 if (∃z ≤ e)(ϕe(z)↓ ∧ ϕe(z) 6' 0).

Then f defines an effective operation F on A which sends the constant function
0 to itself, and the other functions of A to the constant function 1. Suppose
that only finitely many values determine the fact that F (α, x) ' 0, and let k
be bigger than all of them. There is a recursive function which is 0 up to k,
and which takes a value different from 0 below its smaller index, e.g.

α(x) '
{

0 if x 6= k + 1
a if x = k + 1

where a is different from ϕe(k + 1), for all e ≤ k. Then F (α) is the constant
function 1, despite the fact that α is 0 up to k. 2

Proposition II.4.10 (Yates, Young [1968], Helm [1971]) There is an
effective operation on a class A which is effectively continuous on A, and is the
restriction to A of a continuous functional, but not of any effectively continuous
functional.

Proof. Let A be the class of (partial) recursive functions α such that α(0)
is defined, and either is not in K, or is promptly generated in it, at a stage
smaller than the minimal index of α. Let f be such that

ϕf(e)(x) '
{

0 if ϕe(0)↓ ∧ ϕe(0) ∈ Ke
1 if ϕe(0)↓ ∧ ϕe(0) 6∈ Ke.

Then f defines an effective operation on A, which sends α to the constant
function 0 if α(0) is in K, and to the constant function 1 otherwise. And the
functional F ′ which does the same on all of P is an extension of F . Both F
and F ′ are clearly compact (only α(0) is needed to determine the value) and
monotone on their domains, hence continuous.

Suppose F has an extension G which is effectively continuous on all of P.
Then K is r.e., because

x ∈ K ⇔ (∃u finite)(G(u, 0) ' 1 ∧ u(0) = x).

Indeed, if there is u as stated and x ∈ K, then x is generated at some stage s. It
is enough to take a partial recursive function α extending u, and with minimal
index greater than s. Then G(α, 0) ' 1 by monotonicity, but F (α, 0) ' 0,
contrary to the fact that G extends F : thus x ∈ K. Conversely, if x ∈ K, let
u(0) = x. Then F (u, 0) ' 1 and, since G extends F , G(u, 0) ' 1. 2
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The two examples succeed because they both use not only values of the
arguments, but also algorithms for them. The proofs are similar but quite
different, because they fail to extend to all of P for distinct reasons. They
provide examples as far apart as they can be: the first does not extend for purely
topological reasons (not being compact), the second for purely computational
ones (being extendable to a continuous functional, but not to an effectively
continuous one).

Exercise II.4.11 Weak effective operations. A weak effective operation on A is
defined as in II.4.5, without the condition that F map A to itself.

a) If A is completely r.e., the weak effective operations on A are restrictions of
effectively continuous functionals. (Myhill and Shepherdson [1955]) (Hint: see II.4.3.)

b) There is a weak effective operation on R which is not compact . (Friedberg

[1958b], Muchnick) (Hint: let ϕf(e)(x) be 0 if ϕe is either 0 for all arguments up to

e, or it coincides, up to the first argument in which is not 0, with a function ϕi that

has index i smaller than that argument. Then f induces a weak effective operation

F on R because it is extensional, and F is not compact, as in II.4.9.)

We have only touched on the subject of effective operations. For more
information see Grzegorczyck [1955], Friedberg [1958a], Kreisel, Lacombe and
Shoenfield [1959], Pour El [1960], Čeitin [1962], Lachlan [1964], Young [1968],
[1969], Löb [1970], Helm [1971], and Freivald [1978].

Recursive analysis ?

The real numbers can be classically defined in many equivalent ways, either
as particular sequences or sets of rational numbers, or axiomatically (up to
isomorphism) as archimedean complete ordered fields. Since rational numbers
can be effectively coded by integers, we have notions of recursive sequences
and recursive sets of rational numbers, and different recursive analogues of the
real numbers (Borel [1912], Turing [1936], Specker [1949]), using e.g. recursive
decimal expansions, recursive Cauchy sequences with a recursive modulus of
convergence, recursive Dedekind cuts, recursive sequences of nested intervals
with length approaching zero. All of these notions turn out to be equivalent
(Robinson [1951], Myhill [1953]), and thus a stable notion of a recursive real
number is available. The recursive real numbers form a countable subfield R
of the reals, which contains all the algebraic reals, as well as the real zeros of
the Bessel functions, and becomes algebraically closed by the adjunction of the
imaginary unit (Rice [1954]).

Recursive real numbers are coded by integers (the indices of their recursive
presentations), and thus a notion of a recursive function of recursive real
variable is available, as an effective operation on the codes. Under this defi-
nition, the field operations on R are recursive (on the codes obtained from the
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Cauchy sequences definition), and Moschovakis [1965] characterizes R up to re-
cursive isomorphism, by a recursive analogue of the notion of an archimedean
complete ordered field. Thus R appears to be a good recursive counterpart to
the reals.

There are two different approaches to what may be called recursive anal-
ysis, which are respectively parts of constructive and classical mathematics.
The first has been followed by the ‘Markov school’, which advocates a philoso-
phy (Markov [1954]) in which every mathematical object is described by a word
of a given alphabet, manipulated by Markov algorithms (p. 145) and discussed
by means of constructive logic (intuitionistic logic plus Markov’s principle).
Under these philosophical assumptions, analysis is the study of R and of the
recursive functions on it.

The second approach remains in the realm of classical logic and mathemat-
ics, and it can be seen as a study of the extent of constructivity in classical
analysis, by an examination of which results remain valid when constructivized
(either by the same proofs or by new ones), and which results instead fail.
Once we live in a classical world, there is no particular reason to stick to recur-
sive functions on R, and a notion of recursive functions of real variable
has been introduced (Grzegorczyck [1955], [1957], Lacombe [1955], [1957]) in
analogy to the effectively continuous functionals, as opposed to effective op-
erations. This provides a new level of analysis, since it isolates computable
functions (defined on all the reals) among the classical ones.

Typical theorems of recursive analysis are that every recursive function
on R is continuous, although not necessarily uniformly so (the positive part
rephrases II.4.6, the negative one follows from the failure of the recursive ana-
logue of König lemma, see V.5.25), and that the least upper bound principle
fails (Specker [1949]) in the sense that there is a bounded, strictly increasing,
recursive sequence of rationals which does not converge to any recursive real
number (simply, the sequence of the rm =

∑m
n=0 1/2f(n), with f a recursive

one-one function with a nonrecursive range).

For a treatment of recursive analysis, see Grzegorczyck [1959], Goodstein
[1961], Kušner [1973], Aberth [1980], Pour El and Richards [1983a], Kreitz and
Weihrauch [1984], and Beeson [1985]. Although not especially on recursive
analysis, Bishop [1967] is also relevant.

A broader perspective can be obtained by looking at recursive interpreta-
tions of (intuitionistic) set theory, in which analysis can then be formalized.
The effective topos (Hyland [1982]) and the recursive topos (Mulry [1982])
generalize, respectively, the constructive and classical approach to analysis (the
first using recursive realizability, and the second using forcing). Analogies and
differences are investigated in Sčedrov [1984], [1987], and Rosolini [1986].
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II.5 Indices and Enumerations ?

In II.1.4 and II.1.9 we introduced a particular system of indices for partial
recursive functions and r.e. sets, and later proved some of its properties. In
this section we investigate systems of indices in general, both for all partial
recursive functions and r.e. sets (giving new examples, some equivalent to the
one we already know, and some radically different) and for subclasses of them.

Acceptable systems of indices

A number of results have been proved so far for recursive functions, and some
of them mention indices in their statements, or use them in their proofs. The
question naturally arises: do these results depend on the particular formalism
chosen to work with (through which the indices were defined), or are they
instead somehow model-independent?

To study the problem, we first note that the basic results mentioning indices
are:

• Enumeration Theorem II.1.5

• Smn -Theorem II.1.7

• Padding Lemma II.1.6.

Indeed, the remaining results mentioning indices, or using them in their proofs,
merely refer to these (e.g. the Fixed-Point Theorem II.2.10 follows from Enu-
meration and Smn -Theorem alone).

We now characterize the systems of indices for which these theorems hold.

Definition II.5.1 (Uspenskii [1956], Rogers [1967]) We call a system of
indices any family ψ of maps ψn from ω onto the set of n-ary partial recursive
functions (by ψne we will indicate the partial recursive function corresponding
to the index e). We say that:

1. ψ satisfies enumeration if for every n there is a number a such that

ψn+1
a (e, x1, . . . , xn) ' ψne (x1, . . . , xn)

2. ψ satisfies parametrization if for every m,n there is a total recursive
function s such that

ψms(e,x1,...,xn)(y1, . . . , ym) ' ψm+n
e (x1, . . . , xn, y1, . . . , ym).
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As usual we will drop the mention of the number of variables, when this is
understood.

An example of a system of indices is obviously given by the usual ϕne , which
also satisfies both enumeration and parametrization: we call it the standard
system. A system may resemble the standard one, in the sense that it is
possible to go effectively from the former to the latter, and conversely:

Definition II.5.2 (Rogers [1958]) A system of indices ψ is acceptable if,
for every n, there are total recursive functions f and g such that

ψne ' ϕnf(e) ϕne ' ψng(e).

Note that in practice the equivalence among different definitions of the class
of partial recursive functions is usually proved precisely by showing that the
systems of indices induced by them resemble one another, in the sense just
given (see the proof of I.7.12). The next result shows that they satisfy the
same basic properties, and also gives an intrinsic characterization of the notion
of an acceptable system of indices.

Proposition II.5.3 (Rogers [1967]) A system of indices is acceptable if and
only if it satisfies both enumeration and parametrization.

Proof. Suppose ψ satisfies both enumeration and parametrization. Then ψ is
acceptable:

• Given ψne , by the enumeration property this is a recursive function of
n + 1 variables. Since systems of indices must enumerate all the partial
recursive function, there is an index a for ψne with respect to ϕ. Then

ψne (~x) ' ϕn+1
a (e, ~x) ' ϕnS1

1(a,e)(~x).

Thus we can let f(e) = S1
1(a, e), and have ψne ' ϕnf(e).

• g is obtained, symmetrically, by using the Enumeration Theorem for ϕ
and the parametrization property for ψ.

Conversely, suppose that ψ is acceptable.

• To show enumeration, note that

ψne (~x) ' ϕnf(e)(~x).

But ϕnf(e)(~x) is partial recursive as a function of e, ~x (by the Enumeration
Theorem), and thus it must admit an index a in the system ψ.
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• To show parametrization, consider ψn+m
e (~x, ~y). By the enumeration prop-

erty just proved, this is a partial recursive function of m+n+ 1 variables
(including e), and thus there is an index a for it with respect to ϕ:

ψn+m
e (~x, ~y) ' ϕm+n+1

a (e, ~x, ~y) ' ϕmSm
n+1(a,e,~x)

(~y).

Since g allows us to go back to the system ψ, if we let

s(e, ~x) = g(Smn+1(a, e, ~x))

we get
ψn+m
e (~x, ~y) ' ψms(e,~x)(~y). 2

Corollary II.5.4 Every acceptable system of indices satisfies the Fixed-Point
Theorem. In other words, given a recursive function f there is an index e such
that ψe ' ψf(e).

Proof. The only properties used in the proof of the Fixed-Point Theorem are
enumeration and parametrization. 2

Exercises II.5.5 a) A system satisfying enumeration alone is not necessarily ac-
ceptable. (Friedberg [1958]) (Hint: a recursive enumeration without repetitions of the
partial recursive functions, see II.5.23, does not satisfy II.5.6.)

b) A system satisfying enumeration and fixed-point, i.e. the existence of a recursive
function f such that, for ψi total, ψψi(f(i)) ' ψf(i), is not necessarily acceptable.
(Machtey, Winklmann and Young [1978]) (Hint: let ϕh(e) be a recursive enumeration
without repetitions of the partial recursive functions, see II.5.23. Then ψe ' ϕh(ϕe(0))

satisfies enumeration and fixed-point, the latter because ψe depends extensionally on
ϕe, and thus fixed-points transfer from ϕ to ψ. Note that any partial recursive
function is equal to ϕh(i) for a unique i, and then can be equal to ψe only when
ϕe(0) ' i: thus it has an r.e. set of indices w.r.t. ψ. But e.g. the completely undefined
function cannot have an r.e. set of indices in any acceptable system, and thus ψ is
not acceptable.)

c) A system satisfying enumeration and composition, i.e. the existence of a recur-
sive function c such that ψe ◦ ψi ' ψc(e,i), is acceptable. (Machtey, Winklmann and
Young [1978]) (Hint: by coding the arguments, parametrization can be reduced to
composition and its special case for sequence numbers, e.g. if ψf(x)(y) = 〈x, y〉 then

ψe(〈x, y〉) ' ψe(ψf(x)(y)) ' ψc(e,f(x))(y).

And f can be defined by successive compositions of the two functions g(y) = 〈0, y〉
and h(〈x, y〉) = 〈x+ 1, y〉.)

The results just proved show that the notion of a universal machine, em-
bodied in the enumeration property, is not sufficient for elementary Recursion
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Theory: it has to be supplemented with the notion of subcomputation, through
the possibility of either effectively incorporating data into a program (expressed
by the parametrization property), or effectively concatenating programs (ex-
pressed by composition). On the other hand, the Fixed-Point Theorem, and
thus the possibility of having self-referential programs (so-called recursive pro-
grams), does not appear to be as fundamental.

Notice that enumeration and parametrization imply, among other things, a
back and forth translation between the function spaces

ωn × ωm → ω and ωn → (ωm → ω).

Indeed, a partial recursive function of n + m variables becomes, by parame-
trization, a partial recursive function of n variables, whose values are (indices
of) partial recursive functions of m variables. Conversely, any partial recursive
function of n variables whose values are indices of partial recursive functions
of m variables becomes, by enumeration and composition, a partial recursive
function of n+m variables.

To the reader acquainted with Category Theory (Mac Lane [1971]), this is
reminiscent of the typical property of cartesian closed categories, i.e. those
categories in which the sets of morphisms between objects are at the same
level of the objects themselves. More precisely, in a cartesian closed category
products A×B and exponents BA (which generalize the notions, respectively,
of cartesian product of A and B, and of sets of functions from A to B) nicely
commute, in the sense that the following sets of morphisms are isomorphic, in
a natural way:

Hom(A×B,C) and Hom(A,CB).

For a development of Recursion Theory from a categorical point of view, see
Eilenberg and Elgot [1970], and Di Paola and Heller [1987].

We still have to analyze the role of the Padding Lemma. For explicitly
given systems of indices (like the ones induced by the approaches to partial
recursiveness of Chapter I and Section II.1) this property holds trivially, and
it simply amounts to adding redundant information in the given description
of the function. But having infinitely many indices in one acceptable system
does not help in another one, since the translations provided by the definition
of acceptability are not necessarily one-one. Nevertheless, the result holds in
general.

Proposition II.5.6 Padding Lemma (Rogers [1958]) In any acceptable
system, given one index of a partial recursive function, we can effectively gen-
erate infinitely many indices of the same function.

Proof. It is enough to show that, given α partial recursive and D finite set of
indices for it in the acceptable system ψ, we can effectively find an index for α
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which is not in D. Define, by parametrization, a recursive function f such that

ψf(e) '
{
α if e 6∈ D
undefined otherwise.

By the Fixed-Point Theorem for ψ, there is e such that ψe ' ψf(e). Now two
cases may occur:

• e 6∈ D
Then we must be in the first case of the definition of f , and hence
ψe ' ψf(e) ' α. Thus e is an index of α which is not in D.

• e ∈ D
Now we must be in the second case of the definition, and ψe is the com-
pletely undefined function. But e, being in D, is an index of α, and thus
α is also completely undefined. Then we can play a symmetric game, this
time letting g be such that

ψg(a) '
{

constant 0 if a ∈ D
undefined otherwise.

By the Fixed-Point Theorem, there is a such that ψa ' ψg(a). Now it
cannot be the case that a ∈ D, otherwise (as above) α would be the
constant function 0, while we know it is completely undefined. Then we
must be in the second case, i.e. a 6∈ D and ψa is completely undefined.
Thus a is an index of α which is not in D. 2

Now we have, for acceptable systems of indices, all the results proved for
the standard one, but this does not guarantee that the same will remain true
for future results. We will now prove two general theorems, showing how much
any acceptable system must resemble the standard one. They will ensure that
acceptable systems are really very much alike.

The first theorem shows that any acceptable system, viewed as a sequence
of partial recursive functions

ψ0 ψ1 ψ2 · · ·

is nothing else than a recursive permutation of the standard sequence

ϕ0 ϕ1 ϕ2 · · ·

Theorem II.5.7 (Rogers [1958]) {ψe}e∈ω is an acceptable system of indices
if and only if there is a recursive permutation h such that

ψe(x) ' ϕh(e)(x).
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Proof. One direction obviously holds: if h exists, its inverse h−1 is also a
recursive permutation, and h and h−1 provide the needed translations of the
systems ψ and ϕ into each other.

Suppose now that ψ is acceptable: we define a recursive permutation h that
interchanges indices in ψ and ϕ. Since h has to be total, we ensure at even
stages that the least element not yet in the domain gets into it (by defining h
on it). Similarly, h has to be onto, and at odd stages we ensure that the least
element not yet in the range gets into it (by letting it be the value of h for some
argument). We then have to show how to ensure that h is both one-one and
a function. But h is a function when h−1 is one-one, and thus we will have a
symmetric construction that alternates steps to make h total and one-one, to
steps to make it onto and a function. We just show the steps that have to be
alternately taken. Suppose h is defined on x0, . . . , xn.

If we want to add one element to the domain of h (even stages), let e be
the least number not in {x0, . . . , xn}: we have to define h(e) in such a way
that h(e) 6∈ {h(x0), . . . , h(xn)} (to have h one-one), and ψe ' ϕh(e). Since ψ is
acceptable, given ψe we can effectively find an index of the same function w.r.t.
ϕ. The Padding Lemma II.1.6 ensures that we can effectively generate infinitely
many others, and thus one can be found that is not in {h(x0), . . . , h(xn)}. The
first such one is the needed value of h(e).

If we want to add one element to the range of h (odd stages), let y be the
least number not in {h(x0), . . . , h(xn)}: we have to define e in such a way that
e 6∈ {x0, . . . , xn} (since h has to be a function), and ψe ' ϕy. Then we will let
h(e) = y. Since ψ is acceptable, given ϕy we can effectively find an index of
the same function w.r.t. ψ. The Padding Lemma II.5.6 for ψ ensures that we
can effectively generate infinitely many others, and thus one can be found that
is not in {x0, . . . , xn}. The first such one is the needed value for e. 2.

The previous result is not completely satisfactory, because it misses the
basic duality of Recursion Theory (see p. 131). It translates a number when
it is a code of a function, but it leaves the same number untouched when this
behaves as a number (i.e. as an argument or a value). The next result shows
that any acceptable system is really the standard one, and merely works with
an appropriated reinterpretation of the numbers (with no distinction made on
whether they code programs or not). Thus the isomorphism provided here is
not an isomorphism of the sequence of function, but rather an isomorphism of
the underlying structure of the natural numbers.

Theorem II.5.8 (Blum) If {ψe}e∈ω is an acceptable system of indices, then
there is a recursive permutation h such that

h(ψe(x)) ' ϕh(e)(h(x)).
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Proof. There are actually two different things to ensure, namely two reinter-
pretations of the numbers, one taking care of the case when they are seen as
arguments and values, and the other when they are seen as codes for programs.
Moreover, the two have to coincide.

If we only had to define a recursive permutation h that produces the given
isomorphism on the numbers as codes for a given reinterpretation α of the
numbers as values and arguments, then we could simply proceed as in the pre-
vious theorem. Namely, let α−1 be any partial recursive function that inverts
α, i.e. any function that, given z, dovetails computations of α until it finds,
and outputs, a number x such that α(x) ' z. We have to ensure that

α(ψe(x)) ' ϕh(e)(α(x)),

and this can be restated as both:

ψe(x) ' α−1(ϕh(e)(α(x)))

and
ϕh(e)(z) ' α(ψe(α−1(z))).

If e has to be added to the domain of h, we use the fact that αψeα−1 is
partial recursive, and an infinite number of indices w.r.t. ϕ for it can then
effectively be found.

If y has to be added to the range of h, we use the fact that α−1ϕyα is partial
recursive, and an infinite number of indices w.r.t. ψ for it can then effectively
be found.

Thus, given any partial recursive function α, we obtain, uniformly in it, a
recursive permutation hα that satisfies the given conditions. If we could start
with a function α equal to the function hα we obtain from it, then we would
have what we want. That this can be done is ensured by the Fixed-Point
Theorem. Formally, given α ' ϕz, let ϕf(z) ' hα be the recursive permutation
obtained from it:

ϕz(ψe(x)) ' ϕϕf(z)(e)(ϕz(x)).

Let a be such that ϕa ' ϕf(a). Then ϕa is a recursive permutation such that

ϕa(ψe(x)) ' ϕϕa(e)(ϕa(x)),

as wanted. 2

We thus see that acceptable systems of indices provide the same structure
theory for recursive functions as the standard one we have been using so far,
and from now on we will just suppose that ϕne is any acceptable system. In
particular, any of the approaches to partial recursiveness (Chapter I and Section
II.1) would be a perfectly adequate basis for Recursion Theory.
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For more on acceptable systems of indices see Rogers [1958], Lachlan [1964],
Schnorr [1975], Hartmanis and Baker [1975], Schinzel [1977], Machtey, Winkl-
mann and Young [1978], and Hartmanis [1982].

Axiomatic Recursion Theory ?

The central role of enumeration and parametrization, and the fact that they are
purely algebraic properties seemingly having nothing to do with computations,
suggest their use in an axiomatic treatment of the part of Recursion Theory
developed so far for abstract domains and collections of partial functions over
them.

Wagner [1969] and Strong [1968] introduce the notion of Basic Recursive
Function Theory BRFT as a structure 〈D,F , {ϕn}n∈ω〉, with D an infinite
set, F a set of partial functions on D, and ϕn an n + 1-ary function of F
enumerating (over D) the n-ary functions of F . Moreover, F contains the
identities, the constant functions on D, a function

f(x, a, b, c) =
{
b if x = a
c otherwise

(for case definition), all the ϕn, and parametrization functions. The notion of
BRFT can be variously polished (see e.g. Moschovakis [1971], for an alternative
equivalent notion of precomputation theory).

BRFT basically captures the essence of elementary Recursion Theory , that
is, the part that does not explicitly involve the notion of length of computation
(like the proof of the Reduction Property II.1.23). It thus appears that this
part of Recursion Theory does not use any particular property of the set of
natural numbers (like being countable, well-ordered, etc.).

A particularly interesting special case is the one of ω-BRFT, where D is
ω, and the successor function is in F . It is not surprising (see p. 158) that
every ω-BRFT contains all partial recursive functions: this means that the
partial recursive functions, together with an acceptable system of indices, are a
minimal ω-BRFT. Thus the axiomatization extends the properties of the class
of partial recursive functions to bigger classes. The result holds in general, and
provides a connection between the axiomatic approach and computability on
abstract structures (see p. 202): the minimal BRFT on an abstract domain is
the set of prime computable functions over it (Moschovakis [1971]).

A strengthening of II.5.3 shows that any two ω-BRFT with the same set F of
partial functions are mutually translatable by functions in F , in the sense that,
given 〈ω,F , {ϕn}n∈ω〉 and 〈ω,F , {ψn}n∈ω〉, there are, for every n, functions f
and g in F such that

ϕn(e, x1, . . . , xn) ' ψn(f(e), x1, . . . , xn)
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ψn(e, x1, . . . , xn) ' ϕn(g(e), x1, . . . , xn).

A strengthening of II.5.8 shows that any two such ω-BRFT are isomorphic
as structures (Friedman [1971]), in the sense that there is a one-one, onto
function i (in F) such that, for every n,

i(ϕn(e, x1. . . . , xn)) ' ψn(i(e), i(x1), . . . , i(xn)).

In particular, there is only one ω-BRFT with the set of all partial recursive
functions as the set of partial functions, up to recursive isomorphism, see II.5.8.
Note that these ω-BRFT ’s are exactly the ones corresponding to acceptable
systems of indices. On the other hand, Friedman [1971] shows that there are
uncountably many ω-BRFT’s with the set of total recursive functions as the set
of total functions.

As we have noted, BRFT captures only elementary Recursion Theory. As a
first step toward an extension that also covers arguments like II.3.16, Moschova-
kis [1971] introduces the notion of computation theory, basically by adding
the primitive notion of length of computation, and postulating the fact that
the computation of ϕSm

n (e,~x)(~y) takes longer than the computation of ϕe(~x, ~y).
Then the First Recursion Theorem becomes provable in a computation theory,
as in II.3.16. An equivalent formulation of computation theory, based on the
primitive notion of immediate subcomputation, is given by Fenstad [1974].

For more information on BRFT and computation theories, see Barendregt
[1975], Fenstad [1980], Beeson [1985], Byerly [1985].

To consider abstract domains and collections of functions over them is tak-
ing the point of view of Category Theory. Not surprisingly, Recursion Theory
can be formulated and developed in this setting, see Eilenberg and Elgot [1970]
for the basics, and Di Paola and Heller [1987] for the consequences of enumer-
ation and parametrization.

Models of λ-calculus (part II) ?

We have seen (p. 84) that the two combinators

S = λxyz. xz(yz) and K = λxy. x

allow us to define a version of λ-abstraction, and thus to interpret λ-terms as
combinators built up from S and K. Conversely, combinators built up from S
and K can be naturally translated into λ-terms. This suggests the introduc-
tion of a first-order theory with equality, called combinatory logic, with two
primitive symbols S and K, an application operation between terms (written
as left-associative juxtaposition), and with axioms reflecting the behavior of S
and K:

Kxy = x and Sxyz = xz(yz).
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Then combinatory logic and λ-calculus can be interpreted one in the other,
although (without additional assumptions, such as extensionality) the inter-
pretations are not inverses.

Models of combinatory logic can be easily defined: a combinatory algebra
is a structure (A, · , k, s), with · a binary operation, and k and s distinct elements
of A satisfying the axioms above. An extensional combinatory algebra is
a combinatory algebra such that, whenever a · c = b · c for every c in A, a and
b are equal.

The notions of combinatory logic and combinatory algebra can be easily
extended to allow for partial application, with strong equality = substituted
by a partial one ' (Klop [1982], see Beeson [1985] for details). Then the
structure (ω, ·), with partial application defined as

e · x ' ϕe(x),

is a partial combinatory algebra, because there are numbers k and s such that

ϕk(x, y) ' x and ϕs(x, y, z) ' ϕϕx(z)(ϕy(z)).

By II.5.8, this structure is independent (up to recursive isomorphism) of the
acceptable system {ϕe}e∈ω. Since only enumeration and Smn -Theorem are used
to determine s and k, any ω-BRFT is naturally interpreted as a partial combi-
natory algebra, and thus provides a model of partial combinatory logic.

Models of partial combinatory logic are not automatically models of
λ-calculus. A first problem is that application is total in the latter, and thus
only total combinatory algebras are eligible (but this could be solved by defin-
ing a version of partial λ-calculus). A more serious problem is due to the fact
that the translations of λ-calculus and combinatory logic are not inverses. The
solution here consists of additional requirements that force the interpretation
of λ-terms defined in a total combinatory algebra to more fully reflect the
structure of λ-terms. There are various possibilities.

1. Clearly, a model of λ-calculus should identify terms that are equal (mod-
ulo α or β reductions). A combinatory algebra that preserves equality of
λ-terms is called a λ-algebra.

2. Unfortunately, a λ-algebra does not necessarily satisfy the requirement
that terms behaving the same way (i.e. such that Mx = Nx for every
x) are equal as functions (i.e. λx.Mx = λx.Nx), a kind of weak exten-
sionality that is obviously valid in λ-calculus. A λ-algebra which is also
weakly extensional in this sense is called a λ-model, and this notion is
considered to be the correct notion of model (Scott [1980a], Meyer [1982]).

3. A stronger notion of extensionality is that terms that behave the same
way are equal not only as functions, but as terms. An extensional
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combinatory algebra satisfies this, and can actually be interpreted as
a λ-model (and actually as a model of extensional λ-calculus, see p. 83)
in a unique way. Recall that, in this case, the translations of λ-calculus
and combinatory logic are inverses.

Not every combinatory algebra can be extended to a λ-model and, when it
can, the extension is not necessarily unique. Typical examples of combinatory
algebras which are λ-models in a unique way are D∞ and P(ω) (p. 194). The
former, but not the latter, is also an extensional combinatory algebra.

For a treatment of this topic, see Barendregt [1981], Beeson [1985], Hindley
and Seldin [1986]. See also Byerly [1982], and Freyd and Sčedrov [1987].

Indices for recursive and finite sets

Recursive and finite sets, being r.e., have r.e. indices which code ways to gen-
erate them. But they also have special properties that allow for different rep-
resentations.

Definition II.5.9 A recursive set A may be given three different types of in-
dices:

1. characteristic indices, i.e. the indices of its characteristic function.
We write A = Ce if ϕe ' cA.

2. complementary indices, i.e. the pairs of indices of the set and its
complement, as r.e. sets. We write A = Re, with e = 〈a, b〉, if A = Wa

and A = Wb.

3. r.e. indices, i.e. the indices of the set as an r.e. set.

Exercise II.5.10 Characteristic and complementary indices are equivalent , in the

sense that it is possible to go effectively from one to the other, and conversely. (Hint:

see II.1.19.)

Proposition II.5.11 (Suzuki [1959]) It is possible to go effectively from
complementary indices to r.e. indices of recursive sets, but not conversely.

Proof. The positive assertion is obvious. As a counterexample to the converse,
suppose there is ϕ partial recursive such that

We recursive ⇒ ϕ(e)↓ ∧We = Rϕ(e).

Then there is also ψ partial recursive such that

We recursive ⇒ ψ(e)↓ ∧We = Wψ(e).
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Let f be a recursive function such that

Wf(e) =
{
ω if e ∈ K
∅ otherwise.

Then Wf(e) is always recursive, so ψf(e) is total and

Wψf(e) =
{
∅ if e ∈ K
ω otherwise.

Hence
e ∈ K ⇔ Wψf(e) is nonempty,

and K would be r.e., contradicting II.2.3. 2

Exercise II.5.12 There is no partial recursive function ϕ such that

We recursive ⇒ ϕ(e)↓ ∧ (∃i ≤ ϕ(e))(Wi = We).

Thus not only can an r.e. index for the complement of a recursive set not be found

effectively, it cannot even be bounded effectively. (Gold [1967]) (Hint: define Wh(e)

to contain an element from each nonempty Wi, for i ≤ ϕ(e), so that its complement

cannot be any of the Wi, and apply the Fixed-Point Theorem.)

The content of the results just proved is that the characteristic function
of a recursive sets and a pair of enumerations of it and its complement have
the same information, while a simple enumeration of the set is less informative
than both.

Note that proposition II.2.1 shows that there is no recursive function which
enumerates at least one characteristic index for each recursive set, and that the
set

Char = {x : ϕx is total and 0,1-valued }

is not r.e. Different results hold for r.e. indices. By II.5.19 it is still true that
the set

Rec = {x : Wx is recursive }

is not r.e. (a computation of its complexity will be given in Chapter X). But
a recursive function does exist that enumerates at least one r.e. index for each
recursive set (II.5.26).

Definition II.5.13 A finite set A may be given three different types of indices:

1. canonical index, i.e. a number explicitly coding all the elements of the
set. We write A = De if e = 2x0 + · · · + 2xn , and A consists of the
distinct elements x0, . . . , xn. By convention, D0 = ∅.
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2. characteristic indices, i.e. the indices of its characteristic function.
We write A = Ce if ϕe ' cA.

3. r.e. indices, i.e. the indices of the set as an r.e. set.

The requirement, in the definition of De, that the xi be distinct is needed to
have unique decompositions. Also, note that a canonical index, when written in
binary expansion, simply codes (from left to right) the relevant finite segment
of the characteristic function of a finite set. E.g. e = 1001101 codes the set
D77 = {0, 2, 3, 6}.

As it might be imagined, canonical, characteristic and r.e. indices are in-
creasingly less effective, and give less and less information on the sets they
code:

Proposition II.5.14 (Rogers [1967]) It is possible to go effectively from
canonical indices to characteristic indices, and from characteristic indices to
r.e. indices, but not conversely.

Proof. The positive directions are obvious. Suppose it is possible to go effec-
tively from characteristic indices to canonical ones, i.e. that for some partial
recursive function ψ:

ϕe characteristic function of a finite set A ⇒ ψ(e)↓ ∧ A = Dψ(e).

Define a recursive function g such that ϕg(e) is the characteristic function of a
nonempty finite set if e ∈ K, and of ∅ otherwise, e.g.

ϕg(e)(x) '
{

1 if e = f(x)
0 otherwise

where f is a one-one enumeration of K. Then ψg(e) is total, and

e ∈ K ⇔ Dψg(e) = ∅ ⇔ ψg(e) = 0,

and K would be recursive.
Similarly, suppose that, for some partial recursive function ψ,

We finite ⇒ ψ(e)↓ ∧ ϕψ(e) characteristic function of We.

If

Wg(e) =
{
{e} if e ∈ K
∅ otherwise

then ψg(e) is total, and again K would be recursive, since

e ∈ K ⇔ ϕψg(e)(e) ' 0. 2
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Exercise II.5.15 The r.e. indices may be arbitrarily smaller than the canonical ones:
if h is recursive, there are x, y such thatWx = Dy and y > h(x). Thus less information
is more easily coded. (Hint: given h, let

Wg(x) = {1 +max(
⋃

z≤h(x)

Dz)},

and apply the Fixed-Point Theorem.)

As already for the r.e. indices of recursive sets, by II.5.19 the set

Fin = {x : Wx is finite }

is not r.e. A computation of its complexity will be given in Chapter X.
The next definition introduces useful terminology, that we will use repeat-

edly.

Definition II.5.16 An array is an r.e. set whose elements code finite sets.
It is called:

1. weak if its elements are viewed as r.e. indices

2. strong if its elements are viewed as canonical indices

3. disjoint if its elements code pairwise disjoint, finite sets.

A strong array is nothing more than a weak array together with a recursive
function giving the cardinality of the members of the array. Since, if we know
how to enumerate a set and how many elements there are in it, then we can
obtain all its elements: enumerate the set, until the right number of elements
has been generated.

We will still call a (weak or strong) array the collection of finite sets coded
by the elements of a given (weak or strong) array.

Exercise II.5.17 There are weak arrays which are not strong . (Hint: let A be r.e.

and nonrecursive, and An = {z : z ∈ A ∧ z ≤ n}.)

Enumerations of classes of r.e. sets

In this section we consider classes of r.e. sets, and possible ways of enumer-
ating them. Some of the results we prove could also be stated for classes of
partial recursive functions, but the consideration of r.e. sets sometimes allows
for smoother formulations and proofs.

Definition II.5.18 (Dekker [1953a], Rice [1953]) A class A of r.e. sets is
called:
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1. completely r.e. if its index set (i.e. the set containing all indices of each
member of A) is r.e.

2. r.e. if there is a recursive function f which enumerates at least one index
of each member of A, i.e. A = {Wf(x)}x∈ω.

3. r.e. without repetitions if there is a recursive function f which enu-
merates exactly one index of each member of A, i.e.

A = {Wf(x)}x∈ω and (Wf(x) = Wf(y) ⇒ x = y).

The characterization of completely r.e. classes of r.e. sets is the same as
that of completely r.e. classes of partial recursive functions (see II.4.2), and we
leave the routine modification of the proof to the reader.

Proposition II.5.19 (Myhill and Shepherdson [1955], McNaughton,
Shapiro) A class of r.e. sets A is completely r.e. if and only if it consists of
the r.e. supersets of the elements of a strong array, i.e. for some r.e. set A:

Wx ∈ A ⇔ (∃y)(y ∈ A ∧Dy ⊆ Wx).

We can now show that a number of classes of r.e. sets are not completely r.e.
For example: any finite class, any class containing only finite (or only infinite)
sets, the class of recursive sets (since any finite set admits an r.e. nonrecursive
extension), and so on. On the other hand, the class of the r.e. supersets of
finitely many finite sets is completely r.e.

Exercises II.5.20 a) Not every completely r.e. class is the class of the r.e. supersets
of the elements of a recursive strong array . (Rice [1956]) (Hint: let A be the class of
r.e. supersets of the strong array {{x} : x ∈ K}.)

b) There is a completely r.e. class such that any strong array that generates it must
contain superfluous information. (Rice [1956]) (Hint: the only array not containing
superfluous information is the core, i.e. the set of minimal finite sets belonging to the
class. Let A be the class of r.e. supersets of the finite sets {f(x), f(x)+1, . . . , f(y)−1}
for f(x) < f(y), with f recursive one-one function enumerating an r.e. nonrecursive
set B containing 0. Then the core of A is not r.e., otherwise B would be recursive.)

c) Not every class consisting of the r.e. supersets of the elements of a weak array

is completely r.e. (Myhill and Shepherdson [1955]) (Hint: there is an r.e. set A which

is hypersimple but not hyperhypersimple, see III.4.12. Then there is a disjoint weak

array B, but no disjoint strong array, whose members intersect A. Let A be the class

of r.e. supersets of the elements of B.)

We turn now to r.e. classes. Obviously, the class of r.e. sets is r.e. (any
number codes an r.e. set), but there seems to be no natural way to extract an
enumeration without repetitions.
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Exercise II.5.21 There is no invariant recursive choice function for indices of r.e.
sets, i.e. a recursive function f such that f(e) is an index of We, and

Wi = We ⇒ f(i) = f(e).

(Hint: suppose f exists, and let

Wg(e) =

{
ω if x ∈ K
∅ otherwise.

For any a ∈ K, e ∈ K ⇔ fg(e) = fg(a), and K would be recursive.)

Nevertheless, we have the following result.

Theorem II.5.22 (Friedberg [1958]) The class of r.e. sets is r.e. without
repetitions.

Proof. A natural idea would be to pick up, for each r.e. set, its minimal index,
but we know from the exercise that this cannot be done recursively. The idea
of the proof is to try anyway, with an indirect approach: we simulate each r.e.
set, until we discover that it looks too much like some other r.e. set with a
smaller index, in which case we drop the finite approximation of the former.
By doing so, we actually introduce a number of additional finite sets to the
original enumeration of the r.e. sets, but this does not interfere with our goal
as finite sets are r.e. anyway.

Consider any acceptable enumeration {Wx}x∈ω of the r.e. sets, such that
W0 = ω. We are going to define an r.e. sequence {Sx}x∈ω of r.e. sets, in
which every r.e. set appears exactly once (the existence of f recursive such
that Sx = Wf(x) will follow by the Smn -Theorem, since the sequence Sx is r.e.).
Since we enumerate the sets Sx’s, we let Sx,s be the part of Sx enumerated by
the end of stage s. We call x a follower of e if we try to make, in the end,
Sx = We. If and when we decide, for whatever reason, that we no longer want
to pursue Sx = We, we release x, and x will never return to be a follower. If,
instead, x is never released, it is a permanent follower. At any stage each e has
at most one follower, and x is called unused at a certain stage if at that stage
it is not, and has never been, a follower.

The construction starts by letting 0 be a follower of 0 (i.e. we try to make
S0 = W0), and Sx,0 = ∅.

At step n+ 1, suppose x is a follower of e (hence, by construction, we have
Sx,n = We,n). We release it in the following situations:

1. for some i < e, Wi,n and We,n look the same up to x (i.e. for each z ≤ x),
the reason being that e does not look as a minimal index for We up to x.
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2. x > 0 and, for some y already released, Sx,n = Sy,n, the reason being
that We might just be the finite set Sy,n = Sy, and e might be a minimal
index for it, so if we let x continue to be a follower of e we would get, in
the end, Sx = Sy.

Note that 0 is never released. If x has just been released, Sx will not change
anymore after this stage. Since we want to have all the Si’s distinct, let b be
an element larger than

⋃
e∈ω Se,n (which is a finite set), and let

Sx = Sx,n+1 = {z : z < x+ b}.

Certainly Sx is different from all the other sets at this stage, and Sx,n ⊆ Sx.
To keep things going we have to add followers, at least from time to time,

to elements that do not have them: e.g. we assign the smallest unused element
as a follower to e, if e does not have one (either because it never did, or because
it lost it) and n = 〈e, t〉 (so that e gets infinitely many chances to receive a
follower).

Finally, if x is a follower of e at this stage, we let

Sx,n+1 = We,n+1.

We now prove that the construction works.

1. every r.e. set appears at least once: ∀e∃x(We = Sx).
We may suppose that e is a minimal index. Then there is a stage n0 such
that

(∀n ≥ n0)(∀z ≥ n0)(∀i < e)(Wi,n and We,n look different up to z).

If e has a permanent follower x, then Sx = We. And this must be the case,
otherwise e keeps on getting new followers that sooner or later become
released. After stage n0 the only possibility for release is the second one,
and this means that for each follower x there is a stage n and a released
element y such that

We,n = Sx,n = Sy,n = {z : z < cy}

for increasingly big cy’s. Hence We = ω and, by minimality of e, e = 0.
But 0 has a permanent follower, namely 0.

2. every r.e. set appears at most once: x 6= y ⇒ Sx 6= Sy.
By construction no element is always unused (there are infinitely many
r.e. sets, and we always choose as followers the smallest unused elements).
So four cases may happen, for different x and y:
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• both are permanent followers, say Sx = We and Sy = Wi

Since an index has at most one permanent follower, i 6= e. Suppose
e.g. that i < e. If Sx = Sy then Wi = We, so there is n0 such that

(∀n ≥ n0)(Wi,n and We,n look the same up to x).

Then x is released at stage n+ 1, contradiction.

• both x and y are released
If they are released at the same stage then Sx 6= Sy, because (for
the appropriate b) x+ b 6= y+ b. If e.g. x is released after y is, then
(for the appropriate b) b ∈ Sx but b 6∈ Sy.

• one is released and the other is permanent
Say x is released and y is permanent. If Sx = Sy then Sy is finite,
so y 6= 0 (since S0 = ω). Hence, at some stage n, Sx,n = Sy,n and y
is released at stage n+ 1, contradiction. 2

The method of proof just used (where, as II.5.21 shows, release of followers
is not avoidable) is a weak version of the priority method, in which there are
requirements, positive (trying to put elements in a set) or negative (trying to
leave them out), that have to be satisfied, and actions to satisfy one type might
interfere with the satisfaction of the other type. Here the positive requirements
try to putWe in the enumeration, while the negative requirements tend to make
the Sx’s distinct. The crucial fact is that the action to satisfy a given positive
requirement can be interfered with (by releasing a follower) only finitely often,
and thus the construction succeeds. The priority method will be introduced
and fully exploited in Chapter X.

Exercises II.5.23 a) The class of partial recursive functions is r.e. without repeti-
tions. (Friedberg [1958]) (Hint: start with an enumeration of the partial recursive
functions, given by their graphs, and make the set Sx different from all the other Si’s
as a partial function, instead of simply as a set, when x is released.)

b) An r.e. class A = {Ax}x∈ω of disjoint, nonempty r.e. sets is r.e. without repe-

titions if and only if it satisfies the effective choice principle, i.e. there is a recursive

function f such that f(x) ∈ Ax, and Ax = Ay ⇒ f(x) = f(y). (Pour El and Howard

[1964])

Corollary II.5.24 (Pour El and Putnam [1965]) Every r.e. class contain-
ing all finite sets is r.e. without repetitions.

Proof. The proof above did not use any assumption about the r.e. sets, except
the fact that they are an r.e. class containing all finite sets and ω. Given any
r.e. class containing the finite sets, augment an enumeration of it by putting ω
in the first place: the proof above will give an enumeration without repetitions
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of its elements. If ω was not in the given class, it is enough to drop the first
element from the newly obtained class. 2

Some more criteria for enumeration without repetitions are in Pour El and
Howard [1964], Lachlan [1965a], [1967], Khutorezkii [1969], and Marchenkov
[1971]. The one just given by the corollary provides a number of examples, in
view of the fact that the r.e. classes containing all finite sets are completely
characterized by the following result (expressed in terms of a classification of
sets introduced in Chapter IV, see IV.1.6).

Proposition II.5.25 (Yates [1969]) A class of r.e. sets containing all finite
sets is r.e. if and only if its index set is Σ0

3.

Proof. If A = {Wf(x)}x∈ω then

We ∈ A ⇔ ∃x(We = Wf(x))
⇔ ∃x∀y(y ∈ We ↔ y ∈ Wf(x))
⇔ ∃x∀y[(y ∈ We → y ∈ Wf(x)) ∧ (y ∈ Wf(x) → y ∈ We)]

and θA is Σ0
3.

Conversely, suppose A contains all finite sets, and θA is Σ0
3, i.e.

We ∈ A ⇔ ∃x∀y∃zR(e, x, y, z),

with R recursive. Define

t ∈ A〈e,x〉 ⇔ t ∈ We ∧ (∀y ≤ t)(∃z)R(e, x, y, z).

If A〈e,x〉 is finite, then it is in A by hypothesis; if it is infinite, then it is in A
because A〈e,x〉 = We ∈ A. Finally, if We ∈ A then ∀y∃zR(e, x, y, z), for some
x, and so We = A〈e,x〉. Thus A = {A〈e,x〉}e,x∈ω, and A is r.e. 2

A particularly interesting example of r.e. class is the one of recursive sets.
This follows from the criterion just given, but it can be easily proved directly:

Proposition II.5.26 (Muchnik [1958a], Suzuki [1959]) The class of re-
cursive sets is r.e. (without repetitions).

Proof. Let Wf(e) be the following r.e. set, obtained uniformly from e: gener-
ate We, and put a new element appearing in it in Wf(e) only if it is greater
than all the elements which are already in Wf(e). Each Wf(e) is either finite or
enumerated in increasing order, hence recursive by II.1.17. And each recursive
set has an index coding the instructions to enumerate it in increasing order,
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and so it appears among the Wf(e)’s. Since every finite set is recursive, from
simple enumerability we get enumerability without repetitions, by II.5.24. 2

What the proposition tells us is that the recursive sets are uniformly r.e.,
in the sense that there is an r.e. relation R(e, x) such that, while e ranges over
ω, the set {x : R(e, x)} ranges over the recursive sets, and each recursive set
is {x : R(e, x)}, for some e. Obviously, by diagonalization and closure with
respect to complementation, the recursive sets are not uniformly recursive.

Also, the result just proved shows that there is an r.e. subset of Rec (defined
on p. 226), which contains at least one index of each recursive set, although the
set Rec is not itself r.e. (by II.5.19). On the other hand, no such property holds
for characteristic indices of recursive sets in place of r.e. indices, by II.2.1.

Exercises II.5.27 a) The classes of the infinite r.e. sets and of the infinite recursive
sets are not r.e. (Uspenskii [1955], [1957], Dekker and Myhill [1958a]) (Hint: if they
were, an infinite recursive set intersecting each element of the given class could be
built by enumerating it in increasing order.)

b) The class of the coinfinite r.e. sets is not r.e. (Hint: criterion II.5.25 can be

applied, but it is difficult to show that the index set of this class is not Σ0
3. See Chap-

ter X for a proof. A direct diagonalization is easier, although not trivial, and again

requires the priority method introduced in Chapter X. Elements from complements

of r.e. sets, instead of from the sets themselves, are needed. Positive requirements

ask for a nonempty intersection with the complement of each set in the class, and

negative requirements ask for the infinity of the complement of the set thus built.)

We briefly discuss now classes of finite sets, which are at the opposite ex-
treme of those taken care of by the criterion II.5.25.

Proposition II.5.28 (Lachlan [1965a], Pour El and Putnam [1965])
There is a class of finite sets which is r.e. (and it actually admits an enumer-
ation in which every element has at most two indices), but is not r.e. without
repetitions.

Proof. Let R2x, R2x+1 be generated as follows:

• R2x: put 2x in it, then generate K and, if x ∈ K, add 2x+ 1.

• R2x+1: put 2x+ 1 in it, then generate K and, if x ∈ K, add 2x.

Then:

• if x ∈ K, R2x = R2x+1 = {2x, 2x+ 1}

• if x 6∈ K, R2x = {2x} and R2x+1 = {2x+ 1}.
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If there were an enumeration without repetitions of A = {Re}e∈ω then K would
be r.e., since x ∈ K if and only if there are two sets in the enumeration, one
with 2x in it, the other with 2x+ 1. 2

Exercises II.5.29 (Pour El and Putnam [1965]) a) For every n ≥ 1, there is an r.e.
class of finite sets which is r.e with at most n+ 1 repetitions, but not with at most n
repetitions. (Hint: use sets with at most n+ 1 elements.)

b) There is an r.e. class of finite sets which is r.e. with at most finitely many
repetitions, but not with at most n repetitions, for any fixed n. (Hint: use sets with
unbounded cardinality.)

c) Every r.e. class of disjoint finite sets is r.e. with finitely many, possibly un-
bounded, repetitions.

d) There is an r.e. class of finite sets which is not r.e. with at most finitely many
repetitions. (Hint: instead of considering, as above, an r.e. nonrecursive set, consider
a set Σ0

2 −Π0
2, see IV.1.13.)

e) There is no r.e. class of finite sets such that every enumeration of it repeats
each element infinitely often. (Hint: if A is r.e. and A ∈ A is finite, then A − {A}
is still an r.e. class, since we can simply enumerate the elements of A which contain
some element which is not A.)

For more on this topic see Pour El and Putnam [1965], Young [1966], and Florence

[1967], [1969], [1975].

Exercises II.5.30 Standard classes of r.e. sets. (Lachlan [1964a]) An r.e. class
A = {Sx}x∈ω of r.e. sets is standard if, whenever We ∈ A, Se = We. Thus standard
classes are r.e. classes indexed in the same way as the class of the r.e. sets.

a) The Fixed-Point Theorem holds for standard classes. (Hint: let f be a recursive
function such that Sx = Wf(x). Given Sg(x) with g recursive, by the Fixed-Point
Theorem there is e such that Sg(e) = Wfg(e) = We. Then We ∈ A and We = Se, i.e.
Sg(e) = Se.)

b) The class {∅, A}, with A nonempty r.e. set, is standard . (Hint: define Wf(x)

as ∅ or A, depending on whether Wx is empty or not.)
c) If a standard class contains a finite set, it contains a least member . (Hint: let

A be a finite set in A, and consider the supersets of A, and the sets intersecting A:
since they are complementary classes, by an analogue of Rice’s Theorem for A their
union can cover A only if one of them does already. Since A is in A, either A is the
least member of A, or a finite subset of it is in A.)

d) A finite class is standard if and only if it has a least member . (Hint: suppose
A = {A1, . . . , An}, and choose finite subsets Bi of Ai such that

Bi ⊆ Aj ⇔ Ai ⊆ Aj

Bi ⊆ Bj ⇔ Ai ⊆ Aj .

If A is standard, as in c) we can show that it has a least member, by considering
the supersets of the B’s. And if A has a least member Ai0 , then we may suppose
Bi0 = ∅, and construct a standard enumeration by letting Se be the union of the A’s
corresponding to a maximal strictly increasing sequence of B’s included in We.)
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e) A strong array is a standard class if and only if there is no infinite r.e. set which
is the union of an increasing sequence of members of the array . (Hint: one direction
is like part d) above, by letting A = {Ax}x∈ω, A0 = ∅ and Bi = Ai. We may suppose
that ∅ is in A, since by b) above there is a least member, and the class obtained by
subtracting it to every element of A is still standard. For the other direction, let C be
an infinite r.e. set which is the union of an increasing sequence of members of A. We
may suppose C =

⋃
x∈ω Cx, for a strong array {Cx}x∈ω of members of A. Consider

Wf(e) = C0 ∪
⋃
{Cn+1 : Cn ⊆ Ae},

and choose e such that Wf(e) = We. Then We is finite by definition of f , but at the

same time it should also, inductively, include every Cn, and hence C.)

We conclude by giving the relationships among the various concepts of
enumerability for classes of r.e. sets:

Proposition II.5.31 (Pour El and Howard [1964])

1. Any completely r.e. class is r.e. without repetition, but not conversely.

2. Any class r.e. without repetitions is r.e., but not conversely.

Proof. Let A be completely r.e.: then A is the class of r.e. supersets of a
strong array. To get an enumeration of A without repetitions, start with such
an enumeration {Sx}x∈ω for the r.e. sets, and put in the new enumeration of
A only the Sx’s for which it is discovered that they extend one element of
the strong array, in a dovetailed generation of each Sx and of the elements of
the strong array. Thus a completely r.e. class is r.e. without repetitions. The
converse does not hold, as the example of recursive sets shows (see II.5.26).

A class r.e. without repetitions is obviously r.e., but the converse does not
hold, as II.5.28 shows. 2

The Theory of Enumerations ?

The results of the last subsection suggest the possibility (proposed by Kol-
mogorov) of a systematic study (begun by Uspenskii [1955], [1955a], [1956]) of
the recursive enumerations of an r.e. class A of r.e. sets, defined as functions
ν : ω onto−→ A such that the sets Wν(x) are uniformly r.e. Given two such enu-
merations ν0 and ν1, we let

ν0 ≤ ν1 if there is a total recursive function f such that ν0 = ν1 ◦ f
ν0 ≡ ν1 if ν0 ≤ ν1 ∧ ν1 ≤ ν0.

Then ≡ is an equivalence relation (already used in II.5.3). L◦(A) is the struc-
ture of equivalence classes of the r.e. enumerations of A, partially ordered by
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the order induced by ≤. The Theory of Enumerations studies the algebraic
structure of L◦(A), for any class A. Its emphasis is thus somewhat opposite to
that of BRFT (p. 222), being on subclasses of the class of r.e. sets, instead of
on superclasses of it.

The scattered results of this section can be seen in a new light in this frame-
work. Call ν principal if it is in the greatest element of L◦(A) (so that ν0 ≤ ν,
for every ν0), and minimal if it is in a minimal one (so that, for every ν0, if
ν0 ≤ ν then ν0 ≡ ν). Then, for the class of all r.e. sets, an enumeration is
principal if and only if it is acceptable, and is minimal if it is an enumeration
without repetitions. The enumeration without repetitions given by II.5.22 is
not the only possible one, up to equivalence: there are countably many other,
pairwisely inequivalent ones (Pour El [1964], Khutorezkii [1969]), and the di-
rected sum of some recursive family of them is acceptable (Schinzel [1977]). On
the other hand, there are also countably many, pairwisely inequivalent mini-
mal enumerations, which are not equivalent to enumerations without repeti-
tions (Ershov [1968b]). Finally, there are countably many, pairwisely inequiv-
alent enumerations, which do not bound minimal enumerations (Khutorezkii
[1969a]). Note also that the fact that the r.e. sets are not uniformly recursive
implies that there is no least enumeration (i.e. such that ν ≤ ν0, for every ν0).

The case of finite classes A has been thoroughly examined, and it is known
that the structure of L◦(A) depends only on the set-theoretical structure of
A under inclusion. Moreover, L◦(A) is a distributive uppersemilattice with
least and greatest element, and it is either trivial (a single element), or very
rich (having an ideal isomorphic to the structure of r.e. m-degrees, see Chapter
X). Since, for L◦(A) and L◦(A′) to be isomorphic, the number of minimal
elements (under inclusion) of A and A′ must be equal, there are countably
many isomorphism types, but a complete classification of them has not yet
been obtained.

The case of infinite classes A presents an even greater variety: not even the
greatest or the least element exist necessarily in L◦(A) (as shown, respectively,
by the classes of recursive sets, and of all the r.e. sets ). But, even in this case,
L◦(A) either has only one element (e.g. when A is a disjoint strong array), or
it is infinite and complicated (not linear and not a lattice).

A particularly useful notion is that of complete enumeration (Malc’ev
[1961], [1963], Lacombe [1965]). This is an enumeration of A for which there
exists an element e such that, whenever ϕ is a partial recursive function, there
is a total recursive function f such that

νf(x) =
{
νϕ(x) if ϕ(x)↓
e otherwise.

Clearly, for the class of all r.e. sets, the standard enumeration is complete (with
e = ∅). The classes A possessing a complete enumeration are exactly those
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containing a smallest set (Malc’ev [1964]). The interest of the notion comes
from the fact that it implies versions of (and thus it generalizes) the Fixed-
Point Theorem (for every recursive function f there is e such that νf(e) = νe),
of Rice’s Theorem (a subset A′of A has a recursive index set ν−1(A′) if and
only if it is trivial) and of the Padding Lemma (for every element a ∈ A, its
index set ν−1({a}) is infinite).

Lacombe [1960] and Malc’ev [1961] have suggested (with motivations from
constructive algebra) the extension of the notion of enumeration, from classes
of r.e. sets to any countable, nonempty set S. They drop effectiveness require-
ments, and consider as enumeration of S any function ν : ω onto−→ S. The
equivalence relation ≡ still makes sense, and L(S) is the set of equivalence
classes of enumerations of S: it is now an uppersemilattice, either trivial or
uncountable.

The theory has been here very successful: there are only three possible
isomorphism types for L(S), corresponding to cardinalities of S equal to 1,
finite and greater than 1, and infinite. In the first case there is only one
element. In the second, the structure has been characterized (Ershov [1975])
up to isomorphism, as a strongly universal uppersemilattice with a least element
(it is actually isomorphic to the structure of m-degrees, which is the special case
L({0, 1}), see VI.4.1). The last case differs from the other two, e.g. because
there is no least element.

For detailed treatments of the Theory of Enumerations see Lacombe [1965],
Malc’ev [1965], and Ershov [1977].

II.6 Retraceable and Regressive Sets ?

Chapter II has been characterized by the search for possible extensions of the
notion of recursiveness. Our last attempt is inspired by the property of recursive
sets of being effectively enumerable in increasing or decreasing order.

Consider a recursive set A = {a0 < a1 < a2 < . . . }. There are two recursive
functions f and g, such that:

1. f(an) = an+1, unless an is the maximum element of A, in which case
f(an) = an

2. g(an+1) = an and g(a0) = a0.

Exercise II.6.1 Property 1 is characteristic of the recursive sets, i.e. if there is a

recursive function f as above, then A is recursive. (Hint: use II.1.17)

It is natural to see if property 2 is also characteristic of recursive sets, and
if not, to study the sets which share this property with them.
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Definition II.6.2 (Tennenbaum, Dekker [1962])

1. If {a0, a1, a2, . . .} is an enumeration without repetitions of A, and ϕ is a
partial recursive function such that

ϕ(an+1) ' an and ϕ(a0) ' a0,

then A is called regressive via ϕ, and with respect to the given enumer-
ation.

2. Under the same conditions, and if the enumeration is in order of magni-
tude (principal enumeration), then A is called retraceable.

We stress the fact that the enumeration of A does not have to be recursive.

Exercises II.6.3 a) If A is retraced by ϕ, we can always suppose ϕ(x) ≤ x, whenever
ϕ(x) is defined .

b) If A is regressed by ϕ, we may always suppose range ϕ ⊆ domain ϕ and, when-

ever ϕ(x) is defined, ϕn(x) ' a0, for some n.

There is a surface analogy

r.e.
recursive

=
regressive

retraceable

and we now explore the extent to which it holds.

Retraceable versus recursive

The following notion will be helpful in our study:

Definition II.6.4 A set A is immune if it is infinite, but it does not contain
infinite r.e. subsets.

Note that, by II.1.20, an infinite set is immune if and only if it does not
contain infinite recursive subsets.

Proposition II.6.5 (Dekker and Myhill [1958])
Recursive ⇒ retraceable ⇒ recursive or immune.

Proof. If A is recursive, then there is a recursive function f which enumerates
it in increasing order, i.e.

A = {f(0) < f(1) < · · · }.
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It is then enough to define

ϕ(f(0)) ' f(0) ϕ(f(n+ 1)) ' f(n)

to have a partial recursive function retracing A. Actually, since f is increasing,
we can get ϕ total recursive, e.g. by letting it be 0 in the intervals between any
two successive values of f .

Let now A be retraceable (via ϕ) and infinite (if A is finite, it is certainly
recursive), and suppose A is not immune: then A has an infinite recursive sub-
set B. But then A is recursive: given x, find an element g(x) of B greater than
it (which exists and can be found recursively, because B is infinite and recur-
sive). Now g(x) is certainly in A (because B ⊆ A), and we can then repeatedly
apply ϕ to it, to generate the elements of A smaller than g(x) in decreas-
ing order, until one is repeated (which means we hit the smallest one). And x,
being smaller than g(x), is in A if and only if it is generated in this process. 2

We will see, in the subsection of existence theorems, that it is far from being
true that every retraceable set is recursive, but there is a nontrivial special case
in which this holds:

Proposition II.6.6 (Mansfield) If A and A are both retraceable, then A is
recursive.

Proof. The proof is in two steps:

1. If A and A are retraceable, so is the set

A⊕A = {2x : x ∈ A} ∪ {2x+ 1 : x ∈ A}.

The basic fact here is that exactly one element of each pair (2x, 2x + 1)
is in A⊕ A. Let ϕ and ϕ′ retrace A and A, respectively. Then A⊕ A is
retraced by ψ so defined:

ψ(2x) '
{

2x− 2 if ϕ(x) ' x− 1
2x− 1 if ϕ(x) ' x ∨ ϕ(x) < x− 1

ψ(2x+ 1) '
{

2x− 1 if ϕ′(x) ' x− 1
2x− 2 if ϕ′(x) ' x ∨ ϕ′(x) < x− 1.

Indeed, if x ∈ A then 2x ∈ A⊕A, and we need to define ψ(2x) as 2x− 1
or 2x− 2, depending on whether x− 1 is in A or in A. But the first case
happens when ϕ(x) ' x−1, and the second when either x is the smallest
element of A (and ϕ(x) ' x) or the next element of A in descending
order is smaller than x − 1 (and ϕ(x) < x − 1). The case x ∈ A, i.e.
2x+ 1 ∈ A⊕A, is symmetric, using ϕ′.
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2. If A⊕A is retraceable, A is recursive.
We prove that any set B retraceable and with exactly one element in
each pair (2x, 2x+ 1), is r.e. (and hence recursive: to know which one of
2x, 2x + 1 is in B, generate B until one of them appears). If ψ retraces
B, two cases are possible:

• If 2x, 2x + 1 are both sent by ψ onto the same element c (meaning
that some iteration of ψ on 2x is c, and similarly for some iteration,
not necessarily the same number of times, of ψ on 2x + 1), then
c ∈ B (because one of 2x, 2x+1 is in B). And then ψ automatically
generates every element of B smaller than c. Then, if there are
infinitely many pairs 2x, 2x + 1 as such it is enough to look for
them, and each of them will generate an initial segment of B, via ψ.

• If there are only finitely many such pairs, let b ∈ B be greater
than all of their elements (if it does not exist, B is finite and hence
recursive). To generate B is now enough to generate all the x’s such
that x > b and x is sent by ψ onto b. Indeed, there cannot be one
such element that is not in B, since otherwise the other element of
the pair to which x belongs would be sent to b by ψ as well, against
the choice of b. 2

Note that we proved that A is recursive, but did not produce an algorithm
to compute it, since the proof is by nonconstructive cases (we only produced
two algorithms, one of which will work, but we do not know which one).

Exercises II.6.7 Introreducible sets. The proof of II.6.5 suggests the following
notion: A is introreducible if it is recursive in each of its infinite subsets (Ten-
nenbaum). Not much is known on the results which generalize from retraceable to
introreducible sets. In particular it is open whether A is recursive, whenever A and
A are introreducible. A stronger and more tractable notion is: A is uniformly in-
troreducible if there is an index e such that, whenever B is an infinite subset of A,
then A = ϕBe (Jockusch [1968]).

a) Every retraceable set is uniformly introreducible. (Hint: see the proof of II.6.5.)
b) Not every uniformly introreducible set is retraceable. (Dekker and Myhill

[1958]) (Hint: use the intervals (2x, 2x+1), and put in A exactly one element of each
interval, extremes excluded, by letting 2x + 1 + f(x) be in A if x is, where f is any
nonrecursive 0,1-valued function. Then A is retraceable, via the function that sends
the interval (2x, 2x+1) to x, and nonrecursive, hence immune. Let B code A on the
extremes of the intervals, i.e. 2x ∈ B if and only if x ∈ A. Then B is retraceable,
since A is. But A ∪ B is not, otherwise an infinite recursive subset of A could be
generated, since if x is in A then 2x is in B, and a retracing function would give an
element of A greater than x. And A ∪ B is uniformly introreducible, because if C is
an infinite subset of A ∪ B then one of C ∩ A and C ∩ B is infinite, and then one of
A and B is recoverable, and so is A ∪B.)
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c) Not every introreducible set is uniformly introreducible. (Lachlan) (Hint: this
uses priority, see Chapter X. Build A r.e. such that A is as wanted. Given B r.e. and
co-retraceable, and such that K ≤T B, see II.6.16, encode B into A, allowing finitely
many errors to ensure that A is not uniformly introreducible. Since A is r.e., A ≤T B.
The coding ensures B ≤T A. Since then A ≡T B, if A is uniformly introreducible
there is e such that, whenever C is an infinite subset of A, B = ϕCe . Then spoil
uniform introreducibility, by looking at B and using Sacks’ agreement method, which
succeeds because B is not recursive.)

d) If A and A are uniformly introreducible, then A is recursive. (Jockusch [1968])

(Hint: prove that if B is uniformly introreducible and immune, then any infinite r.e.

set of disjoint finite sets intersecting B has members of unbounded cardinality. Apply

this to A⊕A, which is uniformly introreducible, and to the set of pairs {2x, 2x+1}.)

Regressive versus r.e.

We follow the path set up by the previous subsection.

Proposition II.6.8 (Dekker and Myhill [1958])
R.e. ⇒ regressive ⇒ r.e. or immune.

Proof. If A is r.e. and infinite, there is a recursive function f which enumerates
it without repetitions:

A = {f(0), f(1), . . . }.

It is then enough to define

ϕ(f(0)) ' f(0) ϕ(f(n+ 1)) ' f(n)

to have a partial recursive function regressing A. Note that (unlike in the
proof of II.6.5) ϕ is not immediately extendable to a total recursive function
(see II.6.11 for a reason).

Let now A be regressive (via ϕ) and infinite, and suppose A is not immune:
then A has an infinite recursive subset B. But then A is r.e.: to generate it,
repeatedly apply ϕ to any element of B, until the smallest element of A is hit
(this can be recognized, since it is left fixed by ϕ). 2

It is not true that if both A and A are regressive, then A is recursive: any
nonrecursive, co-regressive r.e. set (see II.6.16) is a counterexample. By sym-
metry, not even the conclusion that A is r.e. holds. The correct generalization
of II.6.6 is the following:

Proposition II.6.9 (Appel and McLaughlin [1965]) If A and A are both
regressive, then one of A and A is r.e.
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Proof. We try to extend the proof of II.6.6. Part 2 of it generalizes (using now
any enumeration of B), and shows that if B is regressive and there is an infinite
r.e. set of disjoint pairs intersecting B, then B is r.e. (note that the facts that
exactly one element of each pair was in B, and that the pairs covered ω, were
used only to deduce the stronger conclusion that B was recursive).

It is not however true that if both A and A are regressive, then so is A⊕A
(see the exercises below). We then proceed directly. Let A be regressed by ϕ,
and define

x ∈ Sn ⇔ ϕ(n+1)(x) ' ϕ(n)(x) 6' ϕ(n−1)(x).

The Sn’s are disjoint r.e. sets, and each contains exactly one element of A (the
n-th in the given enumeration).

If there are only finitely many Sn’s with at least two elements, then A has
an infinite r.e. subset (each Sn with exactly one element contributes to it), and
is not immune. Being regressive, A is then r.e.

If there are infinitely many Sn’s with at least two elements, we can get an
infinite r.e. set of disjoint pairs intersecting A (each Sn with at least two ele-
ments contributes two elements, and at most one of them can be in A). Then
A is r.e. by the first part of the proof, being regressive. 2

Note that again, as in II.6.6, we proved that one of A and A is r.e., but we
do not know which one, since the proof is by nonconstructive cases.

Exercises II.6.10 (Appel and McLaughlin [1965]) a) If A⊕A is regressive, then A
is recursive. (Hint: use the first part of the proof above.)

b) If B is regressive and there is an infinite r.e. set of disjoint finite sets of bounded

cardinality intersecting B, then B is r.e. (Hint: consider the greatest number n such

that there are infinitely many n-tuples from the same set, all regressing on the same

element.)

We have shown that an r.e. set is regressive, but the proof of II.6.8 does not
give a total regressive function. The reason is that such a function does not
always exist.

Proposition II.6.11 (Appel and McLaughlin [1965]) There are r.e. sets
which are not regressed by any total recursive function.

Proof. We use the fact that there is an r.e. set A with immune complement (a
simple set, see III.2.11), and we prove that any function regressing such a set
cannot have a total recursive extension. Suppose f is such an extension, and
let

x ∈ Sn ⇔ f (n+1)(x) = f (n)(x) 6= f (n−1)(x).
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Sn contains exactly one element of A (the n-th in the given enumeration).
It is enough to prove that there are infinitely many Sn’s with at least two
elements, since then we can get an infinite r.e. set of disjoint pairs intersecting
A, and from it an infinite r.e. subset of A (against simplicity): either from a
certain point on all pairs are contained in A, or there are infinitely many pairs
intersecting A, and then it is enough to generate A to discriminate which ones
do, and choose the element of A.

The claim is easy to prove:

• The set
{x, f(x), f (2)(x), . . . }

(called the splinter of f at x) is finite for any x, because either it con-
tains an element of A, and then it stops after the first element in the
enumeration of A is hit, or it is an r.e. subset of A, and it is finite by
simplicity (A cannot contain infinite r.e. subsets).

• The set S =
⋃
n∈ω Sn is then recursive: to check if x is in it, it is enough

to generate the splinter of f at x, and see whether the conditions for
membership in Sn are satisfied for some n (f being total, and the splinter
being finite, f must cycle over the elements of the splinter, and thus the
conditions can be checked recursively).

• Since A ⊆ S, S is finite (being an r.e. subset of A). But A is infinite, and
then so is S ∩ A: thus the Sn’s have to cover an infinite part of A. But
each Sn is finite (it contains only one element of A, and the rest of it is
an r.e. subset of A), and each contains one element of A: then infinitely
many Sn’s must contain more than one element. 2

Exercises II.6.12 Splinters. A set A is a splinter if, for some recursive function g
and some x,

A = {x, g(x), g(2)(x), . . . }.
A splinter is obviously r.e., but the converse fails by III.7.10.a.

a) There are nonrecursive splinters. (Ullian [1960]) (Hint: let A be an r.e. non-
recursive set enumerated by a recursive function g, and define f recursive as follows.
On a sequence number of the form

〈g(x), g(0), g(1), . . . , g(x), g(x+ 1)〉

f gives 〈g(x+ 1)〉. On all other sequence numbers x, f gives x ∗ 〈g(ln(x)− 1)〉. Then
the splinter of f at 〈g(0)〉 contains 〈x〉 if and only if x ∈ A, and it is nonrecursive.)
A different proof will be given in III.7.10.c, but the present one actually shows that
every r.e. degree contains a splinter .

b) An r.e. set is regressed by a total recursive function if and only if it is a splinter .
(Degtev [1970]) (Hint: if A is regressed by g w.r.t. {a0, a1, . . .}, the enumeration can be
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recovered because A is r.e. Extract an infinite recursive subset B = {b0 < b1 < . . .},
with b0 = a0 and a1 < b1. Define f(x) = g(x) if x ∈ B ∧ x 6= a1, so that f sweeps the
intervals between b’s, and

f(x) =

{
g(b1) if x = a0 = b0
g(b2) if x = a1

g(bn+2) if x = bn ∧ n > 0

so that f visits successive intervals. The converse is similar.)

For more information on splinters see III.7.10 and Myhill [1959], Ullian [1960],

Young [1965], [1966], [1967].

Results proved later (see III.4.9) will show the existence of:

1. a retraceable set which is not regressed by total recursive functions

2. a set retraced by a total recursive function, which is not regressed by total
many-one recursive functions.

Existence theorems and nondeficiency sets

We state our results in strong form, using the notion of degree introduced in
II.3.3.

Proposition II.6.13 (Dekker and Myhill [1958]) Every T -degree contains
a retraceable set.

Proof. If A is finite then it is recursive and retraceable. Let A be infinite,
and f be the enumeration of A in order of magnitude (f is not recursive, in
general). Let B be enumerated (in order of magnitude) by the function

g(n) = 〈f(0), f(1), . . . , f(n)〉.

Then B is retraceable via the recursive function that chops off the last compo-
nent of a sequence number of length greater than 1, and leaves unchanged the
remaining numbers. Clearly B ≤T A by definition, and A ≤T B because

x ∈ A⇔ x is a component of g(x),

since x ≤ g(x). 2

Corollary II.6.14 There are 2ℵ0 retraceable sets.

The recursive sets are the simplest retraceable sets. R.e. nonrecursive sets
cannot be retraceable (by II.6.5 a nonrecursive, retraceable set must be im-
mune), and thus the next level of complexity, and the first nontrivial one, for
retraceable sets is being co-r.e.
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Exercise II.6.15 If A is retraceable and co-r.e., it is retraced by a total recursive

function. (Hint: given x, see if ϕ(x)↓ or x ∈ A.)

We now prove that such sets not only exist, but are as abundant as they
can be.

Theorem II.6.16 (Dekker and Myhill [1958]) Every r.e. T -degree con-
tains a retraceable, co-r.e. set.

Proof. If A is recursive then it is itself co-retraceable and r.e. Let then A be
r.e. nonrecursive, and let f be a recursive, one-one enumeration of it. Let

x ∈ B ⇔ (∃y > x)(f(y) < f(x))
x ∈ B ⇔ (∀y > x)(f(y) > f(x)).

The elements of B are called stages of nondeficiency, or true stages, in
the enumeration of A given by f , because no new element of A smaller than
f(x) is generated by f in the future. Hence, for x ∈ B,

{f(0), . . . , f(x)} ∩ {0, . . . , f(x)} = A ∩ {0, . . . , f(x)}.

B is clearly r.e. Moreover:

• A ≤T B
To see if z ∈ A it is enough to find x ∈ B such that f(x) > z, and see if

z ∈ {f(0), . . . , f(x)}.

And x exists because f is one-one and B is infinite (given an element
b ∈ B, a greater one can be obtained by taking first the smallest element
a ∈ A which is not in {f(0), . . . , f(b)}, and then the stage in which a is
generated by f).

• B ≤T A
x ∈ B if and only if there is some element in

(A ∩ {0, . . . , f(x)})− {f(0), . . . , f(x)}.

• B is co-retraceable
Given x ∈ B, we want to give an effective procedure to find the greatest
element of B smaller than x. Since for y > x is f(y) > f(x), it is enough
to check the values of f for arguments below x. In other words, for z < x,

z ∈ B ⇔ (∀y > z)(f(y) > f(z))
⇔ (∀y)(z < y ≤ x⇒ f(z) < f(y)).
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Then it is enough to define g(x) as the biggest z < x such that

(∀y)(z < y ≤ x⇒ f(z) < f(y))

if there is one, and x otherwise (so that the first element of B is left
fixed). 2

The idea of using nondeficiency stages is an ingenious one, invented by
Dekker [1954]. It will show its usefulness time and again, in many different
contexts (including infinite injury priority arguments, see Chapter X). As far
as retraceable co-r.e. sets are concerned, this idea completely captured the heart
of the matter:

Proposition II.6.17 (Yates [1962]) A co-r.e. set A is retraceable if and only
if, for some recursive function f ,

x ∈ A ⇔ (∀y > x)(f(y) > f(x))
x ∈ A ⇔ (∃y > x)(f(y) ≤ f(x)).

Proof. If a function f as stated exists, the proof of II.6.16 shows that A is
retraceable. If A is finite, it can easily be seen that a function f as stated
exists. Let then A be an infinite, retraceable and co-r.e. set: we want to find f .
We have g recursive retracing A, and we may suppose that g is total (II.6.15)
and g(x) ≤ x (II.6.3). Consider the recursive height function

h(x) = µz [g(z+1)(x) = g(z)(x)],

and the recursive height sets

x ∈ Hn ⇔ h(x) = n.

Clearly the height sets are disjoint, cover ω (since g is total and descending)
and have exactly one element of A each (since A is infinite).

The idea is to define f on Hn (ordered by magnitude), by letting it be n
until the first element of A is hit, and greater than n afterwards. Thus, if
x ∈ Hn ∩A and y < x ∧ y ∈ Hn, then y is a deficiency stage, while x becomes
a nondeficiency one. Given x ∈ Hn, consider the set

x̂ = {y : y < x ∧ y ∈ Hn}.

If x̂ is empty, x is the first element of Hn, so let f(x) = n. If x̂ is not empty,
enumerate A until exactly one element z of x̂∪{x} has not yet been generated
in it. This is possible because A is r.e., and Hn has exactly one element in A.

If z = x then all smaller elements in Hn are in A, and we can still let
f(x) = n. If z 6= x then x has been enumerated in A, and we now know that
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x has to be a deficiency stage. Then we want y > x such that f(y) ≤ f(x).
Note that f(x) = n + 1 is not enough, since it might be that Hn+1 contains
no element y > x. And m > n such that Hm has an element y > x is not
enough either, since the unique element t ∈ Hm ∩ A might be smaller than x,
and setting f(x) = m would make f(t) = f(x), while t < x, and t has to be a
nondeficiency stage (since t ∈ A). But then let f(x) = m for m > n such that
Hm contains no element smaller than x. 2

Exercises II.6.18 Nondeficiency sets. A set A is a nondeficiency set if, for some
recursive function f ,

x ∈ A⇔ (∀y > x)(f(y) > f(x)).

a) If f is not finite-one, the nondeficiency set of f is finite.

b) A co-r.e. set is retraceable if and only if it is the nondeficiency set of a finite-one
function. (Yates [1962]) (Hint: see the proof above.)

c) Not every co-r.e. retraceable set is the nondeficiency set of a one-one func-
tion. (Degtev [1970]) (Hint: let A(g) be the deficiency set of g, and An(g) be its
approximation up to n, i.e.

x ∈ An(g) ⇔ x < n ∧ (∃y)(x < y ≤ n ∧ g(y) ≤ g(x)).

Define f as follows. Given f(0), . . . , f(n), let n = 〈e, x〉 be the first stage in which
ϕe,n is total and one-one on {0, . . . , x}, and An0(f) ⊆ Ax(ϕe), where

n0 = max{x ≤ n : f(x) = e}.

Then let f(n + 1) = e. Otherwise, let f(x) = n. If ϕe is one-one and total, then

A(ϕe) is infinite, and it cannot be A(ϕe) = A(f), otherwise by construction f takes

the value e infinitely often, and then A(f) is finite.)

Proposition II.6.19 (Marchenkov [1976a]) The class of r.e. co-retraceable
sets is r.e. without repetitions.

Proof. Since every finite set is co-retraceable, it is enough (by II.5.24) to show
that the class of r.e. co-retraceable sets is r.e. Let

x ∈ Ae ⇔ (∃y)[(∀z ≤ y)(ϕe(z)↓) ∧ y > z ∧ ϕe(y) ≤ ϕe(x)].

Then {Ae}e∈ω is an r.e. class, and each Ae is either finite (if ϕe is not total) or
co-retraceable (by II.6.17). 2

The class of r.e. co-retraceable sets is not completely r.e. (by II.4.2), since
it is not closed under supersets (see II.6.21.b).
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Regressive versus retraceable

We now briefly come back to the original question of the extent of the analogy
with recursive and r.e. sets, and we show that it fails quite strongly. First we
give a positive result, which is the analogue of II.1.20.

Proposition II.6.20 (Dekker [1962]) Every infinite regressive set has an
infinite retraceable subset.

Proof. Let A be regressed by ϕ w.r.t. {a0, a1, . . . }, and

b0 = a0

bn+1 = the first element in the list of A greater than bn.

Then B = {b0, b1, . . . } is infinite, because A is. To define the retracing function
for B on a given x, we first iterate ϕ until we stop, which we must if x ∈ A.
Then we recreate the initial segment of B from b0 to x, by dropping the ele-
ments that break the monotone growing, and take the biggest element obtained
which is smaller than x. If x ∈ B then we do recreate the initial segment of B,
and we do choose the right element. 2

There are two properties that we consider essential to claim a nontrivial
analogy with recursive and r.e. sets, namely:

1. The recursive sets are closed under complementation.

2. A set which is r.e., together with its complement, is recursive (II.1.19).

They both fail here:

1. There is a retraceable set with a nonretraceable complement .
Take any retraceable, nonrecursive set: its complement is not retraceable,
by II.6.6.

2. There is a set regressive together with its complement, but not retraceable.
Take any set A r.e. and nonrecursive, with a retraceable complement.
Then both A (being r.e.) and A are regressive, but if A were retraceable
then it would also be recursive, again by II.6.6.

Exercises II.6.21 (Dekker and Myhill [1958]) a) If A and B are retraceable, so is
A ∩ B. (Hint: given x, consider the greatest element smaller than it on which x is
sent by both functions retracing A and B.) Appel [1967] has shown that this fails for
regressive sets.

b) There are retraceable sets A and B such that A ∪ B is not regressive. (Hint:

let A be an infinite recursive set, and B a nonrecursive, retraceable and co-r.e. set. If
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A ∪B were regressive, it would be r.e. because A is an infinite recursive subset of it,

and B would be recursive.)

Despite the failure of the analogy with r.e. and recursive sets, retraceable
and regressive sets are interesting on their own, and are useful in some parts
of Recursion Theory. See McLaughlin [1982] for a detailed study of them.

æ



Chapter III

Post’s Problem and
Strong Reducibilities

One theme of this chapter is relative computability. In Chapter II we
introduced the most general and fundamental case: Turing reducibility. It
will be recalled that no limitation was imposed there on the help given to the
machine by the oracle, except for an obvious finiteness requirement. Here we
take an opposite stand, and look at various possible limitations. Section 2 deals
with the most restrictive case of m-reducibility, in which only one question is
allowed to the machine during a computation, and only at the very end of it.
Section 3 treats the case of Boolean combinations of atomic questions, called
tt-reducibility, while a number of other, less fundamental, reducibilities are
dealt with in Sections 4, 7 and 8.

Relative computations induce equivalence classes, by identifying functions
and sets which have the same degree of difficulty of computation. A second
theme in the chapter is Post’s problem, introduced in Section 1, which asks
whether there are only two such classes of r.e. sets. The solution, obtained
in Section 5, will tell whether the r.e. sets can be distinguished, from a com-
putational point of view, only between recursive and nonrecursive, or whether
instead this rough dichotomy can somehow be essentially refined. The strategy
for a solution to the problem is to analyze the possible structure of r.e. sets (as
opposed to giving direct constructions, a strategy pursued instead in Chapter
X), and the tactic is to solve the problem first for m-reducibility, in Section 2,
and then gradually improve the solution for weaker and weaker reducibilities,
in Sections 3 and 4, until we reach the one we are really interested in.

The original motivation for the study of r.e. sets was that they code (by
arithmetization) the sets of theorems of formal systems. A third theme of
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this chapter is the analysis of formal systems, from this abstract point of
view. We make the relationship between formal systems and r.e. sets precise
in Section 10, where we also revisit some of the notions and results obtained in
the chapter, and discuss their bearing on the subject of formal systems.

III.1 Post’s Problem

We have so far encountered only two different kinds of r.e. sets, namely the
recursive sets and K, and they generate different degrees.

Definition III.1.1 An r.e. T -degree is a degree containing at least one r.e.
set. Two r.e. T -degrees are:

1. the T -degree 0 of the recursive sets

2. the T -degree 0′ of K.

Note that, because of Post’s Theorem and the fact that a set and its comple-
ment are in the same degree (being obviously computable one from the other),
a degree contains only r.e. sets if and only if it contains only recursive sets.
This explains why we only require the existence of an r.e. set in an r.e. degree.

Recall that there is a partial order on the degrees, induced by the relation
≤T . It is obvious that 0 is the least degree with respect to it, and the next
result shows that 0′ is the greatest r.e. degree.

Proposition III.1.2 (Post [1944]) If A is any r.e. set then A ≤T K.

Proof. We prove that there is a recursive function f such that

x ∈ A⇔ f(x) ∈ K ⇔ f(x) ∈ Wf(x),

where the last equivalence holds by definition of K. By the Smn -Theorem, let f
be a recursive function such that

Wf(x) =
{
ω if x ∈ A
∅ otherwise.

Then:

• x ∈ A⇒Wf(x) = ω ⇒ f(x) ∈ Wf(x) ⇒ f(x) ∈ K

• f(x) ∈ K ⇒ f(x) ∈ Wf(x) ⇒Wf(x) 6= ∅ ⇒ x ∈ A. 2

Thus, since A ≤T K automatically holds for r.e. sets, an r.e. set A is in the
greatest r.e. degree 0′ if and only if K ≤T A.
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Definition III.1.3 A set A is Turing complete (or T -complete) if it is r.e.
and its degree is 0′, i.e. K ≤T A.

In general, given a reducibility ≤r, we will call an r.e. set A r-complete if
K ≤r A, and r-incomplete otherwise.

As noted above, the r.e. sets we know at this point are all recursive or
T -complete. It is natural to ask whether there are others.

Post’s Problem (Post [1944]) Are there r.e. T -degrees different
from 0 and 0′? Equivalently, are there r.e. sets which are neither
recursive nor T -complete?

The reasons to isolate this natural problem and give it a name are many.
First, despite its technical formulation, the problem was motivated by deep
methodological questions, related to the undecidability results, and reviewed
in the next subsection. Second, the solution to the problem escaped the re-
searchers for many years and provided, as a by-product, new techniques and
results, some of them treated in this chapter. Finally, versions of the problem
arise in different areas of Generalized Recursion Theory, and their solution is
usually regarded as a proof of maturity for the new areas.

Origins of Post’s Problem ?

Post arrived at the formulation of his problem after an exciting intellectual
development, which is worth reviewing. In his dissertation, completed in 1920,
he started by analyzing the system of Principia Mathematica, and attacking the
problem of its decidability . He was able to solve a particular case, namely the
decision problem for propositional calculus, by proving a completeness theorem
that showed that the theorems were exactly the tautologies. He published this
in [1921].

In the academic year 1920–21, as a postgraduate, Post set down to general-
ize this decidability result, by attacking the general case. Trying to capture the
essence of formal systems he considered, by successive abstractions, a sequence
of notions, finally obtaining the canonical systems (see p. 143). By showing
that the system of Principia Mathematica could be translated in a canonical
system, he convinced himself that he had a sufficiently general notion.

Post then turned to the decidability problem for canonical systems, hoping
that the generality of the notion would make the proof simpler, because inde-
pendent of details related to particular systems. He soon concentrated on a
special problem, called the tag , of which he was able to handle some particular
cases, but that turned out to be intractably complicated in general (with good
reasons: it was undecidable, see Minsky [1961]).
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At this point, the unsuccessful attempts prompted a revision of the plan,
and Post turned to undecidability . He defined a universal canonical system,
which is just a version of the set K0 of 150, and showed its diagonal set, i.e.
K, to be, in modern terms, r.e. but nonrecursive. To be able to deduce from
this a general unsolvability result Post needed a version of Church’s Thesis,
which he stated in the form: every effectively generable set can be generated
by a canonical system. From this the existence of incomplete formal systems
followed easily.

All this work, concluded in 1921, and anticipating a number of results by
Gödel, Church, and Turing that would follow much later, was left unpublished
(see [1922]), because Post was not convinced of (his version of) Church’s The-
sis. He took it as a working hypothesis that needed verification, in the form
of psychological analysis of the computational process. A step toward such
analysis was [1936], in which Post proposed a version of Turing machines, in-
dependently of Turing. The canonical systems were published only in [1943],
and the form of Gödel’s theorem based on canonical systems only in [1944].

The mutual reductions among various notions of canonical systems, as well
as particular formal systems like Principia Mathematica, led Post to the con-
cept of m-reducibility between sets. And the fact that known undecidability
proofs, by Post, Church, and others, were all obtained by appropriately reduc-
ing K to the problem in question, prompted the problem of whether the only
undecidable systems were the universal ones, in which K could interpreted.
Post [1944] was able to disprove this for m-reducibility, and then he asked the
same question for the general notion of T -reducibility, introduced by Turing
[1936]. Despite a good deal of intermediate work, he could not reach a solu-
tion. Sections 2 to 4 are a report of Post’s work and of modern improvements,
and Section 5 provides the missing brick.

Turing reducibility on r.e. sets

Since the solution to Post’s Problem will require a detailed study of the struc-
ture of the r.e. sets, we prove some technical results that will facilitate the
task.

Proposition III.1.4 T -reducibility on r.e. sets (Rogers [1967]) If A and
B are r.e. sets, then A ≤T B if and only if, for some r.e. relation R,

x ∈ A⇔ (∃u)(Du ⊆ B ∧R(x, u)).

Proof. By compactness and monotonicity of oracle computations (II.3.13) and
the Normal Form Theorem for restricted functionals (II.3.12) we have, for a
given e and some r.e. relation Q,

ϕBe (x) ' z ⇔ (∃v)(∃u)(Dv ⊆ B ∧Du ⊆ B ∧Q(x, u, v, z)),
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because Dv and Du together specify a finite subfunction of cB . If A ≤T B then
cA ' ϕBe , for some e. In particular

x ∈ A⇔ (∃v)(∃u)(Dv ⊆ B ∧Du ⊆ B ∧Q(x, u, v, 0)).

If moreover B is r.e., the expression Dv ⊆ B is r.e. itself, and thus there is R
r.e. such that

x ∈ A⇔ (∃u)(Du ⊆ B ∧R(x, u)).

Conversely, if this expression for A holds for some r.e. relation R, then A is
r.e. in B. If moreover A is r.e., then it is r.e. in B and, by the relativization of
Post’s Theorem to B, A is recursive in B. 2

The next result is a strong generalization of the Fixed-Point Theorem, to
any function which is recursive in an incomplete r.e. set.

Theorem III.1.5 T -completeness of r.e. sets (Martin [1966], Lachlan
[1968], Arslanov [1981]) An r.e. set A is T -complete if and only if there is
a function f ≤T A without fixed-points, i.e. such that ∀x(Wx 6= Wf(x)).

Proof. If A is T -complete, the set {x : 0 6∈ Wx} is recursive in A, being co-r.e.
By the relativized Smn -Theorem, there is f ≤T A such that

Wf(x) =
{
ω if 0 6∈ Wx

∅ otherwise.

Then Wf(x) 6= Wx, because the two sets differ on 0.
Suppose now that A is r.e., and f ≤T A has no fixed-points. The idea to

get K ≤T A, thus showing that A is T -complete, is the following. Consider the
function

sx =
{
µs(x ∈ Ks) if x ∈ K
0 otherwise.

Then x ∈ K ⇔ x ∈ Ksx . We want to majorize sx recursively in A, i.e. to find
ψ recursive in A, such that ψ(x) ≥ sx. Then x ∈ K ⇔ x ∈ Kψ(x), and this
implies K ≤T A.

Since f ≤T A, there is e such that f ' ϕAe . Moreover A is r.e., and it can
be recursively approximated by an enumeration {As}s∈ω. Although ϕAe is only
recursive in A, it can be approximated by the recursive function ϕAs

e,s. Fix now
x ∈ K: by the Fixed-Point Theorem, there is z such that

Wz = W
ϕ

Asx
e,sx (z)

.

By the assumption on f , it cannot be Wz = Wf(z). This means that, while
ϕ
Asx
e,sx(z) is an approximation of f(z), it must be a wrong one. Recursively in
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A we can first compute ϕAe (z), and find the length of the least initial segment
ĉA(y) that gives the right value. Then we can recursively enumerate A to find
a stage s ≥ y in which all the elements of A used in the computation have been
generated, i.e. ĉAs(y) = ĉA(y). From this point on the approximations will give
the right value, i.e. ϕAt

e,t(z) = f(z), for any t ≥ s. Then it must be s ≥ sx.
We have only to do this in general now. By the Fixed-Point Theorem with

parameters (II.2.11), there is g recursive such that

Wg(x) =

{
W
ϕ

Asx
e,sx (g(x))

if x ∈ K
∅ otherwise.

Let ψ(x) be a stage in which A has generated all the elements needed to com-
pute the right value of f(g(x)) from then on, as above. Then ψ is recursive
in A, and ψ(x) ≥ sx (if x ∈ K as above, and if x 6∈ K because then sx = 0). 2

Note that the condition that A be r.e. is essential, since without it the result
fails in general.

Exercise III.1.6 There is a set A ≤T K, and a function f ≤T A, such that f has
no fixed-points, but K 6≤T A. (Arslanov [1981]) (Hint: by the proof of III.2.18, it is
enough to find A effectively immune, recursive in K, and such that K 6≤T A. And
such a set exists by the Low Basis Theorem V.5.32, applied to the Π0

1 class

{A : A ⊆ S ∧ (∀x)(Dg(x) ∩A 6= ∅)},

where S is Post’s simple set, see III.2.11, and g enumerates a strong array intersecting

S.)

For more results on fixed-points, see Arslanov [1981], Jockusch, Lerman,
Soare, and Solovay [198?], Kučera [1986], [198?], and Jockusch [198?]. In par-
ticular, Kučera [1986] (see Volume II) solves Post’s problem by showing that
any degree below 0′ and containing no function without fixed-points bounds
an r.e. nonrecursive degree.

III.2 Simple Sets and Many-One Degrees

The path we shall follow to attack Post’s Problem is the one suggested by
Post himself, which is also a natural mathematical practice: confronted with
a difficult problem, try first with simpler versions of it and, once a solution is
found for them, proceed to more difficult cases, in the hope of finally reaching
the solution of the original problem. This will be a long path, but it will finally
pay off in III.5.20, leaving us with a deep knowledge of the structure of the r.e.
sets.
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Our present approach is structural, since it tries to solve the problem
by isolating nonempty properties of r.e. sets that imply nonrecursiveness and
T -incompleteness. A different approach consists of trying to build ad hoc so-
lutions by brute force, and will be considered in Chapter X.

Many-one degrees

The simplest special case of Turing reducibility, which we have been using
already in many of the previous proofs, is the following:

Definition III.2.1 (Post [1944]) A is m-reducible to B (A ≤m B) if, for
some recursive function f , the following equivalent conditions are satisfied:

1. ∀x(x ∈ A⇔ f(x) ∈ B)

2. A = f−1(B)

3. f(A) ⊆ B ∧ f(A) ⊆ B.

A is m-equivalent to B (A ≡m B) if A ≤m B and B ≤m A.

Exercises III.2.2 a) If A 6= ∅, ω is recursive, then A ≤m B for any set B.
b) If A ≤m B and B is recursive, so is A.
c) If A ≤m B and B is r.e. then so is A.
d) If A is r.e. then A ≤m A if and only if A is recursive and A 6= ∅, ω.
e) There is a nonrecursive set A such that A ≤m A. (Hint: consider K ⊕K.)

e) If A and B differ finitely, then A ≡m B.

Note that ≤m is a reflexive and transitive relation, and thus ≡m is an
equivalence relation.

Definition III.2.3 The equivalence classes of sets w.r.t. m-equivalence are
called m-degrees, and (Dm, ≤) is the structure of m-degrees, with the partial
ordering ≤ induced on them by ≤m.

The m-degrees containing r.e. sets are called r.e. m-degrees, and two of
them are:

1. 0m, the m-degree of the recursive sets different from ∅ and ω

2. 0′
m, the m-degree of K.

Note that an r.e. m-degree contains only r.e. sets. The m-degrees containing
recursive sets are three: 0m, {∅}, {ω}. The last two are incomparable and
smaller than 0m, but every other m-degree is greater than or equal to 0m.
In the following we will always consider nontrivial sets, and thus 0m may be
considered as the least m-degree. We now show that 0′

m is the greatest r.e.
m-degree.
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Proposition III.2.4 (Post [1944]) A set A is r.e. if and only if A ≤m K.

Proof. If A is r.e. then A ≤m K by the proof of III.1.2. Conversely, if
x ∈ A⇔ f(x) ∈ K then the elements of A are exactly those in the intersection
of K and the range of f , and hence A is r.e. 2

Definition III.2.5 A set A is m-complete if it is r.e. and its m-degree is
0′

m, i.e. K ≤m A.

Exercises III.2.6 Both K and the notion of m-completeness are defined w.r.t. the
class of the r.e. sets. Let a recursive enumeration {Wh(x)}x∈ω of the recursive sets be
given (see II.5.26).

a) The set x ∈ K∗ ⇔ x ∈ Wh(x), obtained by diagonalization over the recursive
sets, is m-complete. (Muchnik [1958a]) (Hint: let

Wh(g(x)) =

{
ω if x ∈ K
∅ otherwise.

Then x ∈ K ⇔ g(x) ∈ K∗.)
b) If the recursive sets are uniformly m-reducible to an r.e. set A, then A is

m-complete. (Smullyan [1961]) (Hint: if z ∈ Wh(x) ⇔ f(z, x) ∈ A, then K∗ ≤m A.)

The analogue of Post’s Problem for m-reducibility is: are there r.e. sets
which are neither recursive, nor m-complete? The beginning of our story is the
following observation.

Proposition III.2.7 (Post [1944]) If A is m-complete, then A contains an
infinite r.e. subset.

Proof. First consider the special case of the m-complete set K. Note that

Wx ⊆ K ⇒ x ∈ K −Wx.

Suppose indeed that x ∈ Wx: then x is in K by definition, and in K because
Wx ⊆ K, contradiction. Then it must be x 6∈ Wx, and thus also x ∈ K.

Then the index of an r.e. subset of K is an element of K but not of the given
subset, and this permits us to generate an infinite r.e. subset of K, by starting
with the emptyset, and getting new elements at each stage. Formally, if f is a
recursive function such that:

f(0) = an index of ∅
f(n+ 1) = an index of {f(0), . . . , f(n)},

then the range of f is an infinite r.e. subset of K.
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To extend this to any m-complete set A, let

x ∈ K ⇔ g(x) ∈ A.

Given an r.e. subset B of A, first pull it back (through g) to an r.e. subset of
K. Use the property of K proved above, to get an element in K but not in the
pull back of B, then project it via g to an element in A but not in B. Formally,
let f be a recursive function such that:

f(0) = g(a0) with a0 index of ∅
f(n+ 1) = g(an+1) with an+1 index of the r.e. set

g−1({f(0), . . . , f(n)}).

Then the range of f is an infinite r.e. subset of A. 2

Exercise III.2.8 A different proof of the result above consists of noting that any

infinite r.e. set of indices of ∅ is an infinite r.e. subset of K, and can be projected to

A because the function that reduces K to A can be taken to be one-one.

Simple sets

Since coinfinite recursive sets and m-complete sets have complement with an
infinite r.e. subset, a solution to Post’s Problem for m-degrees would be given
by sets without this property. Recall (p. 141, and II.6.4) that an infinite set is
immune if it does not contain infinite r.e. (or recursive) subsets.

Definition III.2.9 (Post [1944]) A set is simple if it is r.e. and coimmune,
i.e. its complement is infinite and does not contain infinite r.e. subsets.

Exercises III.2.10 a) A coinfinite r.e. set is simple if and only if it has no coinfinite,
recursive superset . (Hint: use II.1.20.)

b) If A and B are simple then A ∩ B is simple, and A ∪ B is simple or cofinite.
Thus simple or cofinite sets are a filter in the lattice of the r.e. sets under inclusion.
(Dekker [1953])

c) If A is simple and Wx is infinite, then A ∩Wx is infinite.

It only remains to show that the notion of simplicity is not empty.

Theorem III.2.11 (Post [1944]) There exists a simple set.

Proof. We give two different constructions.

1. Post’s simple set S.
The idea is to build S intersecting each infinite r.e. set, so that S does
not contain any infinite r.e. subset. We cannot recursively enumerate the
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infinite r.e. sets (II.5.27.a), so we will intersect S with each r.e. set with
enough elements. To prevent the collapse of the complement of S, we do
not want to put too many elements in S, so we make sure that each time
a new element goes into S, another one will stay out. Precisely, we put
at most half of {0, 1, . . . , 2x} into S, for each x. The set S is defined as
follows: dovetail an enumeration of all the r.e. sets and, for each e, put
into S the first element greater than 2e enumerated into We.

S is r.e. by construction. S is infinite since an element of {0, . . . , 2x} can
enter S only if it comes from some We such that 2e < 2x: but there are
at most x such sets, and each contributes at most one element. Thus S
has at least x + 1 elements, for each x, and it is then infinite. And S is
simple, because if We is infinite then it has elements greater than 2e, and
one of them will be in S.

2. A direct construction.
We build a simple set A by stages. At stage s we will have As, and we
will let As = {as0 < as1 < · · · }. In the end A = {a0 < a1 < · · · }, where
an = lims→∞ asn. We want to satisfy the following requirements:

Pe : We infinite ⇒We ∩A 6= ∅
Ne : A has at least e elements, or lims→∞ ase <∞.

P stands for positive, because to satisfy the Pe’s we have to do some-
thing positive on A (namely, to put some element in it). N stands for
negative, because to satisfy the Ne’s we have to do something negative
on A (namely, to leave some element out of A).

The construction is as follows. We start with A0 = ∅ (hence a0
n = n). At

stage s+ 1 we search for the smallest e ≤ s such that:

• We,s ∩As = ∅
• for some n ≥ e, asn ∈ We,s.

Note that both As and We,s are finite, and we only look at e ≤ s, so the
search is effective. If e does not exist, we go to the next stage. Otherwise,
Pe is the condition with smallest index which looks unsatisfied, and with
a chance to be satisfied. Then we put asn into A, where n is the smallest
one such that n ≥ e and asn ∈ We,s. This makes all the asm with m ≥ n
move to the next one (since they enumerate the complement). In other
words,

as+1
m = asm if m < n
as+1
m = asm+1 if m ≥ n.

Since the construction is effective, A =
⋃
s∈ω As is r.e. Moreover:
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• A is infinite.
It is enough to prove that lims→∞ asm exists. Indeed, asm may move
at a certain stage s + 1 only if it happens that asn ∈ We, for some
e ≤ n ≤ m. Since each We contributes at most one element for each
e, and there are only finitely many e ≤ m, asm moves only finitely
many times. So all negative requirements are satisfied.

• A is simple.
By induction, suppose that s0 is such that s0 ≥ e, and all Pi’s with
i < e have been satisfied at stage s0 (i.e. We,s0 ∩ As0 6= ∅if We is
infinite). If We is an infinite subset of A, there are s ≥ s0 and n ≥ e
such that asn = an ∈ We,s. Then one such an goes into A at stage
s+ 1 (because e is the smallest index for which Pe looks unsatisfied,
and with a chance to be satisfied), contradiction. 2

The second proof given above is a typical priority argument with no
injury, with

P0 > N0 > P1 > N1 > · · ·

as order of priority for the satisfaction of the requirements. Indeed, we allow
asn to move only to satisfy Pe for some e ≤ n, so e.g. as0 can move only to satisfy
P0, as1 only to satisfy P0 or P1, and so on. Moreover, we choose the smallest
possible positive requirement for satisfaction, and this says that the positive
requirements are ordered by their indices. There is no injury, because once
a positive requirement is satisfied it remains so forever (since we never take
elements out of A). The priority method will be discussed in full generality in
Chapter X.

The two examples of simple sets given above are direct constructions, and
thus somehow unnatural. There are however sets which can be naturally de-
fined, and that turn out to be simple. The first uses the notion (p. 151) of
random number, as a number that is its own shorter description. In terms
of the Kolmogorov complexity K, defined (on p. 151) as

K(x) = µe(ϕe(0) ' x),

a number is random if x ≤ K(x).

Proposition III.2.12 (Kolmogorov [1963], [1965]) The set of nonrandom
numbers is simple.

Proof. Let A = {x : K(x) < x}. Then A is r.e., because

x ∈ A⇔ (∃e < x)(ϕe(0) ' x).



262 III. Post’s Problem and Strong Reducibilities

To show that A is infinite consider, given any n, the converging values
among

ϕ0(0), ϕ1(0), . . . , ϕn(0).

If x is different from all of them, then n+ 1 ≤ K(x) by definition. And if x is
the least number not among them, x ≤ n + 1 (since we considered only n + 1
possible values, and in the worst case they are the numbers from 0 to n). Then
x ≤ K(x), and x is random. Thus there is a random number with complexity
at least n + 1. Since this holds for every n, there are infinitely many random
numbers, and A is infinite.

To show that there is no infinite r.e. set of random numbers, first note that
the index e of an r.e. set We provides a uniform description of the elements of
the set: if We = {x0, x1, . . .} then

xn = the n-th element enumerated in We.

Moreover, this description of xn is uniform and linear in e and n, hence is
bounded by a linear function h(e, n). If we could prove that for some n we
have h(e, n) < xn, we would know that xn is not random. This is certainly
the case if n is big enough, and xn is greater than n2 (since then h(e, n), being
linear in n for a fixed e, is bounded by n2 almost everywhere).

It is now enough to note that, given We, we can uniformly obtain an r.e.
subset Wg(e) of it, whose n-th element is bigger than n2, by waiting until such
an element is generated in We. If We is infinite so is Wg(e), and then it contains
a nonrandom element. Thus there is no infinite r.e. set of random numbers,
and A is simple. 2

The proof just given is a positive use of Berry’s paradox (Russell [1906]),
a version of which is: given n, consider ‘the least number that cannot be defined
in less than n characters’. This defines, in c + |n| characters (where |n| is the
length of n and c is a constant), a number whose definition needs more than n
characters, and it is paradoxical for all n such that c+ |n| ≤ n, i.e. for almost
every n.

This proof contains additional information, exploited on p. 265. A quick,
less informative proof is provided by the Fixed-Point Theorem. Suppose A is
an infinite r.e. set of random numbers, and let h be a recursive function such
that

ϕh(e)(0) ' the smallest x > e generated in A.

By the Fixed-Point Theorem, there is e such that ϕe ' ϕh(e). By definition
ϕe(0) is a random number (being in A), hence it cannot be bigger than e. But
this is exactly how it was defined, contradiction.

The immunity of the set of random numbers is a strong result, implying :
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1. a version of the incompleteness results: in any consistent formal system
sound for arithmetic, we can prove that a random number is so only
in finitely many cases, since the set of provably random numbers is r.e.
(Chaitin [1974]).

2. the undecidability of the halting problem: if we could decide whether
ϕe(0) ↓, then we could compute K(x) and decide whether a number is
random or not. Actually, the halting problem and the Kolmogorov com-
plexity function have the same T -degree: K is obviously recursive in K, by
definition, and the converse holds because the set of nonrandom numbers
is T -complete, see p. 265.

Exercise III.2.13 The existence of infinitely many random numbers implies the ex-

istence of infinitely many prime numbers. (Chaitin [1979]) (Hint: if there are only

n+ 1 primes, say p0, . . . , pn, then for every x, x = px0
0 · · · pxn

n . But xi ≤ log x, and so

x can be described in ≈ n · log x bits of information. For big enough x, then x is not

random.)

The next example of simple sets provides with such sets in every nonzero
T -degree, and thus shows that a simple set is not necessarily T -incomplete.

Proposition III.2.14 (Dekker [1954]) Every nonrecursive r.e. T -degree
contains a simple set.

Proof. Given A r.e. and nonrecursive, let B be its deficiency set (II.6.16).
Then A ≡T B, and B is a coinfinite and coretraceable r.e. set. So B is (by
II.6.5) recursive or immune. Since A is nonrecursive, B is immune, and then
B is simple. 2

Exercise III.2.15 Give a direct proof that the deficiency set of f recursive and one-

one is recursive or immune. (Hint: if B has an infinite recursive subset C, given x

find y ∈ C such that f(y) > x. Then x ∈ A ⇔ x ∈ {f(0), . . . , f(y)}. Thus A, and

hence B, are recursive.)

Effectively simple sets ?

We have just seen that a simple set can be T -complete, and thus simple sets
do not automatically solve Post’s Problem. But before we go on with different
trials, we want to make sure that none of the simple sets built above is already
T -incomplete. The idea is to effectivize the notion of simplicity.

Definition III.2.16 (Smullyan [1964]) A is effectively simple if it is a
coinfinite r.e. set, and there is a recursive function g such that

We ⊆ A ⇒ |We| ≤ g(e).
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Exercise III.2.17 We show that other natural attempts to define effective simplicity
are either equivalent to the one proposed, or impossible.

a) A coinfinite r.e. set A is effectively simple if and only if there is a partial
recursive function ϕ such that We ⊆ A⇒ ϕ(e)↓ ∧ |We| ≤ ϕ(e). (Sacks [1964])

b) For every simple set A there is a partial recursive function ϕ such that if We

is infinite then ϕ(e)↓ ∧ ϕ(e) ∈ We ∩A.

c) For no simple set there is a similar total recursive function. (Hint: consider g

recursive such that Wg(x) = {f(x)}, and apply the Fixed-Point Theorem.)

Thus for simple sets we only know that an r.e. subset of the complement
is finite, while for effectively simple sets we also know a recursive bound on its
cardinality. The interest of the notion is that it implies T -completeness.

Proposition III.2.18 (Martin [1966]) Every effectively simple set is
T -complete.

Proof. Let
We ⊆ A ⇒ |We| ≤ g(e).

Define f ≤T A such that

Wf(e) = {the first g(e) + 1 elements of A}.

Then f has no fixed-points: if We = Wf(e) then We ⊆ A, but |We| = g(e) + 1.
By the criterion for T -completeness III.1.5, A is then T -complete. 2

Exercises III.2.19 a) There are simple sets which are not effectively simple. (Sacks
[1964]) (Hint: a direct proof is difficult, requiring priority and Fixed-Point Theorem.
To build A as wanted, we want to destroy

Wx ⊆ A ⇒ |We| ≤ ϕe(x).

Given x and e, we build an r.e. set Wf(e,x) with the property that

Wf(e,x) ⊆ A ∧ |Wf(e,x)| > ϕe(x).

Then we need the Fixed-Point Theorem to step from the sets Wf(e,x) to sets of
the form Wx. What III.2.18 accomplishes is to separate the use of the Fixed-Point
Theorem, to give the T -completeness of effectively simple sets, and of priority, to
build a T -incomplete simple set or just, due to III.2.14, a nonrecursive, T -incomplete
r.e. set.)

b) There are simple, not effectively simple, and T -complete sets. (Hint: take a
simple T -complete set A, a simple not effectively simple set B, and consider A⊕B.)

c) A simple set A is T -complete if and only if there is g ≤T A such that

We ⊆ A ⇒ |We| ≤ g(e).
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(Lachlan [1968]) (Hint: T -completeness is proved as in III.2.18. If A is T -complete, it

is recursive in A to ask if We ⊆ A, i.e. if ∃x(x ∈ We∩A). If We ⊆ A then We is finite,

by simplicity, and recursively in A we can search for an x such that (∃y > x)(y ∈ We)

fails.)

We can now show that the simple sets constructed above are all effectively
simple, and thus T -complete. We refer to the proofs of III.2.11 and III.2.12,
and use the same notations as there.

1. Post’s simple set .
If We ⊆ S then |We| ≤ 2e+ 1, since otherwise We has more than 2e+ 1
elements, so one of them is greater than 2e, and goes into S.

2. The set A built in III.2.11.
If We ⊆ A then |We| ≤ e, since otherwise there is n ≥ e such that
an ∈ We. By going to a stage s after which the Wi’s with i < e do
not contribute anymore elements to A, the elements of A up to an have
settled, and an ∈ We,s, we would then put one element of We into A.

3. The set of nonrandom numbers.
The linear function h(e, n) which bounds the description of the n-th el-
ement of We can be made recursive (by bounding the code number of a
Turing machine program that prints xn on input 0). If

f(e) = smallest number n such that h(g(e), n) ≤ n2

then Wg(e) contains a nonrandom number, if it has at least f(e) elements.
And since Wg(e) has at least n elements if We has at least n2 +n, if |We|
contains only random numbers it must be |We| ≤ f(e)2 + f(e).

We consider now the simple sets provided by III.2.14.

Proposition III.2.20 (Smullyan [1964]) The deficiency set of K is effec-
tively simple.

Proof. Let f be a one-one recursive function with range K, and

x ∈ B ⇔ (∃y > x)(f(y) < f(x)).

We want to find g recursive such that

We ⊆ B ⇒ |We| ≤ g(e).

Suppose then We ⊆ B. Since we already know that B is simple, We is
finite, say {x1 < · · · < xn}. Consider the behavior of f on these elements.
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Since each xi is a nondeficiency stage, there is no crossover. It is then enough
to find effectively a > f(xn): since f is one-one, a ≥ |We|.

To find a, we use the fact that

Wa ⊆ K ⇒ a ∈ K −Wa.

Since K is the range of f , it is enough to choose Wa containing all the elements
of K below f(xn). This is possible because xn ∈ B, so

K ∩ {0, . . . , f(xn)} = {0, . . . , f(xn)} − {f(0), . . . , f(xn)}.

We then do this in general. Given We, let

Wg(e) = {z : (∃y ∈ We)(z < f(y) ∧ z 6∈ {f(0), . . . , f(y)})}.

Then

We ⊆ B ⇒Wg(e) ⊆ K ⇒ g(e) ∈ K −Wg(e) ⇒ |Wg(e)| ≤ g(e). 2

Exercises III.2.21 Strongly effectively simple sets. (McLaughlin [1965]) A is
strongly effectively simple (s.e.s.) if it is a coinfinite r.e. set, and there is a partial
recursive function ψ such that

We ⊆ A ⇒ ψ(e)↓ ∧ (maxWe) < ψ(e).

An example is given by Post’s simple set.

a) ψ may always be supposed to be total .

b) There are effectively simple sets which are not s.e.s. (Martin [1966]) (Hint: this
follows from results in III.4.24, since a s.e.s. is not maximal, and there are maximal,
effectively simple sets. A direct construction, e.g. in the style of III.2.19.a, is also
possible.)

McLaughlin [1973], and Cohen and Jockusch [1975], prove in different ways that

the deficiency set of K is not s.e.s.

Exercises III.2.22 Immune sets. a) There are 2ℵ0 sets immune and coimmune,
called bi-immune. (Hint: enumerate a set of pairs (xn, yn) such that xn and yn
are different elements of the n-th infinite r.e. set, not yet enumerated in the previous
pairs. Any set with exactly one element of each pair is bi-immune.)
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b) A set A is effectively immune if it is infinite and, for some partial recursive
function ψ,

We ⊆ A ⇒ ψ(e)↓ ∧ |We| ≤ ψ(e).

ψ may always be supposed to be total . Similarly for strongly effectively immune
sets, where instead

We ⊆ A ⇒ ψ(e)↓ ∧ (maxWe) ≤ ψ(e).

(Hint: let g be a recursive function such that

Wg(e) =

{
We if ψ(e)↓
∅ otherwise.

Then one of ψ(e) and ψ(g(e)) converges.)
c) There are effectively bi-immune sets, i.e. sets effectively immune and effectively

coimmune. (Ullian) (Hint: a natural construction, in which each We contributes at
most two elements, one for A and one for A, gives a bi-immune set A such that if
We ⊆ A or We ⊆ A, then |We| ≤ 2e+ 1.)

d) If A is strongly effectively immune, then A cannot be immune. (McLaughlin
[1965]) (Hint: suppose

We ⊆ A ⇒ max(We) < f(e).

Let sx be the smallest stage in which x appears in K, if it ever does, and 0 otherwise.
Define

Wt(x) =

{
{sx} if x ∈ K
∅ otherwise.

Then x ∈ K ∧ sx ≥ f(t(x)) ⇒ sx ∈ A. There are infinitely many such sx’s, otherwise
for almost every x is x ∈ K ⇔ x ∈ Kf(t(x)), and K is recursive. But the condition

x ∈ K ∧ sx ≥ f(t(x)) is r.e., so A contains an infinite r.e. subset.)
e) A set A is constructively immune if, for some partial recursive ϕ,

We infinite ⇒ ϕ(e)↓ ∧ ϕ(e) ∈ We ∩A.

If A is constructively immune, then A cannot be immune. (Li Xiang [1983]) (Hint:
an infinite r.e. subset of A can be built, by starting with an r.e. index of ω.)

f) The notions of effective and constructive immunity are independent . (Li Xiang

[1983]) (Hint: every simple set is constructively coimmune; for the other directions,

see c) and e) above.)

III.3 Hypersimple Sets and
Truth-Table Degrees

We have solved Post’s Problem for m-reducibility by constructing a simple set,
but have noticed that this does not automatically imply a solution to Post’s
Problem for T -reducibility, because there are simple sets which are T -complete
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(actually, all the simple sets we built were such). The next step is to relax
m-reducibility somewhat, and solve Post’s Problem for the weaker notion.

In m-reducibility we only allowed one positive query to the oracle. There
are many possible extensions, depending on the number of queries allowed (a
fixed bounded number, or unboundedly many), their nature (only positive, i.e.
asking whether some elements are in the oracle, or also negative, asking whether
some elements are not in it), and the way they are combined (conjunctions,
disjunctions, or any possible combination). Some of the possible reducibilities,
called respectively conjunctive, disjunctive, and positive (Jockusch [1966])
are the following:

A ≤c B ⇔ for some recursive function f ,
x ∈ A⇔ Df(x) ⊆ B.

A ≤d B ⇔ for some recursive function f ,
x ∈ A⇔ Df(x) ∩B 6= ∅.

A ≤p B ⇔ for some recursive function f ,
x ∈ A⇔ ∃u(u ∈ Df(x) ∧Du ⊆ B).

The consideration of these reducibilities makes good sense for the study of
r.e. sets, due to the fact that they only use positive information on the oracle,
which is exactly what we may obtain from r.e. sets (note that A is r.e. if and
only if A ≤p K). We will not be too much concerned with them, since the
picture we get from m-reducibility is finer, but we will prove some scattered
results here and in Chapter X.

Since our present concern is the solution to Post’s Problem, we might as
well consider the strongest possible generalization along these lines: to allow
for any (finite) number of questions, both positive and negative, to the oracle.
To define this notion precisely, let {σn}n∈ω be an effective enumeration of all
the propositional formulas, built from the atomic ones ‘m ∈ X’, for m ∈ ω.
These are also called truth-table conditions, since they can be arranged
in truth-tables. Given a set B, B |= σn means that B satisfies σn, i.e. that
the propositional formula σn becomes true when X in the atomic formulas is
interpreted as B.

Definition III.3.1 (Post [1944]) A is tt-reducible to B (A ≤tt B) if, for
some recursive function f ,

x ∈ A⇔ B |= σf(x).

A is tt-equivalent to B (A ≡tt B) if A ≤tt B and B ≤tt A.

In terms of connectives, the various truth-table reducibilities correspond to
truth-table conditions built up from the atomic ones by means of the following
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connectives:

≤tt= {¬,∧,∨} ≤p= {∧,∨} ≤c= {∧} ≤d= {∨},

while ≤m correspond to using only atomic formulas. We will see in III.8.4
that, on the r.e. sets, ≤m= {¬}. Since ¬, together with any one of ∧ and ∨,
generates all the propositional formulas, this would seem to take care of all the
possible types of truth-table-like reducibilities. Bulitko [1980] and Selivanov
[1982] have shown that it is almost so, in the sense that only another one such
reducibility exists, called linear reducibility, corresponding to the logical sum
(i.e. addition modulo 2). Its definition can be put as:

A ≤l B ⇔ for some recursive function f

x ∈ A⇔ |Df(x) ∩B| ≡ 1 (mod 2).

Truth-table degrees

Out first concern is to make clear the difference between truth-table and Turing
reducibility. Recall that a relative computation consists of two different kinds
of actions, one purely computational (performed by a machine), and the other
interactive (queries answered by the oracle). In Turing computations the two
parts can be strongly interwoven, and impossible to unravel: we may come
to know the questions we need to ask the oracle only during the computation
itself, and there might even be no recursive bound on their number or size (as
a function of the input). On the other hand, truth-table computations clearly
separate the two parts of the relative computation, computing ahead of time
not only the elements which need to be queried, but also the outcome of the
computation for any possible answer the oracle is going to provide for them.

Another way to see the difference is in terms of functionals. Recall that
A ≤T B if and only if cA ' F (cB), for some partial recursive functional F .

Proposition III.3.2 (Trakhtenbrot [1955], Nerode [1957]) A ≤tt B if
and only if cA ' F (cB) for some partial recursive, total functional F .

Proof. Let
x ∈ A⇔ B |= σf(x),

and define F (α, x) as follows. First see if α(z)↓ for every z such that the atomic
formula z ∈ X occurs in σf(x). If so, consider any set C such that, for any z
as just said, z ∈ C ⇔ α(z) ' 1, and let

F (α, x) '
{

1 if C |= σf(x)

0 otherwise.
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F is partial recursive and total by definition, and cA ' F (cB).
Suppose now that F is a partial recursive, total functional. For each x and

X, F (cX , x) is defined, and for every branch of the space 2ω of sets, the in-
formation on X needed to compute F (cX , x) is bounded, by compactness. By
König’s Lemma, there is a bound which works for all branches. Another way
to see this is to note that F is continuous and total on 2ω, which is a compact
space in the positive information topology: then F is uniformly continuous,
and there is a modulus of continuity that works for every member of 2ω. In
any case, we may thus write down a truth-table that gives F (cX , x) for any
X, because only values of X up to the bound are needed, and there are only
finitely many possible combinations. 2

By II.3.7.b we then know that T -reducibility and tt-reducibility do not
coincide. We now turn to a study of tt-reducibility.

Exercises III.3.3 a) If A is recursive, then A ≤tt B for any set B.

b) If A ≤tt B and B is recursive, so is A.

c) A ≤tt A.

Note that ≤tt is a reflexive and transitive relation, and thus ≡tt is an equiv-
alence relation.

Definition III.3.4 The equivalence classes of sets w.r.t. tt-equivalence are
called tt-degrees, and (Dtt, ≤) is the structure of tt-degrees, with the partial
ordering ≤ induced on them by ≤tt.

The tt-degrees containing r.e. sets are called r.e. tt-degrees, and two of
them are:

1. 0tt, the tt-degree of the recursive sets

2. 0′
tt, the tt-degree of K.

An r.e. set A is tt-complete if its tt-degree is 0′
tt, i.e. if K ≤tt A.

Note that an r.e. tt-degree, being closed under complementation, contains
only r.e. sets if and only if it contains only recursive sets. Also, 0tt and 0′

tt are,
respectively, the least and the greatest r.e. tt-degrees.

The analogue of Post’s Problem for tt-reducibility is: are there r.e. sets
which are neither recursive, nor tt-complete? We already know that simple
sets are not m-complete, and we make sure that they are not automatically
tt-incomplete.

Proposition III.3.5 (Post [1944]) There is a simple, tt-complete set.



III.3 Hypersimple Sets and Truth-Table Degrees 271

Proof. Consider Post’s simple set S (III.2.11). Any coinfinite r.e. superset of
it will still be simple (since any infinite r.e. subset of its complement would also
be a subset of S). We then look for an r.e. set S∗ such that:

1. K ≤tt S∗, i.e. K is coded into S∗ by truth tables

2. S ⊆ S∗, and S∗ coinfinite.

Let {Fx}x∈ω be a strong array of disjoint finite sets intersecting S. It exists,
because the construction of S ensures that at most z elements of {0, . . . , 2z} go
into S, so S intersects each subset of {0, . . . , 2z} with at least z + 1 elements.
It is then enough to let

Fx = {n : 2x − 1 ≤ n < 2x+1 − 1}.

We can then use the set Fx to code the fact that x ∈ K, by putting it into S∗

if this holds, and not otherwise. We also want S∗ to be a superset of S, and
we thus let

S∗ = S ∪
⋃
x∈K

Fx.

Then:

1. K ≤tt S∗, because x ∈ K ⇔ Fx ⊆ S∗. Indeed, if x ∈ K then Fx ⊆ S∗

by construction. And if x 6∈ K then Fx contains an element of S, which
never goes into S∗ because the Fy’s are disjoint: thus Fx 6⊆ S∗.

2. S∗ is infinite, because there are infinitely many elements x not in K, and
thus infinitely many Fx not contributing to S∗. Each one contains an
element of S, which cannot go in S∗ because the Fy’s are disjoint. 2

Note that S∗ is effectively simple, being a superset of S. Thus there are ef-
fectively simple, tt-complete sets. But this does not mean that every effectively
simple set is not only T -complete, but actually tt-complete (since hypersimple
sets, which are not tt-complete, may be effectively simple, see III.3.15.b).

The tt-complete, simple set obtained above is a modification of Post’s sim-
ple set. It is natural to wonder whether Post’s simple set is already tt-complete
itself. The surprising answer is that this depends on the acceptable system of
indices we are working with (one half of the result is given below, the other
half in III.9.2). Thus Recursion Theory is not completely independent of the
acceptable system of indices chosen to work with. This was first shown by
Jockusch and Soare [1973], who proved that another set constructed by Post
[1944] (namely his hypersimple set) could be T -complete or T -incomplete, de-
pending on the acceptable system of indices. This cannot be the case for Post’s
simple set, which is always T -complete (being effectively simple).
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Exercise III.3.6 There is an acceptable system of indices for which Post’s simple set
is tt-complete. (Lachlan [1975]) (Hint: given {Wx}x∈ω acceptable, define {Ŵx}x∈ω
acceptable, Ŝ relative to it, and a strong array {Bx}x∈ω such that

x ∈ K ⇔ Bx ⊆ Ŝ.

To have all the r.e. sets in the enumeration, let Ŵ2x = Wx. Note that, by construction,
if z > 2e and Ŵe = {z} then z ∈ Ŝ. If x ∈ K thus let

Ŵ2x+n = {2x+1 + 2n+ 1}

for 0 < n < 2x. If x ∈ K, then let Ŵ2x+n = ∅. For definiteness, let Ŵ0 = ∅. Finally,
let

Bx = {2x+1 + 2n+ 1 : 0 < n < 2x}. )

Hypersimple sets

Since simple sets do not solve Post’s Problem for tt-reducibility, we look for a
stronger notion. The idea comes from the fact that tt-reducibility uses finite
questions about sets, while m-reducibility uses only one question. We may thus
think of replacing, in the definition of simple sets, infinite r.e. sets by disjoint
strong arrays. Of course, a disjoint strong array contained in A produces an
infinite r.e. subset of it (by choosing one number in each element of the array),
and to rule out disjoint strong arrays contained in A is thus equivalent to
simplicity. We thus relax the condition a bit:

Definition III.3.7 (Post [1944]) A set A is hyperimmune if it is infinite,
and there is no disjoint strong array (with members all) intersecting it, i.e.
there is no recursive function f such that:

• x 6= y ⇒ Df(x) ∩Df(y) = ∅

• Df(x) ∩A 6= ∅.

A set is hypersimple if it is r.e. and co-hyperimmune.

We give some conditions equivalent to hyperimmunity.

Proposition III.3.8 (Medvedev [1955], Rice [1956a], Uspenskii [1957],
Kuznekov) For an infinite set A, the following are equivalent:

1. A is hyperimmune

2. there is no recursive function f such that
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• x 6= y ⇒ Df(x) ∩Df(y) = ∅
• Df(x) ∩A 6= ∅
•

⋃
x∈ωDf(x) ⊇ A.

3. there is no recursive function f such that, for each n, A has at least n
elements smaller that f(n)

4. there is no recursive function f such that, for each n, an ≤ f(n), where
an is the n-th element of A in increasing order.

Proof. The last two conditions are clearly equivalent. Moreover:

• 1 ⇒ 2 by definition

• 2 ⇒ 3 because, if A has at least n elements below f(n), there is an
element of A between n and f(n + 2), and thus a disjoint strong array
intersecting A and covering ω can be obtained by iteration:

{0, . . . , f(1)− 1}, {f(1), . . . , f(f(1) + 2)}, · · ·

• 3 ⇒ 1 because if {Dh(x)}x∈ω is any disjoint strong array intersecting A,
then

f(n) = max(
⋃
i<n

Dh(i))

has at least n elements of A below it. 2

The intuitive content of the various characterizations of hyperimmunity is
that a hyperimmune set has very sparse elements, from a recursion theoretical
point of view : for any recursive function f , no matter how fast growing, there
are infinitely many elements an in the ordering of A by magnitude, such that
f(n) < an.

Exercises III.3.9 Domination properties. We say that f dominates ϕ if, for
almost every argument x, f(x) ≥ ϕ(x) whenever ϕ(x) ↓. Let pA be the function
enumerating the infinite set A by magnitude (principal enumeration), so that pA(n)
is the n-th element of A.

a) A is hyperimmune if and only if pA is not dominated by any recursive function.
b) Call a set A dense immune if pA dominates every total recursive function,

and an r.e. set dense simple if its complement is dense immune (Martin [1963]).
Then a dense simple set is hypersimple.

c) A strongly effectively simple set is not dense simple. (Cohen and Jockusch
[1975]) (Hint: let A be dense, and s.e.s. via g:

We ⊆ A ⇒ (maxWe) < g(e).
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Let an and asn be the n-th element of A and As. If h is a recursive function going to
infinity, there is n0 such that (∀n ≥ n0)(an ≥ h(n)). We get that A is cofinite if we
show

(∀n ≥ n0)(∀x)(an ≥ h(x)),

since h goes to infinity. This follows by induction if, for n ≤ x,

an ≥ h(x) ∧ an+1 ≥ h(x+ 1) ⇒ an ≥ h(x+ 1).

It is enough to define f and g such that h(x) ≥ g(f(n, x)), and

Wf(n,x) = {asn}, with s minimal such that asn ≥ h(x) ∧ asn+1 ≥ h(x+ 1).

This can be done by the Fixed-Point Theorem. Then asn 6= an by s.e.s., hence
an ≥ asn+1 ≥ h(x+ 1).)

d) If pA dominates every partial recursive function, then K ≤T A. (Tennenbaum

[1962]) (Hint: see the proof of III.1.5.)

The following result shows that the intuition that led to the definition of
hypersimple sets was correct.

Theorem III.3.10 (Post [1944]) A hypersimple set is not tt-complete.

Proof. Let x ∈ K ⇔ A |= σf(x). We prove that A is not hypersimple by
finding effectively, given n, a number m ≥ n such that

A ∩ {n, n+ 1, . . . ,m} 6= ∅.

This will automatically produce, by iteration, a disjoint strong array intersect-
ing A. Let

z ∈ A∗ ⇔ (z ∈ A ∧ z < n) ∨ z ≥ n

x ∈ C ⇔ ¬(A∗ |= σf(x)).

C is r.e. because A∗ is recursive (being cofinite). So let C = Wa:

• if a ∈ K then A |= σf(a) but ¬(A∗ |= σf(a)), since a ∈ Wa = C

• if a ∈ K then ¬(A |= σf(a)) but A∗ |= σf(a), since a 6∈ Wa = C.

So A |= σf(a) ⇔ ¬(A∗ |= σf(a)), and since A and A∗ agree below n, they must
disagree above it. But by definition everything above n is in A∗, so one of the
elements used in σf(a) is not in A.

The first thought would be to let m be greater than all the elements used
in σf(a), but we cannot get this effectively from n, because the definition of A∗

uses A, which is only r.e. But since only elements below n are considered, there
are only finitely many subsets Bi (i < 2n) of {0, . . . , n− 1}, and one of them is
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reallyA∩{0, . . . , n−1}. So if we consider them all, and letA∗i = Bi∪{z : z ≥ n},
we can proceed as before, getting Ci = Wai . Now we cannot anymore assert
in general that one of the elements used in σf(ai) is not in A, since A∗i might
not be A∗, but if we let

m = 1 + max
i<2n

{ elements used in σf(ai) }

then m is in particular greater than all elements used in σf(a), and we still have
A ∩ {n, . . . ,m} 6= ∅. 2

Exercises III.3.11 a) A coinfinite r.e. set A is hypersimple if and only if it has no
c-complete superset . (Hint: if A ⊆ B and B is hypersimple, then B is hypersimple or
cofinite, hence not tt-complete. For the converse, see the proof of III.3.5.)

b) If A and B are hypersimple sets then A ∩ B is hypersimple, and A ∪ B is

hypersimple or cofinite. Thus hypersimple or cofinite sets form a filter in the lattice

of the r.e. sets under inclusion. (Dekker [1953])

We have now to turn to the existence of hypersimple sets. Post’s simple set
is obviously not hypersimple, but a modification of the second existence proof
of simple sets in III.2.11 will produce a hypersimple one.

Theorem III.3.12 (Post [1944]) There exists a hypersimple set.

Proof. We build a hypersimple set A by stages. At stage s we will have As,
and we will let As = {as0 < as1 < · · · }. In the end A = {a0 < a1 < · · · }, where
an = lims→∞ asn. We want to satisfy the following requirements:

Pe : We infinite disjoint strong array ⇒ (∃z ∈ We)(Dz ⊆ A)
Ne : A has at least e elements, or lims→∞ ase <∞.

The construction is as follows. We start with A0 = ∅ (hence a0
n = n). At

stage s+ 1 we search for the smallest e ≤ s such that:

• z ∈ We,s ⇒ Dz ∩As 6= ∅

• for some z ∈ We,s, Dz ⊆ [ase,∞).

Note that both As and We,s are finite, and we only look at e ≤ s, so the search
is effective. If e does not exist, we go to the next stage. Otherwise, Pe is the
condition with smallest index which looks unsatisfied and with a chance to be
satisfied. Then we put all of Dz into A, where z is the smallest one such that
z ∈ We,s and Dz ⊆ [ase,∞).

Since the construction is effective, A =
⋃
s∈ω As is r.e. Moreover:
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• A is infinite.
It is enough to prove that lims→∞ asn exists. Indeed, asn may move at a
certain stage s + 1 only if it happens that asn ∈ Dz, for some z ∈ We,
e ≤ n. Since each We contributes at most one finite set for each e, and
there are only finitely many e ≤ n, asn moves only finitely many times.
So all Ne’s are satisfied.

• A is hypersimple.
By induction, suppose that s0 is such that s0 ≥ e, all Pi with i < e have
been satisfied at stage s0, and no finite set with index in Wi (i < e) goes
into A after stage s0. If We is a disjoint strong array intersecting A, there
are s ≥ s0 and z ∈ We,s such that Dz ⊆ [ase,∞). Then, for one of these z,
Dz goes into A at stage s+1 (because e is the smallest index for which Pe
looks unsatisfied and with a chance to be satisfied), contradiction. 2

Also III.2.14 generalizes, and shows that a hypersimple set is not necessarily
T -incomplete.

Proposition III.3.13 (Dekker [1954]) Every nonrecursive r.e. T -degree
contains a hypersimple set.

Proof. Given A r.e. nonrecursive enumerated by f recursive, let B be its
deficiency set (II.6.16):

x ∈ B ⇔ (∃y > x)(f(y) < f(x)).

We already know that B is r.e. and coinfinite, and A ≡T B. Suppose there is
a recursive function g majorizing B, i.e. g(x) greater than the x-th element of
B, and in particular of x itself. Then f(g(x)) is also greater than x, because f
is increasing on nondeficiency stages, and after stage g(x) no element smaller
than f(g(x)) is going to be enumerated. Then

x ∈ A⇔ x ∈ {f(0), f(1), . . . , f(g(x))},

and A would be recursive. 2

Note that, although the proof given above produces B ≤tt A, we only have
A ≤T B, and this is necessary: not every nonrecursive r.e. tt-degree contains a
hypersimple set (because a hypersimple set cannot be tt-complete). Jockusch
[1981a] actually shows that not every nonrecursive r.e. tt-degree contains a
simple set .

Exercises III.3.14 a) Every r.e. nonrecursive coregressive set is hypersimple.
(Dekker and Myhill [1958], Dekker [1962]) (Hint: see III.5.6 and III.5.3.)

b) There are nonrecursive retraceable sets which are not hyperimmune. (Dekker

and Myhill [1958]) (Hint: see II.6.7.b.)
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Exercises III.3.15 A is effectively hyperimmune if it is coinfinite, and there is
a recursive function f such that, whenever We is a disjoint strong array intersecting
A, |We| ≤ f(e). A set is effectively hypersimple if it is r.e., and its complement is
effectively hyperimmune.

a) An effectively hypersimple set is effectively simple, and hence T -complete.
(Hint: given We, let Wh(e) be the set of canonical indices of the singletons consisting

of the elements of We. Then We ⊆ A⇒ |We| ≤ f(h(e)).)
b) The hypersimple set constructed in III.3.12 is effectively hypersimple. (Hint:

let f(e) = e.) Thus there are effectively simple sets which are not tt-complete, and
III.2.18 cannot be improved.

c) There are hypersimple, not effectively hypersimple, T -complete sets. (Arslanov
[1970]) (Hint: see III.2.19.b.)

d) A hypersimple set A is T -complete if and only if there is f ≤T A such that,
whenever We is a disjoint strong array intersecting A, |We| ≤ f(e). (Arslanov [1970])
(Hint: see III.2.19.c.)

e) A and A cannot both be effectively hyperimmune. Note that this is not true for
effective simplicity, see III.2.22.c. (Arslanov [1969]) (Hint: by taking the maximum of
the two functions, A and A can be supposed effectively immune via the same function.
Build a disjoint strong array intersecting both of them. Put in Wg(x) the canonical
indices of the singletons {y}, for y ≤ f(x) + 1, and choose e such that Wg(e) = We.
Then We is a disjoint strong array with more than f(e) elements, so it intersects
both A and A. Thus {0, . . . , f(e) + 1} is the first set of the wanted array. Continue
similarly.)

For different notions of effective hypersimplicity see Arslanov [1969], [1970], [1985],

Arslanov and Soloviev [1978], and Kanovich [1975].

The permitting method ?

The proof of the existence of hypersimple sets in each nonrecursive r.e.
T -degree used deficiency stages, and was thus elegant but a bit artificial. In
particular, it does not appear to be useful to prove different results. But we
can isolate from it a useful tool that was used there implicitly, and that has
instead a vast range of applications.

Proposition III.3.16 Permitting method (Dekker [1954], Muchnik
[1956], Friedberg [1957], Yates [1965]) If A and C are r.e. sets, {As}s∈ω
and {Cs}s∈ω are recursive enumerations of them, and for every x

x ∈ As+1 −As ⇒ (∃y ≤ x)(y ∈ Cs+1 − Cs),

then A ≤T C.

Proof. To see if x ∈ A, look at the stages in which some y ≤ x is generated
in C: recursively in C we may determine if y ∈ C, and if so we just have to
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generate C until y appears in it. Then x ∈ A if and only if x is generated at
one of these stages. 2

The name of the method comes from the fact that an element may go into
A only if it is permitted by some element of C (smaller than it). The method is
very useful when we have a construction of an r.e. set with certain properties,
and we want to build one such set below any given (nonrecursive) r.e. set.

Exercise III.3.17 The permitting method does not produce A ≤tt C. (Hint: by pri-

ority method, see Chapter X, build A and B disjoint r.e. sets, such that A 6≤tt A∪B.

If C = A ∪ B and Cs = As ∪ Bs, x ∈ As+1 − As ⇒ x ∈ Cs+1 − Cs. To satisfy

x 6∈ A ⇔ A ∪ B |= σϕe(x), pick up a witness ze 6∈ As ∪ Bs, and wait until ϕe(ze)

converges. Let As+1 ∪ Bs+1 = As ∪ Bs ∪ {ze}. To decide where ze should go, see if

As+1 ∪Bs+1 |= σϕe(ze). If so, let ze ∈ B, otherwise let ze ∈ A.)

As an example, we show how to apply permitting to the construction of
Post’s simple set.

Proposition III.3.18 (Yates [1965]) Every nonrecursive r.e. T -degree con-
tains a simple not hypersimple set.

Proof. Given C r.e. nonrecursive, we build A simple, nonhypersimple and
such that A ≤T C, by adding permitting to the first proof of III.2.11: at stage
s, for every e ≤ s such that We,s ∩As = ∅, put in A the smallest x such that

x > 2e ∧ x ∈ We,s ∧ x permitted by C at stage s,

where x is permitted by C at stage s if (∃y ≤ x)(y ∈ Cs+1 − Cs).
Since A ⊆ S, where S is Post’s simple set, it is immediate that A is coinfinite

and not hypersimple. By permitting, A ≤T C. It remains to show that A is
simple, and this is not automatic, because less elements go into A than in S.
Suppose We is infinite, and We ⊆ A. Then, by construction,

x > 2e ∧ x ∈ We,s ∧ e ≤ s⇒ x is not permitted by C at stage s.

We prove that then C must be recursive. Given y, to see if y ∈ C look for x
and s such that

x > 2e ∧ x ∈ We,s ∧ e ≤ s ∧ y ≤ x

(which exist, because We is infinite). Then y ∈ C ⇔ y ∈ Cs, because if
y ∈ C − Cs then, for some t ≥ s, y ∈ Ct+1 − Ct, and x is permitted by y at
stage t (since We,s ⊆ We,t).

We still have to get C ≤T A. Let B = A⊕ A∗, where A∗ is a hypersimple
set such that A∗ ≡T C (III.3.13). Then C ≤T A∗ ≤T B. Moreover, both A
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and A∗ are reducible to C, so B ≤T C. And B is simple and not hypersimple,
because so are A and A∗ (an infinite subset of B induces an infinite subset of
A or A∗). 2

Exercises III.3.19 a) C ≤T A can be ensured directly by a coding procedure, as
follows: at stage s, if y is the element of C enumerated at stage s + 1, put asy (the
y-th element of As) into A. (Hint: to see if y ∈ C, search recursively in A a stage
s such that asy = ay. Then y ∈ C ⇔ y ∈ Cs. Note also that asn moves only finitely
many times for the coding, at most once for each y ≤ n.) If this method is used, then
we have a different proof of III.2.14.

b) C ≤T A is automatic in the proof above. This generalizes the fact that Post’s
simple set is automatically T -complete. (Jockusch and Soare [1972a]) (Hint: by the
Fixed-Point Theorem, find g recursive and one-one such that

Wg(e) =

{
{ase

0 , . . . , a
se
2·g(e)} if e ∈ C

∅ otherwise,

where

se =

{
µs(e ∈ Cs) if e ∈ C
0 otherwise.

Let also re = µs(∀n ≤ 2g(e))(asn = an). Since re is recursive in A, if e ∈ C ⇔ e ∈ Cre

then C ≤T A. So consider Ĉ = {e : e ∈ C − Cre}. This is r.e. in A, since C is r.e.
and re is recursive in A. If it is finite, then C ≤T A. So suppose it is infinite. Then
there are infinitely many e such that se > re, in particular Wg(e) ⊆ A, and Wg(e) has
2g(e) + 1 elements, so there is x ∈ Wg(e) ∧x > 2g(e). Given y, to test for y ∈ C look,
recursively in A, for:

e ∈ Ĉ such that 2g(e) > y (Ĉ is infinite, and g is one-one)
x ∈ Wg(e) ∧ x > 2g(e)
a stage s such that x ∈ Wg(e),s ∧ g(e) ≤ s.

Then, since x ∈ Wg(e),s ∧ x > 2g(e) ∧ g(e) ≤ s but Wg(e) ⊆ A, x is never permitted.
So no element smaller than it can enter C after that stage. Hence y ∈ C ⇔ y ∈ Cs.)

c) The existence of hypersimple sets in any nonrecursive r.e. T -degree can be

proved directly, by permitting and coding .

To avoid false expectations, we must stress the fact that none of the follow-
ing is true:

1. permitting can be applied to any construction of r.e. sets

2. when permitting can be applied, it can also be combined with a coding
procedure to give a set with the highest possible degree.

As we will see in Chapter X, the first fails for maximal sets (since no maximal
set can be built below a low degree), the second for contiguous degrees or



280 III. Post’s Problem and Strong Reducibilities

η-maximal semirecursive sets (since they exist below any given nonrecursive
degree, but not in every degree).

It is however true that there seems to be a sort of maximum degree prin-
ciple (Jockusch and Soare [1972a]), according to which natural constructions
with ‘weak negative requirements’ usually give sets with the highest possible
degree not explicitly ruled out by the construction.

Another fact, related to the one above and which might be called effectivity
principle, is that sets which are constructed in some natural way to satisfy
some requirements, tend to satisfy them in some effective way .

For example, the constructions of simple sets (III.2.11) and of hypersimple
sets (III.3.12) automatically produced sets which are both T -complete, and
effectively simple or hypersimple. We will see many other manifestations of
the two principles in the following. In particular, Section 6 is an elaboration of
the fact that K is effectively nonrecursive.

III.4 Hyperhypersimple Sets and Q-degrees

We have solved Post’s problem for tt-reducibility by constructing a hypersimple
set, but have noticed that this does not automatically imply a solution to
Post’s problem for T -reducibility, because there are T -complete hypersimple
sets. Once again the next step is to relax tt-reducibility, and solve Post’s
problem for the weaker notion.

Since there seems to be no easy way to weaken tt-reducibility without
falling into T -reducibility, we pursue a complementary tactic, and strengthen
T -reducibility instead. Recall (III.1.4) that, for r.e. sets A and B, A ≤T B is
equivalent to the existence of an r.e. relation R such that

x ∈ A⇔ (∃u)(Du ⊆ B ∧R(x, u)).

This means, intuitively, that from time to time we ask the oracle questions
about containment of a finite set Du. We thus propose to ask the oracle only
questions about singletons. This can be expressed by the existence of an r.e.
relation R such that

x ∈ A⇔ (∃u)(u ∈ B ∧R(x, u)).

By the Smn -Theorem, the existence of a binary r.e. relation R is equivalent to
the existence of a recursive function f such that R(x, u) ⇔ u ∈ Wf(x). We can
then express the previous formulation as

x ∈ A ⇔ (∃u)(u ∈ B ∧ u ∈ Wf(x)) ⇔Wf(x) ∩B 6= ∅.
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Q-reducibility

The discussion above leads us to the following notion.

Definition III.4.1 (Tennenbaum) A is Q-reducible to B (A ≤Q B) if,
for some recursive function f ,

x ∈ A⇔Wf(x) ⊆ B.

Thus Q-reducibility is similar to c-reducibility (p. 268), only using r.e. sets
of questions in place of finite sets. On r.e. sets, which are our real concern,
the similarity is even greater, since we can actually use only finite r.e. sets of
questions.

Proposition III.4.2 (Soloviev [1974]) If A and B are r.e. sets, then
A ≤Q B if and only if there is g recursive such that, for every x,

1. Wg(x) is finite

2. x ∈ A⇔Wg(x) ⊆ B.

Proof. Given f as in the original definition of ≤Q, let Wg(x) be the r.e. set
generated as follows. Generate simultaneously Wf(x), A, and B. At each stage
of the enumeration, put the elements already generated in Wf(x) into Wg(x),
unless either x has already been generated in A (this is a permanent block),
or some z has already been generated in Wg(x), but not yet in B (this is a
temporary block, that could later be removed if z is generated in B).

If x ∈ A then Wf(x) ⊆ B, and hence Wg(x) ⊆ B, because Wg(x) is a subset
of Wf(x). Moreover, Wg(x) is finite because its enumeration stops no later than
x has been generated in A.

If x 6∈ A then Wf(x) ∩ B 6= ∅: if z is any element of the intersection, the
enumeration of Wg(x) stops permanently no later than z has been generated in
Wg(x), and thus Wg(x) is finite. Moreover, Wg(x) contains one such z, because
x is not in A, and thus Wg(x) 6⊆ B. 2

Notice that if A ≤Q B then A is not necessarily recursive in B. To know
if x is in A we must check whether Wf(x) is contained in B, and there are two
problems: first of all, Wf(x) may be infinite, and thus the check could not be
done in finite time; second, even if Wf(x) were finite, we would not know when
its enumeration had been completed. What we can say in general is only that
A is r.e. in B, since to know if x is in A we only have to find an element of
Wf(x) which is not in B. If A is r.e. (in B), then we also have the missing half,
and A is recursive in B by Post’s Theorem.
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Exercises III.4.3 Q-reducibility. We have just noted that ≤Q is a nonstandard
reducibility, and we introduce it mostly for the sake of solution to Post’s problem.
Here are some properties of ≤Q and the associated notion of Q-degree, some of which
depend on the definition of the Arithmetical Hierarchy, see IV.1.6.

a) ≤Q is reflexive and transitive.
b) If A ≤Q B and B ∈ Π0

n then A ∈ Π0
n.

c) There is a least Q-degree, containing exactly the Π0
1 sets. (Hint: if A ∈ Π0

1 and
B 6= ω is any set, let b 6∈ B, and

Wf(x) =

{
{b} if x ∈ A
∅ otherwise.

Then x ∈ A⇔Wf(x) ⊆ B, and A ≤Q B.)
d) A ≤Q K if and only if A ∈ Π0

2. (Hint: if A ∈ Π0
2 then x ∈ A ⇔ (∀y)R(x, y),

with R r.e. Then there is a recursive function f such that R(x, y) ⇔ f(x, y) ∈ K. If
Wg(x) = {f(x, y) : y ∈ ω}, then x ∈ A⇔Wg(x) ⊆ K.)

e) If A ≤m B then A ≤Q B.
f) If A ≤Q B then A ≤T B for r.e. sets, but not in general . (Hint: for the

counterexample, see e.g. part d) above.)

g) Neither of A ≤tt B and A ≤Q B implies the other, even on the r.e. sets. (Hint:

there is a hypersimple Q-complete set, see p. 297, and thus Q-reducibility does not

imply tt-reducibility. For the converse build by priority method, see Chapter X, A

and B such that 〈x, y〉 ∈ A ⇔ x ∈ B ∨ y ∈ B, so that A ≤tt B. To spoil the e-th

Q-reduction x ∈ A ⇔ Wϕe(z) ⊆ B, pick up distinct witnesses xe, ye and enumerate

Wϕe(ze), where ze = 〈xe, ye〉. If at stage s we find, for the first time, Wϕe(ze),s 6⊆ Bs
then pick up ue ∈ Wϕe(ze) ∩Bs. Since xe and ye are distinct , one of them is distinct

from ue: put it into B (so ze ∈ A), and restrain ue from entering B. If such a stage

is never found, then Wϕe(ze) ⊆ B, but we never put either xe or ye into B, so ze 6∈ A.

Intuitively, the reason why this works is that A is defined from B in a disjunctive

way, whereas Q-reducibility uses a conjunctive request on B.)

As usual we have the notion of completeness:

Definition III.4.4 A set A is Q-complete if it is r.e. and K ≤Q A.

The analogue of Post’s problem for Q-reducibility is: are there r.e. sets
which are neither recursive, nor Q-complete? A solution is not automatically
provided by hypersimple sets, since they can be Q-complete (p. 297).

Hyperhypersimple sets

The idea to get r.e. sets which are automatically not Q-complete comes from
the fact that the hypersimple sets are not tt-complete, and in particular not
c-complete. Since Q-reducibility corresponds to c-reducibility, with finite sets
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given by canonical indices replaced by finite sets given by r.e. indices, we change
strong arrays into weak arrays in the definition of hypersimple sets.

Definition III.4.5 (Post [1944]) A is hyperhypersimple if it is a coinfi-
nite r.e. set, and there is no disjoint weak array (with members all) intersecting
A, i.e. if there is no recursive function f such that

• Wf(x) finite

• x 6= y ⇒Wf(x) ∩Wf(y) = ∅

• Wf(x) ∩A 6= ∅.

This definition is the point where Post got stuck in his epochal paper [1944].
He left open the problems of existence and T -completeness of hyperhypersimple
sets, both of which will be solved in this section.

First we give some characterizations of hyperhypersimple sets. The first one
shows that, in place of r.e. sets of disjoint finite sets given by their r.e. indices,
we may only look at r.e. sets of (not necessarily finite) r.e. sets, disjoint on A.

Proposition III.4.6 (Yates [1962]) A is hyperhypersimple if and only if it
is a coinfinite r.e. set, and there is no recursive function f such that:

• x 6= y ⇒Wf(x) ∩Wf(y) ∩A = ∅

• Wf(x) ∩A 6= ∅.

Proof. Suppose such an f exists. We first build g recursive such that:

• x 6= y ⇒Wg(x) ∩Wg(y) = ∅

• Wg(x) ∩A 6= ∅.

For this it is enough to generate the Wf(x)’s simultaneously, and eliminate
repetitions. If at some stage we consider Wf(x), and a new element of it comes
out, we put it into Wg(x), unless it has already been put in some other Wg(y)

before. Then, if x 6= y, Wg(x) ∩Wg(y) = ∅. And since Wf(x) ∩ A 6= ∅, we also
have Wg(x) ∩A 6= ∅, because on A the Wf(x)’s are disjoint.

Now from g we build h recursive with the additional property that Wh(x)

is finite. To define Wh(x), simultaneously generate Wg(x) and A, and at each
stage put the elements already generated in Wg(x) into Wh(x), unless some z
has already been generated in Wh(x), but not yet in A (this is a temporary
block, that could later be removed if z is generated in A). Since Wg(x)∩A 6= ∅,
as soon as the first element of the intersection is generated in Wh(x) the enu-
meration stops permanently, and Wh(x) is finite. But since such an element
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has entered Wh(x), its intersection with A is nonempty. 2

The second characterization of hyperhypersimple sets parallels the defini-
tion of simple sets, with r.e. or recursive sets replaced by regressive or retrace-
able ones.

Proposition III.4.7 (Yates [1962]) The following are equivalent, for r.e.
coinfinite sets:

1. A is hyperhypersimple

2. A does not contain infinite retraceable sets

3. A does not contain infinite regressive sets.

Proof. The last two conditions are equivalent by II.6.20, so we can consider
any of them.

If A contains B retraceable via ϕ we may suppose that ϕ(x) ≤ x, whenever
ϕ(x)↓ (by II.6.3.a). Let

Wf(n) = {z : n = µx(ϕ(x)(z) ' ϕ(x+1)(z))}.

Then the Wf(n)’s are disjoint. Since the n-th element of B in order of magni-
tude is in Wf(n), Wf(n) ∩A 6= ∅, and A is not hyperhypersimple.

Let now A be not hyperhypersimple, and f be a recursive function such
that:

• x 6= y ⇒Wf(x) ∩Wf(y) = ∅

• Wf(x) ∩A 6= ∅.

If we could effectively pick up an element zn ∈ Wf(n) ∩ A, we could simply
let ϕ send Wf(0) over z0, and Wf(n+1) over zn. Then ϕ would regress the
infinite subset {zn}n∈ω of A. This we cannot do, but since the effective choice
of zn is needed only to have ϕ partial recursive (because the enumeration of
the regressed set need not be effective), there is an easy way out: we just have
to do the same for each element of each Wf(n), not just for zn. E.g., let ϕ′

send Wf(0) over z0, and Wf(〈x,y〉+1) over the x-th element generated in Wf(y).
Then ϕ′ regresses the set inductively defined as follows: z′0 = z0, and if z′n is
the x-th generated in Wf(y), then z′n+1 ∈ Wf(〈x,y〉+1) ∩A. 2

Exercises III.4.8 Hyperhyperimmune sets. Two definitions are possible. A is
strongly hyperhyperimmune if there is no r.e. set of disjoint r.e. sets intersecting
it, and it is hyperhyperimmune if there is no disjoint weak array intersecting it.
The difference is that in the first case the r.e. sets are not necessarily finite.
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a) An infinite set is strongly hyperhyperimmune if and only if it does not have
infinite retraceable or regressive sets. (Yates [1962]) (Hint: see the proof of III.4.7.)

b) A strongly hyperhyperimmune set is hyperhyperimmune, but not conversely .
(Hint: build a hyperhyperimmune set in the natural way, with at least one element
from each Bn = {〈n, x〉 : x ∈ ω}. Then the set has an infinite retraceable subset.)
III.4.6 shows that the converse implication holds for A co-r.e. Cooper [1972] shows
that it holds for A ∈ ∆0

2.

c) There are 2ℵ0 hyperhyperimmune, co-hyperhyperimmune sets. (Hint: see

III.2.22.a.)

Exercises III.4.9 Strongly hypersimple sets. (Young [1966a]) The following
definitions are patterned on III.3.8. A coinfinite r.e. set is (finitely) strongly hy-
persimple if there is no r.e. set of r.e. indices of disjoint (finite) r.e. sets intersecting
A, and with union covering it.

a) Hyperhypersimple ⇒ strongly hypersimple ⇒ finitely strongly hypersimple ⇒
hypersimple, but none of the converse implications holds. (Young [1966a], Robinson
[1967]) (Hint: by the proof of III.5.7, a semirecursive hypersimple set is not finitely
strongly hypersimple. In Chapter X we will introduce r-maximal sets, which are
always strongly hypersimple, and show the existence of r-maximal sets which are not
hyperhypersimple. Finally, we build a finitely strongly hypersimple set which is not
strongly hypersimple. Define

〈x, y〉 ∈ A∗ ⇔ x ∈ A ∨ (x < y).

If we picture ω×ω as a matrix, then in A∗ go full rows if they correspond to elements
of A, and only the part beyond the diagonal otherwise. If A is coinfinite, then the
columns intersectA∗, andA∗ is not strongly hypersimple. LetA be hyperhypersimple,
by III.4.18: then A∗ is finitely strongly hypersimple. Indeed, suppose there is a
disjoint weak array f intersecting A∗, and covering it. We can build a disjoint weak
array g intersecting A, as follows. The idea is to try to put the first component of
each element of Wf(e) into Wg(e): since Wf(e) intersects A∗, Wg(e) then intersects

A. The trouble is that different Wf(e)’s might have elements with the same first
component, and the Wg(e)’s would then not be disjoint. So we start as we said, and
at stage x + 1 we look at the x-th row: generate simultaneously A and the Wf(e)s’,
until we find either x ∈ A, or the Wf(e)’s covering {〈x, 0〉, 〈x, 1〉, . . . , 〈x, x〉}. One of
the two cases must happen, since the second case does if x 6∈ A, and the weak array
f covers A∗. Choose the Wf(e) assigned to Wg(n), with n minimal, and put x in
Wg(n). If some of the remaining Wf(e)’s was assigned to some other Wg(m)’s, define
new assignments. Note that, by induction, the assignment to Wg(e) can change only
finitely many times. E.g., Wg(0) always has Wf(0) assigned and, since this is finite, it
can force a change of assignment to Wg(1) only finitely often.)

b) A coinfinite r.e. set A is (finitely) strongly hypersimple if and only if there
is no r.e. set of characteristic indices of disjoint (finite) recursive sets intersecting
A. Thus hypersimple, finitely strongly hypersimple, and hyperhypersimple sets are
obtained from the same definition, but using respectively canonical, characteristic,
and r.e. indices of finite sets. The condition of finiteness may be dropped for r.e.
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indices, but not for characteristic ones. (Martin [1966a]) (Hint: given Wf(x) such

that
⋃
x∈ωWf(x) ⊇ A, let

z ∈ Rg(x) ⇔ z shows up in Wf(x) before that in A.

Conversely, given Rf(x), it is possible to suppose Rf(x) ∩A infinite, by taking appro-
priate unions. Let

z ∈ Wg(x) ⇔ (∀y < x)(z 6∈ Rf(y)) ∧ [z = x ∨ (z > x ∧ z ∈ Rf(x))].)

c) A coinfinite r.e. set is (finitely) strongly hypersimple if and only if A does not
have infinite subsets retraced by total (and many-one) recursive functions. (Martin
[1966a]) (Hint: use part b) above, and see III.4.7.)

Other parallel characterizations of strongly hypersimple and hyperhypersimple

sets, in terms of arrays, are given by Robinson [1967a].

The following result shows that the intuition that led to the definition of
hyperhypersimple sets was correct.

Theorem III.4.10 (Soloviev [1974], Gill and Morris [1974]) A hyperhy-
persimple set is not Q-complete.

Proof. Let x ∈ K ⇔ Wg(x) ⊆ A, with Wg(x) finite. To prove that A is not
hyperhypersimple, suppose we already have Wf(0), . . . ,Wf(n), all finite. We
want Wf(n+1) finite and such that:

• Wf(n+1) ∩A 6= ∅

• Wf(n+1) ∩ (
⋃
i≤nWf(i)) = ∅.

We try to have f(n+ 1) = g(a) for some a ∈ K, so that Wg(a) ∩A 6= ∅. The
idea is to define an r.e. set B ⊆ K such that

x ∈ B ⇒ Wg(x) ∩ (
⋃
i≤n

Wf(i)) = ∅.

Then, for a index of B, we have

B = Wa ⊆ K ⇒ a ∈ K −B,

and the two conditions are satisfied. To have B ⊆ K we ask, by the properties
of g,

x ∈ B ⇒ Wg(x) ∩A 6= ∅.
Putting things together, we try the definition

x ∈ B ⇔ Wg(x) ∩A ∩ (
⋃
i≤n

Wf(i)) 6= ∅.
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This gives a sequence of sets which are disjoint only on A, but we know from
III.4.6 that this is enough. Since A is not r.e., the true definition will be:

x ∈ B ⇔ (∃s ≥ x)[Wg(x),s ∩As ∩ (
⋃
i≤n

Wf(i),s) 6= ∅].

The reason to have s ≥ x is that, since
⋃
i≤nWf(i) is finite, for x (and hence

s) big enough it will be true that x is in K when x is in B. Indeed, there is a
stage s0 such that after it all elements of A ∩ (

⋃
i≤nWf(i)) (a finite set) have

been generated. For s ≥ s0, any element of As ∩ (
⋃
i≤nWf(i),s) is not in A,

and hence is in A ∩ (
⋃
i≤nWf(i)). Thus, for x ≥ s0, if x is in B then it is in

Wg(x) ∩A ∩ (
⋃
i≤nWf(i)), and hence in K, because Wg(x) ∩A 6= ∅.

Thus, even if we do not know whether B ⊆ K, at least we know that we
miss this only for finitely many numbers. Let now B = Wa0 : if a0 ∈ B then,
by definition of K, a0 ∈ K, as wanted. But if a0 ∈ B then a0 ∈ K, thus
Wg(a0) ⊆ A, and this does not work. In this case, let Wa1 = B − {a0}, and
see if a1 ∈ Wa1 , and so on. We thus define a sequence a0, a1, . . . After a finite
number of steps we must hit ai ∈ Wai , because all the ai’s are in B, and only
finitely many of them are not in K. Then we can just let Wf(n+1) =

⋃
Wg(ai),

and note that the ai’s in K contribute Wg(ai) ⊆ A, and thus do not interfere
with what occurs on A. 2

Exercises III.4.11 a) A coinfinite r.e. set A is hyperhypersimple if and only if it
has no Q-complete superset . (Hint: if A ⊆ B is hyperhypersimple, then B is hyper-
hypersimple or cofinite, hence not Q-complete. For the converse, if f is a weak array
intersecting A then B = A ∪ (

⋃
x∈KWf(x)) is Q-complete.)

b) If A and B are hyperhypersimple sets then A ∩ B is hyperhypersimple, and

A ∪ B is hyperhypersimple or finite. Thus hyperhypersimple or cofinite sets are a

filter in the lattice of r.e. sets under inclusion. (Martin, McLaughlin) (Hint: if A and

B are r.e. and A ∩B has an infinite retraceable set, so does one of A, B.)

We now want to turn to the existence of hyperhypersimple sets. We have a
great number of hypersimple sets, namely the deficiency sets of any recursive
function enumerating any nonrecursive r.e. set (III.3.13), but none of them is
hyperhypersimple (III.4.7), because their complement is retraceable (II.6.16).
This actually gives:

Proposition III.4.12 (Yates [1962]) Every r.e. T -degree contains a hyper-
simple set which is not hyperhypersimple.

The existence of hyperhypersimple sets seems to be a problematic matter:
for the first time we are in a situation in which the obvious attack fails. Namely,
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if we try to follow the line of III.3.12 then we face the trouble that, at some
given stage s, we would like to put into A the elements of a finite set Wz, but we
only have Wz,s, and there is no way to know whether Wz has been generated
completely at stage s, or not.

Moreover, and differently from all the cases dealt with so far, the construc-
tion of a hyperhypersimple set cannot produce a set that satisfies the definition
effectively. To make this precise, let A be effectively hyperhypersimple as
in III.3.15, i.e. if there is a recursive function f such that |We| ≤ f(e), when-
ever We is a disjoint weak array intersecting A. Then there is no effectively
hyperhypersimple set . Indeed, given a coinfinite r.e. set A, and f as just said,
we can build Wg(e) as an r.e. set containing the indices of f(e)+1 finite disjoint
r.e. sets intersecting A (start with n in the n-th set, for n ≤ f(e), and when
the last element put in a set is generated in A, put in the smallest element that
is not yet in any of the sets). The Fixed-Point Theorem produces e such that
We = Wg(e), and thus |We| > f(e), contradiction.

These observations show that something new is required for the construction
of hyperhypersimple sets. As we have said, Post [1944] left the problem open,
and it took a few years to solve it. However, for the solution of Post’s problem
the existence of hyperhypersimple sets is not necessary, and the reader may
turn directly to the next section, if (s)he wishes.

Maximal sets ?

The following definition provided the starting point for the construction of
hyperhypersimple sets.

Definition III.4.13 (Myhill [1956], Rose and Ullian [1963]) A set A is
cohesive if it is infinite, and cannot be split into two infinite parts by an r.e.
set, i.e. if B is r.e. then either B ∩A or B ∩A is finite.

A set is maximal if it is r.e. and its complement is cohesive.

The name maximal comes from the fact that maximal sets are the maximal
elements in the lattice of r.e. sets under inclusion, modulo finite sets. Indeed,
a coinfinite r.e. set is maximal if and only if it has only trivial supersets, i.e. if
B is r.e. and B ⊇ A then either B is cofinite, or B −A is finite.

Proposition III.4.14 (Friedberg [1958]) A maximal set is hyperhypersim-
ple.

Proof. Let A be not hyperhypersimple: then there is a disjoint weak array
{Wf(x)}x∈ω intersecting A. We can split A by taking ‘half’ of the array, e.g.
by letting B =

⋃
x∈ωWf(2x): B is an infinite r.e. set, and B ∩A and B ∩A are

both infinite. 2
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Exercise III.4.15 A maximal set is dense simple. (Martin [1963], Tennenbaum)
(Hint: this follows from the fact, proved in Chapter IX, that hyperhypersimple sets
are dense simple, but a direct proof is easier. Given an enumeration {a0 < a1 < · · · }
of A, and a recursive function f , suppose there are infinitely many n such that
an < f(n). Let h(n) = maxx≤2n f(x). Then infinitely many of the finite sets

Wg(n) = {z : h(n) ≤ z < h(n+ 1)}

have at least two elements of A. Build B r.e. by putting in it, for each n, the elements

of Wg(n) up to and including the first not in A. Then B splits A into two infinite

parts.)

Despite their being stronger, the requirements to build maximal sets seem to
be easier to deal with than the ones for hyperhypersimple sets, since a natural
approach to satisfy them works. As a warm up, we first dispose of cohesive
sets.

Proposition III.4.16 (Dekker and Myhill) There exists a cohesive set.

Proof. For future reference, we view the construction as building a set A with
cohesive complement, by stages. At stage s we will have As, and we will let
As = {as0 < as1 < · · · }. In the end A = {a0 < a1 < · · · }, where an = lims∈ω a

s
n,

i.e. A =
⋃
s∈ω As. We want to satisfy the following requirements:

Pe: We ∩A finite or We ∩A finite
Ne : A has at least e elements, i.e. lims→∞ ase <∞.

The construction is as follows. We start with A0 = ∅ (hence a0
n = n). At stage

e+ 1 we satisfy Pe. Let Be be We ∩Ae if it is infinite, and We ∩Ae otherwise.
Note that Be is infinite because Ae is, by construction, and its elements are
either all in We, or all in We. To satisfy Pe is thus enough to have almost all
the elements of Ae+1 (and hence of A) in Be. We then let

ae+1
n = aen if n ≤ e
ae+1
n+1 = the smallest element of Be greater than ae+1

n if n ≥ e.

Note that the construction is highly noneffective, for two reasons: we first ask
whether given sets are infinite, and then we ask membership questions about
Be. A is however cohesive: the Pe’s are satisfied by construction, and A is
infinite because asn may move at a certain stage s+ 1 only if n > s, hence only
finitely many times. Thus lims∈ω a

s
n exists, and all Ne’s are satisfied. 2

Exercises III.4.17 Cohesive sets. a) Every infinite set has a cohesive subset .
(Dekker and Myhill) (Hint: given C infinite, let A0 = C and proceed as above.)
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b) There are 2ℵ0 cohesive sets. (Hint: any infinite subset of a cohesive set is
cohesive.)

c) There is no cohesive and co-cohesive set . (Hint: if A is such, and B is an infinite
coinfinite r.e. set, then B∩A is finite, by cohesiveness of A. Since B is infinite, B∩A
is infinite. By cohesiveness of A, B ∩A is finite. So A differs finitely from B or from
B for each such B, contradiction.)

d) No finite union of disjoint cohesive sets can cover ω, but an infinite one can.

(Hint: see parts a) and c) above.)

We now constructivize the proof just given, and build a cohesive set with
r.e. complement.

Theorem III.4.18 (Friedberg [1958]) There exists a maximal set.

Proof. We use notations as in III.4.16. The requirements are the same as
there, plus the fact that A has to be r.e. This forces us to have a recursive
construction, and we cannot anymore ask whether given sets are infinite. This
forbids the simple strategy used before, of satisfying one positive condition at
each stage, and forces us to work with approximations.

Let us examine P0 first: since we cannot ask whether W0 is infinite, and
at any given stage we only have a finite approximation to it, we want to play
two different strategies, one of which will win. Suppose we knew that W0 is
infinite: then we could force a0

n on it, by waiting long enough. We can push
this as far as possible and, at any given stage s+ 1, force the longest possible
initial segment of As+1 in W0. This means that, whenever there are elements
of As in W0 which are smaller than elements of As in W0, we drop them (by
putting them into A). This produces, at any stage s, a picture as follows:

A

A ∩W0

If W0 is really going to be infinite, then A is going to be included in W0.
Otherwise, except for a finite initial segment, A is going to be included in W0,
and P0 is going to be satisfied either way (this does not take care of the other
requirements, see III.4.19).

We turn now to P1. If we knew the final outcome of the strategy for P0,
we would not worry: we could play the same strategy inside the part of A on
which the characteristic function of W0 is eventually constant, betting on the
fact that W1 is going to be infinite on it, and having at each stage an initial
segment in W1, and the rest in W1. Even if we do not know the final outcome,
nothing forbids us to play the same strategy on both approximations, and so
on. We thus try to have A look like this:
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A

A ∩W0

A ∩W1

A ∩W2

This can easily be formalized, by using the concept of e-state, which codes
the membership of a given element x into the first e r.e. sets, at a given stage
s:

σ(e, x, s) =
∑

{2e−i : i ≤ e ∧ x ∈ Wi,s}.

Another way to visualize e-states is by viewing them as binary strings of 0’s and
1’s, ordered lexicographically, and with the i-th digit from the left giving the
value of the characteristic function of Wi. The following properties of e-states
are immediate:

• there are only finitely many e-states, namely 2e+1

• the e-state of an element at a given stage can only increase at later stages,
i.e. if s ≤ t then σ(e, x, s) ≤ σ(e, x, t) since, for each i, Wi,s ⊆ Wi,t

• e-states give absolute priority to membership in r.e. sets with lower in-
dices, i.e. if σ(e, x, s) < σ(e, y, s) then σ(i, x, s) < σ(i, y, s), for any i ≥ e.

The construction of A can now be easily formulated, by trying to let the
e-th element of A have maximal e-state. Precisely, we start with A0 = ∅ (hence
a0
e = e). At stage s+1 we let, by induction, as+1

e be the smallest x ∈ As greater
than as+1

e−1, and with maximal e-state. Note that, by induction, As is infinite
and recursive, so the construction is effective, and A is r.e. Moreover:

• A is infinite.
It is enough to prove that lims∈ω a

s
e exists. Suppose, by induction, that

lims∈ω a
s
i exists, for each i < e. Let s0 be a stage after which all asi ’s have

reached their final position. Then, for s > s0, ase may move only to reach
a higher e-state, and hence only finitely many times.

• A is maximal.
Suppose, by induction, that Pi is satisfied, for all i < e. Then there is n0

such that

(∀i)[(∀n ≥ n0)(an ∈ Wi) ∨ (∀n ≥ n0)(an ∈ Wi)].

Suppose We ∩ A and We ∩ A are both infinite. There is n ≥ n0, e such
that an ∈ We and an+1 ∈ We. Then there is also s0 such that, for all
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s ≥ s0,
(∀x ≤ n+ 1)(asx = ax)
(∀i < e)(an ∈ Wi ⇔ an ∈ Wi,s)
(∀i ≤ e)(an+1 ∈ Wi ⇔ an+1 ∈ Wi,s).

Then, by definition of e-state,

σ(e, asn, s) < σ(e, asn+1, s)

and hence, since n ≥ e,

σ(n, asn, s) < σ(n, asn+1, s).

By construction we then have that as+1
n should be the smallest element of

As greater than asn−1 = an−1 and with maximal n-state, hence it cannot
be an, contradiction. 2

Exercise III.4.19 There is an acceptable system of indices {Ŵe}e∈ω of the r.e. sets

such that Ŵ0 is infinite, but the complement of the maximal set constructed above

has no element in Ŵ0. (Hint: define Ŵx+1 = Wx, and generate elements in Ŵ0 only

after they have already been generated in A.)

The e-state method used in the proof above is a kind of priority method,
with the usual order of priority

P0 > N0 > P1 > N1 > . . .

The basic difference between the constructions of maximal and simple (or hy-
persimple) sets is that the positive requirements Pe are infinitary , and we cannot
hope to satisfy them with a finite action. Actually, since they only allow for
finitely many exceptions, each requirement has to be considered cofinitely many
times, and at any given stage we have to consider many positive requirements
all together. But the requirements have different priorities, and e-states are
a device to assign priorities not to single requirements, but to groups of them.
E.g., the order of priorities assigned by 2-states is

(P0, P1, P2) ≥ (P0, P1) ≥ (P0, P2) ≥ (P0) ≥ (P1, P2) ≥ (P1) ≥ (P2).

We might say that locally this is a finite injury argument, since every el-
ement of A moves at most finitely many times, but globally it is an infinite
injury argument, since a positive requirement may be injured infinitely often,
each time for different elements of A.

Exercises III.4.20 a) Maximal sets are not closed under intersection. (Yates [1962])
(Hint: take A maximal, and let x ∈ B ⇔ x+ 1 ∈ A.)
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b) There are hyperhypersimple set which are not maximal . (Hint: the hyperhy-

persimple sets are closed under intersection.)

Maximal sets have thinnest possible complement. The existence of maxi-
mal T -complete sets would shows that a notion of thin complement alone is
not sufficient to solve Post’s problem. In fact, the maximal set just built is
T -complete, as we now prove, as usual, by showing that it is maximal in an
effective way.

Definition III.4.21 (Lachlan [1968]) A is effectively maximal if it is a
coinfinite r.e. set, and there is a recursive function g such that, for every e, the
sequence of 0’s and 1’s consisting of the values of the characteristic function of
We on the elements of A in increasing order has at most g(e) alternations.

Note that having finitely many alternations simply means that one ofWe∩A
and We ∩A is finite.

Proposition III.4.22 (Lachlan [1968]) Every effectively maximal set is
T -complete.

Proof. Let g witness that A is effectively maximal, and define f ≤T A such
that

Wf(e) = a finite set with g(e) + 1 alternations on A.

This is possible because A is infinite, e.g.

Wf(e) = {a2i : i ≤ g(e) + 1}.

Then f has no fixed-points and, by the criterion for T -completeness III.1.5, A
is T -complete. 2

Corollary III.4.23 (Yates [1965]) There exists a T -complete maximal set.

Proof. The maximal set built in III.4.18 is effectively maximal, since We can
have at most g(e) = 2e+1 alternations on A. 2

Exercises III.4.24 a) For no coinfinite r.e. set A there is a recursive function g
such that

We ∩A infinite ⇒ |We ∩A| ≤ g(e).

Similarly for
We ∩A infinite ⇒ |We ∩A| ≤ g(e).

Thus these natural candidates for effective maximality fail. (Lachlan [1968]) (Hint:
for the second property, put in Wh(e) the first g(e)+1 elements of A, by starting with
{0, . . . , g(e)} and, each time that one element goes into A, adding the first element



294 III. Post’s Problem and Strong Reducibilities

not yet in Wh(e), and not yet generated in A. By the Fixed-Point Theorem there is

e such that We = Wh(e). Thus We ∩A is infinite, but |We ∩A| = g(e) + 1.)

b) There is a maximal, effectively simple set . (Cohen and Jockusch [1975]) (Hint:
modify the construction of a maximal set given above by inserting steps to make A
simple, as in the second proof of III.2.11. Note that each asn may move more times
than it did for maximality alone, but still only finitely often.)

c) A maximal set is not strongly effectively simple. (Cohen and Jockusch [1975])
(Hint: by III.4.15 a maximal set is dense, and by III.3.9 is not strongly effectively
simple. See III.6.21 for a different proof.)

d) A strongly effective simple set is not contained in maximal sets. Thus Post’s

simple set is not contained in maximal sets. (Cohen and Jockusch [1975]) (Hint: a

coinfinite r.e. superset of a strongly effectively simple set is still strongly effectively

simple.)

III.5 A Solution to Post’s Problem

Post concluded his paper [1944] by saying:

we are left completely on the fence as to whether there exists a
recursively enumerable set of positive integers of absolutely lower
degree of unsolvability than the complete set K, or whether, indeed,
all recursively enumerable sets of positive integers with recursively
unsolvable decision problems are absolutely of the same degree of
unsolvability. On the other hand, if this question can be answered,
that answer would seem to be not far off, if not in time, then in the
number of special results to be gotten on the way.

This section can be seen as the missing conclusion to Post’s paper, and shows
that he was indeed right, regarding the number of special results needed to
solve his problem.

Semirecursive sets

We know that hyperhypersimple sets are not Q-complete. We are then looking
for a notion that, together with T -completeness, would imply Q-completeness.
By coupling it with hyperhypersimplicity we would then have a notion implying
T -incompleteness, and Post’s problem would be solved.

Since the difference between Q-reducibility and T -reducibility is that we
query the oracle on single elements in the first case, and on finite sets in the
second, we need a notion that would reduce a question of inclusion of a finite
set to the question of membership of a single element.
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Definition III.5.1 (Jockusch [1968a]) A set A is semirecursive if there
is a recursive function f of two variables such that

1. f(x, y) = x or f(x, y) = y

2. x ∈ A ∨ y ∈ A⇒ f(x, y) ∈ A.

Clearly a recursive set is semirecursive, since we can simply decide whether
one of x and y is in the set. Also, the complement of a semirecursive set is
semirecursive: if f witnesses the semirecursiveness of A, then the function that
always chooses, between x and y, the element not chosen by f , witnesses the
semirecursiveness of A.

The next result is not unexpected, and is actually the reason why we intro-
duced the notion of semirecursiveness.

Proposition III.5.2 (Marchenkov [1976]) If an r.e. set A is semirecursive
and T -complete, then it is also Q-complete.

Proof. We only have to show how to reduce finite questions of the formDu ⊆ A
to single questions g(u) ∈ A, for some recursive g. Let f be as in the definition
III.5.1. Given Du = {x1, . . . , xn}, let

y1 = x1

yi+1 = f(yi, xi+1) (i < n)
g(u) = yn.

Then we obviously have Du ⊆ A⇔ g(u) ∈ A, because if one element of Du is
in A, then so is g(u). 2

Exercises III.5.3 a) A semirecursive simple set is hypersimple. (Jockusch [1968a])
(Hint: if A is semirecursive so is A, and thus a finite set intersecting A effectively
produces an element of A.)

b) A semirecursive set is not p-complete. (Jockusch [1968a]) (Hint: a semirecur-

sive p-complete set would be m-complete, and thus every r.e. set would be semirecur-

sive, contradicting the existence of simple, nonhypersimple sets.)

We are obviously interested in knowing which sets are semirecursive. Since
the definition of semirecursive sets might appear somewhat ad hoc, we first
give an interesting alternative characterization.

Proposition III.5.4 (Appel, McLaughlin) A set is semirecursive if and
only if it is a cut of a recursive linear ordering of ω.
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Proof. Let A be semirecursive via f . We define, by induction, a recursive
linear ordering ≺ such that

x ≺ y ∧ y ∈ A⇒ x ∈ A.

Let x0 ≺ x1 ≺ . . . ≺ xn be the ordering of the numbers up to n. We want to
extend it to n+ 1. Three cases are possible:

1. f(n+ 1, x0) = n+ 1
If x0 ∈ A then n + 1 ∈ A, by the properties of f , and we can then let
n+ 1 ≺ x0.

2. the first case fails, and f(n+ 1, xn) = xn
Similarly, if n+ 1 ∈ A then xn ∈ A, and we let xn ≺ n+ 1.

3. the first two cases fail
Then f(n + 1, x0) = x0 and f(n + 1, xn) = n + 1. Then there is i such
that

f(n+ 1, xi) = xi ∧ f(n+ 1, xi+1) = n+ 1,

and thus
xi+1 ∈ A⇒ n+ 1 ∈ A⇒ xi ∈ A.

Then we can let xi ≺ n+ 1 ≺ xi+1.

Let now A be the lower cut of a recursive linear ordering ≺. If

f(x, y) = least element of {x, y} w.r.t. ≺

then f(x, y) = x or f(x, y) = y by definition, and if one of x and y is in A
then so is f(x, y), because A is closed downward w.r.t. ≺. Thus f satisfies the
conditions of III.5.1, and A is semirecursive. 2

Exercises III.5.5 a) Every tt-degree contains a semirecursive set . (Jockusch
[1968a]) (Hint: let A be infinite and coinfinite, and define r =

∑
n∈A 2−n. For

any x, let rx =
∑

n∈Dx
2−n. Then x ≺ y ⇔ rx < ry is recursive. Let B be the lower

cut determined by r. A ≤T B because if Dx = (A ∩ {0, . . . , n − 1}) ∪ {n} then, by
induction,

n ∈ A⇔ Dx ⊆ A⇔ rx < r ⇔ x ∈ B.
And B ≤T A because x ∈ B, i.e. rx < r, if and only if there is a finite set Dy
contained in {0, . . . ,maxDx}, such that rx ≤ ry and Dy ⊆ A.)

b) There are 2ℵ0 semirecursive sets. (Martin, McLaughlin)

We turn now to the investigation of which sets, among the ones introduced
so far for the solution of Post’s problem, are semirecursive.
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Proposition III.5.6 (Jockusch [1968a]) Every coregressive r.e. set is semi-
recursive.

Proof. Let A be an r.e. set, coregressive via ϕ. Given x and y, note that
either one of x and y is in A, or they are both in A, and thus one of them
follows the other in the given enumeration of A, and it is then sent over it by
ϕ (meaning that some iteration of ϕ on the former produces the latter). To
define f generate simultaneously A, {ϕ(n)(x)}n∈ω and {ϕ(n)(y)}n∈ω, and let

f(x, y) =
{
x if x ∈ A or y ∈ {ϕ(n)(x)}n∈ω
y if y ∈ A or x ∈ {ϕ(n)(y)}n∈ω.

Suppose f(x, y) ∈ A: then e.g. f(x, y) = y and x ∈ {ϕ(n)(y)}n∈ω, so y ∈ A and
x ∈ A, and A is semirecursive. 2

The result implies, by II.6.16 and III.3.13, that many hypersimple sets are
semirecursive. Actually, every r.e. T -degree contains a semirecursive hypersim-
ple set (in particular there are hypersimple sets which are Q-complete, namely
any T -complete semirecursive hypersimple set). But the result we were really
looking for escapes us.

Proposition III.5.7 (Martin) No hyperhypersimple set can be semirecur-
sive.

Proof. We know (III.4.7) that the complement of a hyperhypersimple set can-
not contain infinite retraceable sets. Since the complement of a set is semire-
cursive when the set is, it is enough to show that an infinite semirecursive set
contains an infinite retraceable set. Let A be infinite and semirecursive. We
may suppose A immune, otherwise it has infinite recursive, hence retraceable,
subsets. Let ≺ be a recursive linear ordering of which A is a lower cut: then A is
well-ordered by ≺ with order type ω, because for any x ∈ A the set {y : y ≺ x}
is a recursive subset of A, hence finite by immunity. Let

f(x) =
{
n if x is the n-th element of A w.r.t. ≺
∞ if x 6∈ A.

Consider the elements corresponding to nondeficiency stages of f :

x ∈ B ⇔ (∀y > x)(f(y) > f(x))
⇔ (∀y)(y > x⇒ y � x).

B is a subset of A because, given x ∈ B, there is y ∈ A greater than it
(since A is infinite): then y � x, and x ∈ A because A is closed downward
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w.r.t. ≺. And B is infinite, as usual for nondeficiency stages (note that f is
one-one on A).

To show that B is retraceable, we cannot appeal directly to the fact that
so are nondeficiency sets, because f is not recursive, but an argument similar
to that of II.6.16 can be reproduced directly. Given x ∈ B, we want to get an
effective procedure to find the greatest element of B smaller than x. Since for
y > x we have y � x, we only have to check numbers below x. In other words,
for z < x,

z ∈ B ⇔ (∀y)(z < y ⇒ z ≺ y)
⇔ (∀y)(z < y ≤ x⇒ z ≺ y).

Thus it is enough to define g(x) as the biggest z < x such that

(∀y)(z < y ≤ x⇒ z ≺ y)

if b0 ≺ x (where b0 is the least element of B), and x otherwise. 2

Actually, the proof shows that no finitely strongly hypersimple set is semire-
cursive, because the retracing function defined above is total and many-one (see
III.4.9).

Exercises III.5.8 Hereditary sets. A set A is hereditary if there is a recursive
function f such that x ∈ A ∧ y ∈ A⇔ f(x, y) ∈ A.

a) A set A is hereditary if and only if there is a recursive function g such that
Dx ⊆ A⇔ g(x) ∈ A. (Lavrov [1968])

b) For any set A, the set Aω = {x : Dx ⊆ A} is hereditary . (Degtev [1972])
c) Semirecursive ⇒ hereditary, but not conversely . (Degtev [1972]) (Hint: K is

not semirecursive, see III.5.3.b, but is hereditary because it is recursively isomorphic
to Kω, see III.7.14.)

Degtev [1972] has shown that some of the properties of semirecursive sets, e.g.

III.5.7, hold for hereditary sets as well.

Exercises III.5.9 Verbose and terse sets. (Beigel, Gasarch, Gill, and Owings
[198?]) We say that we can do ‘n for m’ on a set A if n questions of membership to A
can be answered by a recursive procedure that asks at most m question to the oracle
A. A set A is verbose if, for every n, we can do 2n − 1 for n on it, and it is terse if
we cannot do n for n− 1.

a) If we can do 2n for n on A, then A is recursive. Thus the definition of verbose
sets is optimal. (Hint: we show the proof for n = 1. Suppose we can do 2 for 1
on A: given two elements x and y, we can compute A(x) and A(y) by a recursive
procedure that asks only one question to the oracle A. Since the answer to the query
can be only 0 or 1, there are two partial recursive functions ϕ0 and ϕ1, respectively
using the answer 0 and 1, one of which gives the correct values for A(x) and A(y).
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To compute A recursively, consider two cases. If for every x there is y such that ϕ0

and ϕ1 compute the same value of A(x), then this must be the right value of A(x),
and to compute it it is enough to look for such a y. If there is x such that, for every
y, ϕ0 and ϕ1 give different answers for A(x), then fix x, and consider the right value
A(x). For every y, the right value of A(y) is computed by the one, between ϕ0 and
ϕ1, that computes the right value of A(x).) Note that A plays no role as an oracle,
and thus A would be recursive even if we could answer 2n membership questions on
A by a recursive procedure asking n questions to an oracle B.

b) K is verbose. (Hint: we show how to do 3 for 2. To know which of x1, x2, x3

are in K, first ask if at least two are. This is an r.e. question, hence K can answer
it. If the answer is yes, ask if all three are, otherwise ask if at least one is. The
whole procedure requires only two questions, and determines how many of the three
elements are in K. To know exactly which ones are, generate K until that many
appear.) Since verbose sets are closed are under m-equivalence, every m-complete set
is verbose.

c) A semirecursive set is verbose. (Hint: let A be the upper cut of a recursive
linear ordering, by III.5.4. To determine which of 2n−1 elements are in A, first order
them according to the linear ordering. To know which are is A and which are not, it
is enough to find the first element which is in A, and this can be done by a binary
search, thus requiring only n steps and n questions to the oracle A.)

d) (R.e.) verbose sets exist in every (r.e.) T -degree. (Hint: by III.5.5.a and
III.5.6, because verbose sets are closed under complements.)

e) Every nonzero T -degree contains terse sets. (Hint: given a semirecursive,

nonrecursive set A, notice that, given elements x1, . . . , xn, if we know how many are

in A, then we can determine exactly which ones: order them according to the ordering

w.r.t. which A is an upper cut, and count from the biggest one. Given 2n−1 elements,

less than 2n can be in A, and thus their number can be written, in binary, with at

most n digits. Define a set B, by putting 〈x1, . . . , x2n−1, i〉 in it if and only if the i-th

digit in the binary representation of |A∩{x1, . . . , x2n−1}| is 1. Clearly A ≡T B. And

2n− 1 questions on A can be reduced to n questions on B. If we could do n for n− 1

on B then we could do 2n − 1 for n− 1 on A, with oracle B, and hence 2n for n with

oracle B ⊕A, contradicting part a).)

η-hyperhypersimple sets

Despite the fact that hyperhypersimple sets are not semirecursive, we are not
willing to give up and waste all the work done so far, especially so after hav-
ing been so close to a solution of Post’s problem. The idea is to look for a
weakening of the notion of hyperhypersimplicity that is still incompatible with
Q-completeness, but is compatible with semirecursiveness. We simply general-
ize the notion of number, and substitute it with the notion of equivalence class
w.r.t. an r.e. equivalence relation.
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Definition III.5.10 (Malcev [1965], Ershov [1971]) An equivalence rela-
tion η is called positive if R(x, y) ⇔ xηy is r.e.

Exercise III.5.11 The class of positive equivalence relations is a sublattice of the

complete lattice of all the equivalence relations on ω under inclusion. (Ershov [1971])

(Hint: the smallest element is the equality relation, the greatest one the trivial equiv-

alence relation. The g.l.b. is the set-theoretical intersection, the l.u.b. the smallest

equivalence relation including the given ones.)

Definition III.5.12 A set A is η-closed if it consists of equivalence classes
w.r.t. η, i.e. x ∈ A ∧ xηy ⇒ y ∈ A.

The η-closure [A]η of a set A is the smallest η-closed set containing it.

Exercises III.5.13 (Ershov [1971]) a) If A is r.e. then

xηAy ⇔ (x ∈ A ∧ y ∈ A) ∨ x = y

is a positive equivalence relation, with (if A has more than one element) A as the only
nontrivial equivalence class. A set is ηA-closed if and only if it either contains A, or
is disjoint from it .

b) If ϕ is a partial recursive function, then

xηϕy ⇔ (ϕ(x) ' ϕ(y)↓) ∨ x = y

is positive. A set A is ηϕ-closed if and only if ϕ−1(ϕ(A)) ⊆ A.
c) If ϕ is a partial recursive function, then

xηiϕy ⇔ ∃m∃n(ϕ(m)(x) ' ϕ(n)(y)↓)

is positive. (Hint: recall that, by definition, ϕ(0)(x) ' x.)

d) η is a positive equivalence relation if and only if, for some partial recursive

function ϕ, η = ηiϕ. (Hint: let η be approximated monotonically by ηs. Approximate

ϕ as follows: given ϕs, extend it by defining, when possible, ϕs+1(x) ' µy(xηs+1y).)

Definition III.5.14 An η-closed set A is η-finite or η-infinite, according to
whether it consists of a finite or an infinite number of equivalence classes of η.

By restricting our attention to η-closed sets, and replacing the notion of
finiteness by η-finiteness, we can relativize to η the notions introduced so far.

Definition III.5.15 (Ershov [1971]) Let η be a positive equivalence relation,
and A be an η-closed and co-η-infinite r.e. set. Then A is:

1. η-simple if any η-closed r.e. set contained in A is η-finite

2. η-hypersimple if there is no recursive function f such that
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• x 6= y ⇒ [Df(x)]η ∩ [Df(y)]η = ∅

• [Df(x)]η ∩A 6= ∅

3. η-hyperhypersimple if there is no recursive function f such that

• Wf(x) finite

• x 6= y ⇒ [Wf(x)]η ∩ [Wf(y)]η = ∅

• [Wf(x)]η ∩A 6= ∅

4. η-maximal if, for every η-closed r.e. set B ⊇ A, one of B−A and B is
η-finite.

The implications among the various concepts still hold, but nontriviality
conditions are not automatically satisfied.

Proposition III.5.16 An η-maximal set can be empty.

Proof. Let A be any maximal set, and

xηAy ⇔ (x ∈ A ∧ y ∈ A) ∨ x = y.

If B is r.e. and ηA-closed, then either it contains A or it is contained in A. In
the second case it is finite by maximality, hence ηA-finite. In the first, either
B − A is finite, hence B is ηA-finite because A consists of just one class, or B
is finite, and hence ηA-finite. But then the empty set is ηA-maximal. 2

Exercise III.5.17 Every nonrecursive η-maximal set A whose equivalence classes on

A are all finite is simple. We will show in Chapter X that such a set in not necessarily

hypersimple. (Hint: if B is r.e. and B ⊆ A, consider the closure of A ∪B. It cannot

be co-η-finite, otherwise A is recursive. So B is contained in finitely many classes,

and thus finite.)

It is convenient to picture a positive equivalence relation as a series of
boxes, representing the equivalence classes. Since the equivalence relations we
deal with are positive, there is an effective procedure that builds up the boxes.
At some given stage, boxes that were previously separated may be put together
to form a bigger box. We may also suppose that, at each stage, all boxes are
finite.

We are now ready for the final steps of our long journey.

Proposition III.5.18 (Marchenkov [1976]) An η-hyperhypersimple set is
not Q-complete.



302 III. Post’s Problem and Strong Reducibilities

Proof. The proof is like the one of III.4.10, after the following modifications
are made, for A η-closed:

• if x ∈ K ⇔ Wg(x) ⊆ A, then Wg(x) is η-closed. If it is not so, take its
η-closure: it still works, because A is η-closed itself.

• A consists of equivalence classes with finitely many elements each. If it is
not so, define a new positive equivalence relation η′ coinciding with η on
A, hence with no effect on η-hyperhypersimplicity, as follows. At stage
s + 1, a given box of η is also a box of η′ if either it does not intersect
As, or s is the first stage in which it does intersect A. 2

Theorem III.5.19 (Degtev [1973]) There exists an r.e. set A which is non-
recursive, semirecursive, and η-maximal, for some positive equivalence relation
η.

Proof. We define A, which may thought of as one big box, and infinitely
many boxes, which are going to be the equivalence classes of A. Thus A will
automatically be η-closed and η-infinite. Let {Bsn}n∈ω be an enumeration of
the boxes of As at stage s, such that if m < n then maxBsm < minBsn.

We start with A0 = ∅, and B0
n = {n}. In the construction we alternately

take care of the positive requirements (for nonrecursiveness and semirecursive-
ness) and of the negative ones (for η-maximality). Thus at stage s+ 1 we take
different actions, according to whether s is even or odd.

1. s even
To make A nonrecursive, we make it simple. Thus we search for the
smallest e ≤ s such that:

• We,s ∩As = ∅
• for some n ≥ e, Bsn ∩We,s 6= ∅.

If there is such an e, we put all of Bsn into A, where n is the smallest one
such that n ≥ e and Bsn ∩We,s 6= ∅. If there is no such e, we go to the
next stage.

To ensure semirecursiveness we also put in A, together with Bsn, all the
following boxes up to the one containing s. This ensures, because of
the way the boxes are grouped together during the construction, that
whenever an element z goes into A at stage s + 1, so do all elements y
such that z ≤ y ≤ s. To see that this has the desired effect, let

f(x, y) =

 x if x ∈ Amax{x,y}
y if x 6∈ Amax{x,y} ∧ y ∈ Amax{x,y}
max{x, y} otherwise.
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We then have x ∈ A ∨ y ∈ A⇒ f(x, y) ∈ A. This is clear if f is defined
in any of the first two cases. In the last, if one of x and y goes into A, it
must be at a stage bigger than their maximum (otherwise one of the two
other cases would apply). The only case of concern is when the smallest
of x, y goes in (since f(x, y) is then the other one). But in this case the
construction also puts the other in A, and thus f(x, y) ∈ A.

2. s odd
We consider the usual e-states

σ(e, x, s) =
∑

{2e−i : i ≤ e ∧Bsx ∩Wi,s 6= ∅},

and proceed by induction, by letting Bs+1
e be the union of all boxes

between Bse and Bsx, where x is the smallest element greater than e − 1
and with maximal e-state.

Bs+1
e−1 Bs+1

e

Bs+1
e−1 Bse Bsx

· · ·

· · ·

Note that, unlike the case of maximal sets, the construction of η-maximal
sets does not force us to put elements into A, as we already know from
III.5.16, and thus the two parts of the construction do not interfere.

The proof that the construction works is similar to the ones for simple and
maximal sets. The only slightly different part is the fact that A consists of
infinitely many classes. But to show that lims→∞Bse exists, it is enough to
note that Bse can change only for two reasons:

• some Bsn with n < e goes into A. Note that this must happen because,
for some index i < n, the box Bsn or one with smaller index is satisfying
the simplicity requirement for i. But this can happen only once for each
i < e, hence at most finitely often.

• Bse reaches a higher e-state, and once again this can happen only finitely
often. 2

We have thus finally reached the end of our journey. We put things to-
gether, for completeness and the reader’s sake.
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Or quel che t’era dietro t’è davanti:
ma perché sappi che di te mi giova,
un corollario voglio che t’ammanti.1

(Dante, Paradiso, VIII)

Corollary III.5.20 Solution to Post’s problem (Muchnik [1956],
Friedberg [1957a]) There exists an r.e. set which is neither recursive nor
T -complete.

Proof. Consider a nonrecursive, semirecursive, η-hyperhypersimple r.e. set: it
is not Q-complete by III.5.18, and hence not T -complete by III.5.2. 2

This shows in particular that there are more than two r.e. T -degrees, and im-
mediately raises the question of how complicated the structure of r.e.
T -degrees is. A complete description of it as a partial ordering is not known,
but Chapter X will provide a good deal of information about it, as well as
different methods to solve Post’s problem.

III.6 Creative Sets and Completeness

For an r.e. set A, to be nonrecursive means that A is not r.e. The fact that
∀x(A 6= Wx) may be formalized in different ways:

1. ∃y(y ∈ A⇔ y ∈ Wx)

2. Wx ⊆ A⇒ ∃y(y ∈ A−Wx)

3. A ⊆ Wx ⇒ ∃y(y ∈ A ∩Wx).

We cannot expect in general to find y recursively in x, and we now investigate
what happens if we impose this requirement.

Effectively nonrecursive sets

We begin by constructivizing the first notion, which also appears to be the
most natural and symmetric.

Definition III.6.1 (Dekker [1955a]) A set A is completely productive
if there is a recursive function f such that, for every x,

f(x) ∈ A⇔ f(x) ∈ Wx.

1Now that which stood behind you, stands in front:
but so that you may know the joy you give me,
I now would cloak you with a corollary.
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A set is effectively nonrecursive if it is r.e., and its complement is com-
pletely productive.

K is effectively nonrecursive because, by definition, x ∈ K ⇔ x ∈ Wx.

Proposition III.6.2 (Myhill [1955]) A set is effectively nonrecursive if and
only if it is m-complete.

Proof. Let f be a recursive function such that f(x) ∈ A⇔ f(x) ∈ Wx. If

Wg(x) =
{
ω if x ∈ K
∅ otherwise

then x ∈ K ⇔ f(g(x)) ∈ A, because:

• x ∈ K ⇒ Wg(x) = ω ⇒ f(g(x)) ∈ Wg(x) ⇒ f(g(x)) ∈ A

• f(g(x)) ∈ A ⇒ f(g(x)) ∈ Wg(x) ⇒ Wg(x) 6= ∅ ⇒ x ∈ K.

Thus A is m-complete.
Let now x ∈ K ⇔ f(x) ∈ A, and z ∈ Wg(x) ⇔ f(z) ∈ Wx. Then

f(g(x)) ∈ A ⇔ g(x) ∈ K ⇔ g(x) ∈ Wg(x) ⇔ f(g(x)) ∈ Wx,

and A is effectively nonrecursive. 2

This shows that any set built by effective diagonalization over the r.e. sets
must be m-complete, and thus Post’s problem cannot be solved by effectively
satisfying the requirements for nonrecursiveness.

Exercises III.6.3 (Rogers [1967]) a) B is effectively nonrecursive in A if, for
some recursive function f , f(x) ∈ B ⇔ f(x) ∈ WA

x . Post’s problem cannot be solved
by effectively satisfying the requirements for T -incompleteness, in the sense of building
an r.e. set A such that K is effectively nonrecursive in it. (Hint: if A and B are r.e.
and B is effectively nonrecursive in A then A is recursive, because if

WA
g(x) =

{
ω if x ∈ A
∅ otherwise

then x ∈ A⇔ f(g(x)) ∈ B.)
b) B is effectively not m-reducible to A if, for some recursive function f ,

ϕe total ⇒ [f(e) ∈ B ⇔ ϕe(f(e)) ∈ A],

i.e. f(e) witnesses the fact that ϕe is not an m-reduction of B to A. Post’s prob-

lem for m-reducibility cannot be solved by effectively satisfying the requirements for

m-incompleteness, in the sense of building an r.e. set A such that K is effectively not
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m-reducible to it. (Hint: as above, by considering as ϕg(x) the constant function with

value x.)

Effective nonrecursiveness gives a nice criterion for m-completeness. With
little effort it is possible to generalize it, and get similar criteria for all the
reducibilities so far introduced.

Exercises III.6.4 (Friedberg and Rogers [1959]) Let ≤r be defined as:

A ≤r B ⇔ for some recursive function f, x ∈ A⇔ Qr(f(x), B,B)

where Qr is a predicate with the following properties:

Qr(z,Wx,Wy) is r.e. as a predicate of x, y, z
Qr(z,X, Y ) is monotone in Y .

Note that monotonicity of Qr for r.e. arguments follows from the first property, and
that if Qr is also monotone in X then A ≤r B ⇒ A ≤T B.

a) All the reducibilities introduced so far can be so expressed . (Hint: Qtt(z,X, Y )
holds if σz is satisfied when positive and negative atomic formulas are respectively
interpreted over Y and X. Qp(z,X, Y ) holds when every finite set with canonical
index inDz intersects Y . For r.e. sets, QT (z,X, Y ) holds when ∃u(Du ⊆ Y ∧u ∈ Wz).)

b) An r.e. set A is r-complete if and only if, for some recursive function g,

Qr(g(x), A,A) ⇔ ¬Qr(g(x), A,Wx).

Explicitly, the interesting criteria are (for some recursive function g):

d-completeness: Dg(x) ⊆ A ⇔ Dg(x) 6⊆ Wx

c-completeness: Dg(x) ∩A 6= ∅ ⇔ Dg(x) ⊆ Wx

Q-completeness: Wg(x) ∩A 6= ∅ ⇔ Wg(x) ⊆ Wx.

Creative sets

We now constructivize the second notion of nonrecursiveness given at the be-
ginning.

Definition III.6.5 (Post [1944], Dekker [1953]) A set A is productive
if there is a recursive function f such that, for every x,

Wx ⊆ A ⇒ f(x) ∈ A−Wx.

A set is creative if it is r.e. and coproductive.
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As we have already noted, K is creative: if Wx ⊆ K then x cannot be in
Wx (otherwise x ∈ K by definition, and x ∈ K from Wx ⊆ K, contradiction).
Then x 6∈ Wx, and thus also x ∈ K.

The term ‘creative’ was introduced by Post [1944] because K (as well as
K0, defined in II.2.7) embodied the essence of the incompleteness theorems of
the Thirties (II.2.17), and the property of productiveness captured the main
consequence of these results, namely that

every symbolic logic is incomplete and extendible relative to the
class of propositions constituting K0. The conclusion is inescapable
that even for such a fixed, well defined body of mathematical propo-
sitions, mathematical thinking is, and must remain, essentially cre-
ative.

That Post got the right notion is proved by the next result: if F is any
consistent extension of R, then every r.e. set is weakly representable in it (see
II.2.16), and hence m-reducible to the set of (codes of) its theorems, which is
then m-complete.

Theorem III.6.6 (Myhill [1955]) A set is creative if and only if it is
m-complete.

Proof. If A is m-complete it is effectively nonrecursive, and hence creative.
Directly, if x ∈ K ⇔ g(x) ∈ A, let z ∈ Wh(x) ⇔ g(z) ∈ Wx. Then

Wx ⊆ A ⇒ Wh(x) ⊆ K ⇒ h(x) ∈ K −Wh(x) ⇒ g(h(x)) ∈ A−Wx,

and f(x) = g(h(x)) is a productive function for A.
Suppose now that A is creative, and Wx ⊆ A⇒ f(x) ∈ A−Wx. We want

to find a recursive function h such that z ∈ K ⇔ h(z) ∈ A. Since we want to
use f , we define g such that z ∈ K ⇔ f(g(z)) ∈ A.

• If z ∈ K, f gives naturally an element of A, if we start from Wg(x) ⊆ A.
The simplest way to ensure this is to let Wg(x) = ∅ when z ∈ K: then we
have f(g(z)) ∈ A.

• We try now the converse, i.e. to have f(g(z)) ∈ A⇒ z ∈ K. If f(g(z)) ∈ A
then {f(g(z))} ⊆ A, and by productivity it cannot be Wg(z) = {f(g(z))},
otherwise f(g(z)) ∈ A−Wg(z). We thus define Wg(z) = {f(g(z))} when
z ∈ K: then f(g(z)) ∈ A.

Let then g be a recursive function such that

Wg(z) =
{
{f(g(z))} if z ∈ K
∅ otherwise.
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The existence of g is ensured by the Fixed-Point Theorem, e.g. let

Wϕt(e)(z) =
{
{f(ϕe(z))} if z ∈ K
∅ otherwise,

and choose e such that ϕe ' ϕt(e). 2

Exercises III.6.7 a) An r.e. set A is creative if and only if, for some recursive
one-one function f , f(x) ∈ A⇔ f(x) ∈ Wx. (Rogers [1967], Gill and Morris [1974])
(Hint: if A is creative then A is completely productive and, by III.7.6, it has a one-one
completely productive function f : then A can be represented as stated. Conversely, if
f is one-one then there is a set A satisfying the given conditions, since membership of
f(x) in A is determined solely by Wx. Note that, if we had f(x) = f(y) with x 6= y,
then Wx and Wy could give contradictory answers for membership of f(x) in A.)

b) An r.e. set A is creative if and only if, for some acceptable system of indices
{Ŵx}x∈ω of the r.e. sets, A = K̂. (Rogers [1958], Lynch [1974]) (Hint: use III.7.14 to
get a recursive isomorphism f between A and K, and let x ∈ Ŵe ⇔ f(x) ∈ Wf(e).)

c) A creative set is neither recursive nor simple. (Hint: see III.2.7.)
d) Every infinite r.e. set is the disjoint union of a creative and a productive set .

(Dekker [1955a]) (Hint: if A is the range of a one-one recursive function f , consider
the images of K and K.)

e) Every infinite r.e. set is the union of a creative and an infinite recursive set .

(Myhill [1959]) (Hint: let A be r.e. and infinite, and f be a recursive one-one function

whose range is an infinite recursive subset B of A. f(K) is creative, and then so is

f(K) ∪ (A−B), and A = f(K) ∪ (A−B) ∪B.)

The next result is an analogue of III.1.5, and provides a criterion for
m-completeness based on fixed-points. We use the following generalization
of m-reducibility to functions: f ≤m A if and only if there are recursive
functions f1, f2, and g such that

f(x) =
{
f1(x) if g(x) ∈ A
f2(x) otherwise.

Clearly, B ≤m A if and only if cB ≤m A.

Proposition III.6.8 (Arslanov) An r.e. set A is m-complete if and only if
there is a function f ≤m A without fixed-points.

Proof. If A is m-complete, the set {x : 0 ∈ Wx} is m-reducible to A, being
r.e. Let g be a recursive function such that

0 ∈ Wx ⇔ g(x) ∈ A,

and define f ≤m A as:

f(x) =
{
a if g(x) ∈ A
b otherwise,
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where a and b are indices of, respectively, ∅ and ω. Then Wf(x) 6= Wx, because
the two sets differ on 0.

Suppose now that A is r.e., and f ≤m A has no fixed-points. We show that
A is m-complete by proving that it is creative. Given Wx, let

ϕ(z) '

 f1(x) if g(z) shows up in A before than in Wx

f2(x) if g(z) shows up in Wx before than in A
undefined otherwise.

Note that if g(z) ∈ A ∪ Wx then ϕ(z) ↓, and if Wx ⊆ A then ϕ(z) = f(z),
if convergent. Consider a recursive function h such that Wh(z) = Wϕ(z), i.e.
such that Wh(z) = ∅ if ϕ(z) ↑: if Wx ⊆ A, which is the only case of in-
terest, then Wh(x) = Wf(x) if ϕ(x) converges. Let e be a fixed-point for h:
Wh(e) = We. Since f has no fixed-points ϕ(e) must diverge, and then it must
be g(e) 6∈ A ∪ Wx. Since the procedure is uniform in x (by using the Fixed-
Point Theorem with parameters II.2.11.a), we have a recursive function that
produces an element of A−Wx whenever Wx ⊆ A, and A is creative. 2

Exercises III.6.9 Weakenings of creativeness. a) An r.e. set A is creative if
and only if there is a partial recursive function ϕ such that

Wx empty or singleton ∧Wx ⊆ A ⇒ ϕ(x)↓ ∧ ϕ(x) ∈ A−Wx.

(Dekker [1955a], Myhill [1955]) (Hint: see the proof of III.6.6.)
b) For any r.e. nonrecursive set A there is a partial recursive function ϕ such that

Rx ⊆ A ⇒ ϕ(x)↓ ∧ ϕ(e) ∈ A−Rx.

(Mitchell [1966]) This cannot be interpreted as saying that every nonrecursive r.e. set
is effectively nonrecursive, because the system of indices {Rx}x∈ω for the recursive
sets is not effective itself. (Hint: if Rx = Wa = Wb let ϕ(x) be the first element
generated in A ∩Wb. Since A is nonrecursive, if Rx = Wa ⊆ A then A ∩Wb 6= ∅.)

c) An r.e. set A is T -complete if and only if A has a productive function recursive
in A. (Lachlan [1968]) (Hint: if A is T -complete, is recursive in A to ask if Wx ⊆ A,
i.e. if ∃z(z ∈ Wx ∩ A). If Wx ⊆ A, Wx is properly included in A, since A is not
recursive, and an element in A −Wx can be found, recursively in A. Conversely, if
f ≤T A is a productive function for A, the function g ≤T A such that

Wg(x) =

{
{f(x)} if f(x) ∈ A
∅ otherwise

has no fixed-points, and A is T -complete by III.1.5.)

Exercises III.6.10 Productive sets. a) A set A is productive if and only if there
is a partial recursive function ϕ such that

Wx ⊆ A ⇒ ϕ(x)↓ ∧ ϕ(x) ∈ A−Wx.
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(Dekker and Myhill [1958]) (Hint: given ϕ and

Wh(x) =

{
Wx if ϕ(x)↓
∅ otherwise,

then one of ϕ(x) and ϕ(h(x)) converges.)
b) A set A is productive if and only if K ≤m A. Thus the T -degrees containing

productive sets are exactly those above 0′. (Dekker and Myhill [1958]) (Hint: see the
proof of III.6.6.)

c) A set is productive if and only if it is completely productive. (Myhill [1955])
d) There are 2ℵ0 productive and co-productive sets, and the T -degrees containing

such sets are exactly those above 0′. (Karp) (Hint: if A is productive, A ⊕ A is
productive and co-productive.)

e) The set {x : Wx ⊆ K} is properly contained in K. Thus even transfinite itera-
tions of the process starting from ∅, and generating new elements of K (as in III.2.7),
does not exhaust K. (Dekker [1955a]) (Hint: the Fixed-Point Theorem produces x
such that Wx = {x}: then x ∈ K, but Wx 6⊆ K.)

f) There is a set A productive w.r.t. f , such that A = {f(x) : Wx ⊆ A}. (Dekker

[1955a]) (Hint: let A be the intersection of all sets for which f is a productive func-

tion.)

We still have to take care of the last notion considered at the beginning of
this section.

Definition III.6.11 (Dekker [1955a]) A set A is contraproductive if
there is a recursive function f such that, for every x,

A ⊆ Wx ⇒ f(x) ∈ A ∩Wx.

Proposition III.6.12 (Muchnik [1958a], McLaughlin [1962]) An r.e. set
A is creative if and only if A is contraproductive.

Proof. A creative set is effectively nonrecursive, and then A is contraproduc-
tive. For the converse, suppose A ⊆ Wx ⇒ f(x) ∈ A ∩Wx, and let

Wg(x) =
{
ω if x ∈ K
ω − {f(g(x))} otherwise.

Then x ∈ K ⇔ f(g(x)) ∈ A, because:

• x ∈ K ⇒ Wg(x) = ω ⊇ A⇒ f(g(x)) ∈ A

• f(g(x)) ∈ A⇒Wg(x) ⊇ A⇒ f(g(x)) ∈ Wg(x) ⇒ x ∈ K

Thus A is m-complete, and hence creative. 2
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Exercises III.6.13 a) A set is contraproductive if and only if it is productive.
b) If A is an r.e. nonrecursive set, there is ϕ partial recursive such that

A ⊆ Wx ⇒ ϕ(x)↓ ∧ ϕ(x) ∈ A ∩Wx.

(Dekker [1955a])

For more information on productiveness and creativeness see Dekker [1955a],
Friedberg and Rogers [1959], McLaughlin [1964], Lachlan [1965], Mitchell
[1966], Soloviev [1976], and Omanadze [1978].

Quasicreative sets ?

Exercise III.6.4 considers reducibilities ≤r generated by relations Qr, and gen-
eralizes the criterion of m-completeness given by effective nonrecursiveness, by
considering r.e. sets A such that, for some recursive function f ,

Qr(f(x), A,A) ⇔ ¬Qr(f(x), A,Wx).

We might then try to extend the criterion of m-completeness given by creative-
ness, by considering r.e. sets A such that, for some recursive function f ,

Wx ⊆ A ⇒ Qr(f(x), A,A) ∧ ¬Qr(f(x), A,Wx).

Exercise III.6.14 The criterion fails for c-reducibility . (Omanadze [1978a]) (Hint:
let A be a strongly effectively simple, not hypersimple, tt-incomplete set. It ex-
ists because there is an acceptable system of indices for which Post’s simple set is
tt-incomplete, see III.9.2, and all the acceptable systems are isomorphic, see II.5.7.
Such a set is thus c-incomplete. Let h be a strong array intersecting A, and g be such
that Wx ⊆ A ⇒ |Wx| < g(x). To get f such that

Wx ⊆ A⇒ Df(x) 6⊆ A ∧Df(x) ⊆ Wx,

let Df(x) = (
⋃
z≤g(x)+1

Dh(z))− {0, . . . , g(x)}.)

Thus this criterion does not always work, and we do not know of any
other formulation as general as III.6.4 (see Lachlan [1965], Soloviev [1976],
Omanadze [1976] for weaker results). There are however two special interest-
ing cases, which we treat in this and the following subsection, in which the
proposed formulation succeeds. We begin with ≤d which, we recall, is defined
by Qd(z,X, Y ) ⇔ Dz ⊆ Y . The proposed criterion for d-completeness is thus
the following:

Definition III.6.15 (Shoenfield [1957]) A is quasicreative if it is r.e.
and, for some recursive function f ,

Wx ⊆ A ⇒ Df(x) ⊆ A ∧ Df(x) 6⊆ Wx.
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Obviously, a creative set is quasicreative: if h is a productive function for
A, and Df(x) = {h(x)}, then

Wx ⊆ A ⇒ h(x) ∈ A−Wx ⇒ Df(x) ⊆ A ∧Df(x) 6⊆ Wx.

Proposition III.6.16 (Shoenfield [1957]) A set is quasicreative if and only
if it is d-complete.

Proof. That a d-complete set is quasicreative follows from the stronger crite-
rion for d-completeness given in III.6.4. Or directly, as in the case of
m-completeness, if x ∈ K ⇔ Dg(x) ∩ A 6= ∅ let z ∈ Wh(x) ⇔ Dg(z) ⊆ Wx.
Then f(x) = g(h(x)) witnesses the quasicreativeness of A, since

Wx ⊆ A ⇒Wh(x) ⊆ K ⇒ h(x) ∈ K −Wh(x)

⇒ Dg(h(x)) ⊆ A ∧Dg(h(x)) 6⊆ Wx.

Conversely, as in III.6.6, if f witnesses the quasicreativeness of A and g is
a recursive function (which exists by the Fixed-Point Theorem) such that

Wg(z) =
{
Df(g(z)) if z ∈ K
∅ otherwise,

then z ∈ K ⇔ Df(g(z)) ∩A 6= ∅, and A is d-complete. 2

Proposition III.6.17 (Shoenfield [1957]) There exists a quasicreative, not
creative set.

Proof. The idea is to build a quasicreative set A with a simple superset B,
such that B − A is r.e. Then A is not creative, otherwise the usual procedure
(see the proof of III.2.7) would give an infinite r.e. subset of B, starting with
B −A.

Fix a strong array {Fx}x∈ω intersecting Post’s simple set (see III.3.5). We
proceed as in the construction of a simple tt-complete, with the role of the set
K = {x : x ∈ Wx} taken by {x : Fx ⊆ Wx}. If

B = S ∪
⋃

Fx⊆Wx

Fx
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then B is simple, if coinfinite. Moreover

Fx ⊆ B ⇔ Fx ⊆ Wx.

To have A quasicreative, we can ensure the stronger condition

Fx ⊆ A ⇔ Fx 6⊆ Wx,

equivalent to
Fx ∩A 6= ∅ ⇔ Fx ⊆ Wx ⇔ Fx ⊆ B.

To build A generate B and, when Fx ⊆ B is found, put into A the element of
Fx which has been generated last in B. This makes A ⊆ B, and both A and
B −A r.e.

Since A is quasicreative A is not r.e., and so B must be infinite (otherwise
A = (B −A) ∪B would be r.e.). 2

A different proof, relying on completeness (i.e. building a d-complete set
which is not Q-complete, and thus not m-complete) will be given on p. 342.

Exercises III.6.18 a) A quasicreative set is not simple. (Shoenfield [1957]) (Hint:
let x ∈ K ⇔ Df(x) ⊆ A, for some recursive function f . Given distinct elements

x1, . . . , xn of A, let x ∈ C ⇔ Df(x) ⊆ {x1, . . . , xn} . If C = Wa then Df(a) ⊆ A but

Df(a) 6⊆ {x1, . . . , xn}. This builds an infinite r.e. subset of A.)

b) An r.e. set A is c-complete if and only if there is a recursive function f such
that

A ⊆ Wx ⇒ Df(x) ⊆ A ∧Df(x) 6⊆ Wx.

This provides an analogue of contraproductiveness. (Lachlan [1965]) (Hint: see
III.6.12.)

c) An r.e. set A is semicreative if, for some recursive function f ,

Wx ⊆ A⇒Wf(x) ⊆ A ∧Wf(x) 6⊆ Wx.

(Dekker [1955a]). This provides an analogue of quasicreativeness. Every nonrecursive
r.e. T -degree contains a semicreative set . (Yates [1965]) (Hint: use permitting, see
p. 277. The most natural example of semicreative set is K, but it is not useful for
permitting, because eachWx contributes at most one element. As a variation consider
〈x, e〉 ∈ A ⇔ 〈x, e〉 ∈ We, and Wf(e) = {〈x, e〉 : x ∈ ω}. A is semicreative because,

if We ⊆ A, then 〈x, e〉 ∈ A −We, and hence Wf(e) ⊆ A and Wf(e) 6⊆ We. Given an
r.e. nonrecursive set C, modify the construction of A by adding permitting, in such
a way to obtain A⊕ C semicreative.)

d) A semicreative set is not simple.
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Subcreative sets ?

We examine now the completeness criterion proposed in the last subsection, in
the case of Q-reducibility. Recall that ≤Q is defined by

QQ(z,X, Y ) ⇔ ∃u(u ∈ Y ∧ u ∈ Wz).

The criterion thus takes the following form:

Definition III.6.19 (Blum and Marques [1973]) A is subcreative if it
is r.e. and, for some recursive function f ,

Wx ⊆ A ⇒ Wf(x) 6⊆ A ∧ Wf(x) ⊆ Wx.
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Equivalently, by taking unions with A, we might require the existence of a
recursive function g such that Wx ⊆ A⇒ A ⊂ Wg(x) ⊆ Wx.

Obviously, a creative set is subcreative: if h is the productive function for
A, and Wf(x) = {h(x)}, then

Wx ⊆ A ⇒ h(x) ∈ A−Wx ⇒ Wf(x) 6⊆ A ∧Wf(x) ⊆ Wx.

Proposition III.6.20 (Blum and Marques [1973], Gill and Morris
[1974]) A set is subcreative if and only if it is Q-complete.

Proof. That a Q-complete set is subcreative follows from the stronger criterion
for Q-completeness given in III.6.4. Or directly, as in the case of
m-completeness, let x ∈ K ⇔ Wg(x) ⊆ A, and

z ∈ Wh(x) ⇔Wg(z) ∩Wx 6= ∅.

Then f(x) = g(h(x)) witnesses the quasicreativeness of A, since

Wx ⊆ A ⇒ Wh(x) ⊆ K ⇒ h(x) ∈ K −Wh(x)

⇒Wg(h(x)) 6⊆ A ∧Wg(h(x)) ⊆ Wx.

Suppose now that A is subcreative:

Wx ⊆ A⇒Wf(x) 6⊆ A ∧Wf(x) ⊆ Wx.

We want to find a recursive function h such that z ∈ K ⇔ Wh(z) ⊆ A. Since
we want to use f , we define g such that z ∈ K ⇔ Wf(g(z)) ⊆ A.
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• If z ∈ K, f gives naturally a set not contained in A, if we only start from
Wg(x) ⊆ A. The simplest way to ensure this is to let Wg(x) = ∅ when
z ∈ K: then Wf(g(z)) 6⊆ A.

• We try now the converse, i.e. we want Wf(g(z)) 6⊆ A ⇒ z ∈ K. If
Wf(g(z)) 6⊆ A, there is an element a ∈ Wf(g(z)) ∩ A. By subcreativity
it cannot be Wg(z) = {a}, otherwise Wg(z) ⊆ A and Wf(g(z)) ⊆ Wg(z),
while a ∈ Wf(g(z)). We thus define, when z ∈ K, Wg(z) as a set that
chooses an element of Wf(g(z)) ∩ A if there is one, and is empty other-
wise. Then Wf(g(x)) ∩A 6= ∅ ⇒ z ∈ K.

We now have to define g. The fact that g is self-referential is taken care of
by the Fixed-Point Theorem, but the naive approach leads to another problem.
If we try the natural procedure to pick up an element from Wf(g(z)) ∩ A, we
simultaneously generate Wf(g(z)) and A. At each stage of the enumeration,
we put the elements already generated in Wf(g(z)) into Wg(z), unless some
element has already been generated in Wg(z) but not yet in A. This certainly
puts an element of A in Wg(z) if there is one in Wf(g(z)), but may also put
other elements of A (ones which are in A, but are generated in it only after
having been generated in Wf(g(z))). The effect is that Wg(z) is not contained
in A, and the discussion above fails.

To override this we would like to make sure that, if Wf(g(z)) ∩ A 6= ∅, one
element of the intersection is generated in Wf(g(z)) as the first element. Think
of the process of generating an r.e. set, and to pass from it to a new r.e. set
which consists of the elements of the given set generated until the first stage in
which it is found that the first element of the enumeration is in A. If the given
set is infinite, it can be a fixed-point of this process only if the first element
enumerated in it is in A. Note that Wf(x) may always be supposed infinite
(otherwise consider A ∪Wf(x)).

To defineWg(z), first wait until it is discovered that z ∈ K. Then letWf(g(z))

be a fixed-point of the process described above, and let Wg(z) consist of the
first element generated in it (note that the definition of g actually requires a
double use of the Fixed-Point Theorem). Then:

• z ∈ K ⇒ Wg(z) = ∅ ⊆ A⇒Wf(g(z)) 6⊆ A.

• Wf(g(z)) 6⊆ A⇒ z ∈ K.
Otherwise Wg(z) = {a}, for some a ∈ Wf(g(z)) ∩A (actually, for the first
element generated in Wf(g(z))). Then

Wg(z) ⊆ A⇒Wf(g(z)) ⊆ Wg(z),

contradiction. 2
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Exercises III.6.21 Strongly effectively simple sets. a) Every strongly effec-
tively simple set is Q-complete. (Gill and Morris [1974]) (Hint: if g is a recursive
function such that We ⊆ A⇒ (maxWe) < g(e), let Wf(e) consist of all the elements

greater than g(e). Then f witnesses the subcreativeness of A, because A is infinite.)

b) A strongly effectively simple set is neither hyperhypersimple, nor contained in

maximal sets. (Cohen and Jockusch [1975]) (Hint: by III.4.10, and the fact that

coinfinite r.e. supersets of strongly effectively hyperhypersimple sets are such.)

Effectively inseparable pairs of r.e. sets

The fact that a set A is recursive if and only if both A and A are r.e. suggests
the possibility of extending the theory of r.e. sets to pairs of disjoint r.e. sets.
The first step was taken in II.2.4, with the definition of the notion of recursive
inseparability as an analogue of nonrecursiveness. The existence of recursively
inseparable pairs of r.e. sets was proved in II.2.5, and we now strengthen that
result.

Proposition III.6.22 (Shoenfield [1958]) Every nonrecursive r.e. T -degree
contains a recursively inseparable pair of r.e. sets.

Proof. Let C be a nonrecursive r.e. set. We modify the first proof of II.2.5,
and define

x ∈ A ⇔ (x)1 ∈ C ∧ ϕ(x)2(x) ' 0 before (x)1 ∈ C
x ∈ B ⇔ (x)1 ∈ C ∧ ϕ(x)2(x) ' 1 before (x)1 ∈ C.

Then A and B are a disjoint pair of r.e. sets. Moreover:

• A ≤T C and B ≤T C
To see if x ∈ A first see, recursively in C, if (x)1 ∈ C. If not, then x 6∈ A.
If so, simultaneously generate C and compute ϕ(x)2(x). Then x ∈ A if
and only if the computation of ϕ(x)2(x) converges to 0 before than (x)1
appears in C. Thus A ≤T C, and B ≤T C similarly.

• C ≤T A and C ≤T B
To see if z ∈ C, let x = 〈z, a〉, where a is an index of the constant function
0. See, recursively in A, if x ∈ A. If so, then z ∈ C. If not, simultaneously
generate C and compute ϕa(x). Then z ∈ C if and only if it has been
generated in it by the time ϕa(x) converges. Thus C ≤T A, and C ≤T B
similarly.

• A and B are recursively inseparable
Suppose D is a recursive set such that A ⊆ D and B ⊆ D, and let

ϕe(x) =
{

1 if x ∈ D
0 otherwise.
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Then

z ∈ C ⇔ z is generated in C before ϕe(〈z, e〉) converges.

Indeed, if z ∈ C and ϕe(〈z, e〉) converges before z is generated in C, then

ϕe(〈z, e〉) ' 0 ⇒ 〈z, e〉 ∈ A⇒ 〈z, e〉 ∈ D ⇒ ϕe(〈z, e〉) ' 1
ϕe(〈z, e〉) ' 1 ⇒ 〈z, e〉 ∈ B ⇒ 〈z, e〉 ∈ D ⇒ ϕe(〈z, e〉) ' 0.

But then C is recursive, contradiction. 2

Exercises III.6.23 a) K is part of a recursively inseparable pair of r.e. sets. (Hint:
let A and B be a recursively inseparable pair of r.e. sets. Then A ≤m K, and there is a
one-one recursive function f such that x ∈ A⇔ f(x) ∈ K, namely the function given
by III.1.2, being obtained by the Smn -Theorem. Then K and f(B) are recursively
inseparable.)

b) If B ≤m A and B is part of a recursively inseparable pair of r.e. sets, then A is
not simple. This generalizes the fact that m-complete sets are not simple. (Hint: if f
reduces B to A, and B and C are recursively inseparable, then D = f(C) is infinite,
otherwise f−1(D) is a recursive set separating B and C.)

c) If B ≤tt A and B is part of a recursively inseparable pair of r.e. sets, then B
is not hypersimple. This generalizes the fact that tt-complete sets are not hypersim-
ple. (Denisov [1974]) (Hint: if x ∈ B ⇔ A |= σf(x), and B and C are recursively
inseparable, then

x ∈ B ∧ y ∈ C ⇒ A |= σf(x) ∧ ¬(A |= σf(y)).

With notations as in III.3.10, if

x ∈ B ∧ y ∈ C ∧ (A∗ |= σf(x) ⇔ A∗ |= σf(y))

then A and A∗ differ on some element used in σf(x) or σf(y). There must be x and y
such that

x ∈ B ∧ y ∈ C ∧ (∀i < 2n)(A∗i |= σf(x) ⇔ A∗i |= σf(y)),

otherwise we could recursively separate B and C, because

xηy ⇔ (∀i < 2n)(A∗i |= σf(x) ⇔ A∗i |= σf(y))

is a recursive equivalence relation with only finitely many classes, and we could take
the union of the equivalence classes containing elements of B.)

d) Not every nonrecursive r.e. tt-degree contains a recursively inseparable pair of

r.e. sets. (Hint: from c) above.)

Effective nonrecursiveness can be generalized as follows:
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Definition III.6.24 (Kleene [1950], Uspenskii [1953]) A and B are ef-
fectively inseparable if they are disjoint r.e. sets and, for some recursive
function f ,

A ⊆ Wx ∧B ⊆ Wy ∧ Wx ∩Wy = ∅ ⇒ f(x, y) ∈ Wx ∪Wy.

&%
'$
&%
'$

���� ����
q

A B

Wx Wy

f(x, y)

The recursively inseparable pairs constructed in II.2.5 are both effectively
inseparable. For example, if

x ∈ A⇔ ϕx(x) ' 0 and x ∈ B ⇔ ϕx(x) ' 1,

let f(x, y) be an index of the partial recursive function which gives z value 1
if the stage in which z appears in Wx is not greater than the stage in which z
appears in Wy, and 0 in the opposite case. Then, if A ⊆ Wx and B ⊆ Wy and
Wx, Wy are disjoint, f(x, y) ∈ Wx ∪Wy, because e.g.

f(x, y) ∈ Wx ⇒ ϕf(x,y)(f(x, y)) ' 1 ⇒ f(x, y) ∈ B ⇒ f(x, y) ∈ Wy,

contradiction.

Proposition III.6.25 If A and B are effectively inseparable, any r.e. superset
of one disjoint from the other is creative. In particular, so are A and B.

Proof. Let A ⊆ C and B ⊆ C, Wg(x) = Wx ∪ B and C = Wa. If f witnesses
the effective inseparability of A and B, then

Wx ⊆ C ⇒ A ⊆ Wa ∧B ⊆ Wg(x) ⇒ f(a, g(x)) ∈ C −Wx. 2

Exercises III.6.26 a) There are recursively inseparable, not effectively inseparable
pairs of r.e. sets. (Muchnik [1956a], Shoenfield [1957], Tennenbaum [1961a]) (Hint:
from III.6.22 and III.5.20, since effectively inseparable pairs must be T -complete. Or
directly, as in the construction of Post’s simple set, by building A and B r.e. and
disjoint, intersecting each infinite r.e. set, and with A ∪B infinite. To achieve the
last condition, consider only elements of We greater that 3e.)

b) The sets A and B − A in the proof of III.6.17 are recursively inseparable,
but not effectively inseparable. (Shoenfield [1957]) (Hint: they cannot be effectively
inseparable, since A is not creative. Suppose A ⊆ C and B−A ⊆ C, with C recursive.
Since A is quasicreative we can build, by iteration, an r.e. set D ⊇ C such that D∩C
is infinite, and then B is not simple, contradiction.)
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c) There are two disjoint creative sets which are recursively inseparable, but not
effectively inseparable. (McLaughlin [1962a]) (Hint: use the fact, proved in Chapter
IX, that every infinite nonrecursive r.e. set is the disjoint union of two infinite nonre-
cursive r.e. sets. Split this way a maximal set, and consider each component as the
union of an infinite recursive set and of a creative set, see III.6.7.e. The two creative
sets thus obtained are as wanted.)

d) There are two disjoint creative sets which are recursively separable. (Hint: let

2x ∈ A⇔ x ∈ K, and 2x+ 1 ∈ B ⇔ x ∈ K. They are creative sets, separated by the

even numbers.)

Exercises III.6.27 Conditions equivalent to effective inseparability. Let A
and B be disjoint r.e. sets. The following conditions are equivalent to effective insep-
arability of A and B.

a) For some recursive function f ,

A ⊆ Wx ∧B ⊆ Wy ∧Wx ∪Wf(y) = ω ⇒ f(x, y) ∈ Wx ∩Wy.

This is the dual of the notion of recursive inseparability. (Muchnik [1958a])
b) For some recursive function f ,

Wx ⊆ A ∧Wy ⊆ B ∧Wx ∩Wy = ∅ ⇒ f(x, y) ∈ A ∪B − (Wx ∪Wy).

This is the analogue of creativeness. (Muchnik [1958a], Smullyan [1961]) (Hint: the
equivalence is trivial, and it does not use the Fixed-Point Theorem.)

c) For some recursive function f ,

A ⊆ Wx ∧B ⊆ Wy ⇒ f(x, y) ∈ (A ∩Wx) ∪ (B ∪Wy).

This is the analogue of contraproductiveness.
d) For every pair (Wx,Wy) of disjoint r.e. sets, there is a recursive function f

that simultaneously m-reduces them to (A,B), i.e.

z ∈ Wx ⇔ f(z) ∈ A and z ∈ Wy ⇔ f(z) ∈ B.

This the analogue of m-completeness. (Muchnik [1958a], Smullyan [1961]) (Hint: see

III.6.6, and use the Double Fixed-Point Theorem II.2.11.b.)

Further generalizations of creativeness (e.g. to infinite sequences of pair-
wisely disjoint r.e. sets) are considered in Cleave [1961], Lachlan [1964], [1964a],
[1965b], Malcev [1963], Vučkovich [1967], Carpentier [1968], [1969], [1970], Er-
shov [1977].

III.7 Recursive Isomorphism Types

In this section we introduce two natural generalizations of the notion of
m-reducibility, obtained by considering special reducing functions. Interest-
ingly, these two reducibilities are different, but the notions of degree induced
by them coincide.
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Mezoic sets and 1-degrees

A natural strengthening of m-reducibility is obtained by asking one-oneness of
the reducing function.

Definition III.7.1 (Post [1944]) A is 1-reducible to B (A ≤1 B) if, for
some one-one recursive function f , x ∈ A⇔ f(x) ∈ B.

A is 1-equivalent to B (A ≡1 B) if A ≤1 B and B ≤1 A.

Note that, since the proof of III.1.2 was obtained by the Smn -Theorem, which
automatically provides one-one functions (II.1.7), a set A is r.e. if and only if
A ≤1 K.

Exercises III.7.2 a) If A ≤1 B and B is recursive, so is A.

b) If A ≤1 B and B is r.e. then so is A.

c) If A is r.e. then A ≤1 A if and only if A is infinite, coinfinite and recursive.

d) If A ≤1 B then |A| ≤ |B| and |A| ≤ |B|. Thus, if A ≡1 B, A and B, as well as
A and B, must have the same cardinality.

e) If A and B are recursive sets,|A| ≤ |B|, and |A| ≤ |B|, then A ≤1 B.

f) If A and B are infinite and coinfinite recursive sets, then A ≡1 B.

Note that ≤1 is a reflexive and transitive relation, and thus ≡1 is an equiv-
alence relation.

Definition III.7.3 The equivalence classes of sets w.r.t. 1-equivalence are
called 1-degrees, and (D1, ≤) is the structure of 1-degrees, with the par-
tial ordering ≤ induced on them by ≤1.

The 1-degrees containing r.e. sets are called r.e. 1-degrees, and two of
them are:

1. 01, the 1-degree of the infinite and coinfinite recursive sets

2. 0′
1, the 1-degree of K.

A set A is 1-complete if it is r.e. and its 1-degree is 0′
1, i.e. K ≤1 A.

Note that an r.e. 1-degree contains only r.e. sets. The 1-degrees containing
recursive sets are infinitely many: one for each finite or cofinite cardinality,
together with 01, ordered as follows:
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where an is the 1-degree of the finite sets with n elements, and bn the 1-degree
of the cofinite sets with n elements in the complement. Even if we consider
only the 1-degrees of infinite and coinfinite sets, 01 is not the least 1-degree:

Proposition III.7.4 If a set A has 1-degree above 01, then A is neither im-
mune nor coimmune. In particular, if A is r.e. then it is not simple.

Proof. If B is an infinite and coinfinite recursive set, and f is a one-one re-
cursive function such that x ∈ B ⇔ f(x) ∈ A, then f(B) ⊆ A and f(B) ⊆ A,
and both f(B) and f(B) are infinite r.e. sets. 2

Simple sets are neither recursive nor 1-complete, and thus they solve a ver-
sion of Post’s problem for 1-degrees. But we could also formulate the problem
as: are there (r.e.) 1-degrees strictly between 01 and 0′

1? Then simple sets are
of no help any more, since their 1-degrees are all incomparable with 01. To
solve this version, we must first understand what the 1-complete sets are.

Theorem III.7.5 (Myhill [1955]) A set is 1-complete if and only if it is
creative.

Proof. A 1-complete set is m-complete, and hence creative (by III.6.6). Let
now A be creative, and f be a recursive function such that

Wx ⊆ A ⇒ f(x) ∈ A−Wx.

The same proof of III.6.6 would show that A is 1-complete, if we knew that f
can be supposed to be one-one (recall that the reduction function of K to A is
the composition of f and a function g obtained by the Fixed-Point Theorem,
hence by the Smn -Theorem, and thus one-one by II.1.7). We then show how to
build a one-one productive function h for A, by induction. We can start by
letting h(0) = f(0). Suppose h(0), . . . , h(n − 1) have been defined: we want
h(n) such that

• h(n) 6∈ {h(0), . . . , h(n− 1)}

• Wn ⊆ A ⇒ h(n) ∈ A−Wn.
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Note that, by iteration, if Wt(x) = Wx ∪ {f(x)} then, when Wn ⊆ A, the
elements f(n), f(t(n)), f(t2(n)), . . . are all distinct and in A −Wn. Given n,
generate this list, and see which of the following happens first.

• If we first find a repetition, we know that it cannot be Wn ⊆ A, and then
h(n) can be anything, as long as it does not interfere with the requirement
that h be one-one. For example, let h(n) be the least number different
from h(0), . . . , h(n− 1).

• If we first find an element not in {h(0), . . . , h(n − 1)}, then we can let
h(n) be the first such one. Then, as above, h(n) ∈ A −Wn if Wn ⊆ A.
2

Exercises III.7.6 Special productive functions. a) A set is productive if and
only if it has a one-one, onto productive function. (Rogers [1967]) (Hint: the proof
above shows how to get a one-one productive function f . To get from it an onto one,
let g be a recursive one-one enumeration of an infinite recursive set B of r.e. indices
of ω, and let

h(x) =

{
g−1(x) if x ∈ B
f(x) otherwise.)

b) A set is contraproductive if and only if it has a one-one, onto contraproductive
function. (Horowitz [1978]) (Hint: symmetric to part a), using III.6.12.)

c) A set is completely productive if and only if it has a one-one completely pro-
ductive function. (Horowitz [1978]) (Hint: if A is completely productive then, by
part a), it has a one-one productive function f . By the Fixed-Point Theorem there
is a one-one recursive function h such that Wh(x) = Wx ∩ {f(h(x))}. Then fh is a
one-one completely productive function for A.)

d) If a set has an onto completely productive function, then its complement is r.e.
(and hence creative). (Horowitz [1978]) (Hint: if A is completely productive, there is
a recursive function f such that f(x) ∈ A⇔ f(x) ∈ Wx. If f is onto then, for any y,
there is x such that f(x) = y, and y is in A if and only if it is in Wx.)

e) The complement of every creative set A has an onto completely productive func-

tion. (Horowitz [1978]) (Hint: as in part a), starting with a completely productive

function for A, and using A in place of ω.)

Now that we know that the 1-complete sets are exactly the creative ones,
we have a candidate for the solution to Post’s problem for 1-degrees.

Definition III.7.7 (Dekker [1953]) A is mezoic if it is an r.e. set which
is neither recursive, nor creative, nor simple.

We only have to show that such sets exist. Actually, they are quite abun-
dant.
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Proposition III.7.8 (Dekker [1953]) Every nonrecursive r.e. T -degree con-
tains a mezoic set.

Proof. Let A be a simple set in the given r.e. nonrecursive T -degree (by
III.2.14), and

〈x, y〉 ∈ B ⇔ x ∈ A.

Clearly B is an r.e. set in the same T -degree as A. Moreover B is mezoic,
because:

• B is not recursive, because so is A.

• B is not simple, because the set {〈a, y〉 : y ∈ ω}, for any a 6∈ A, is a
recursive subset of B.

• B is not creative, because if f were a productive function for B, and
Wh(x) = {〈z, y〉 : z ∈ Wx}, then

Wx ⊆ A ⇒ Wh(x) ⊆ B ⇒ f(h(x)) ∈ B −Wh(x)

⇒ (f(h(x)))1 ∈ A−Wx,

and A would be creative too. 2

Exercises III.7.9 A classification of the r.e. sets (Uspenskii [1957]) An r.e.
set A is pseudocreative if, for every r.e. subset B of A, there is an infinite subset of
A disjoint from B. The creative sets are exactly the effectively pseudocreative sets.
An r.e. set A is pseudosimple if there is an infinite r.e. subset B of A, such that
A ∪B is simple.

a) The recursive, simple, pseudosimple, and pseudocreative sets are a partition of
the class of the r.e. sets.

a) Every nonrecursive r.e. T -degree contains a pseudocreative set . (Hint: see the
proof of III.7.8.)

b) Every nonrecursive r.e. T -degree contains a pseudosimple set . (Hint: if A is

simple, let 2x ∈ B ⇔ x ∈ A.)

Exercises III.7.10 Splinters again. a) Every splinter is recursive or pseudocre-
ative, in particular is not simple. (Ullian [1960]) (Hint: let A = {a, f(a), . . .} be
nonrecursive and suppose that, for some r.e. set B ⊆ A disjoint from A, A ∪ B is
simple. Given x, consider {x, f(x), . . .}. If it is finite, then x 6∈ A, otherwise A is
finite and hence recursive. If it is infinite, by simplicity of A ∪ B there must be n
such that f (n)(x) ∈ A or f (n)(x) ∈ B. In the second case, x 6∈ A. In the first,
f (n)(x) = f (m)(a) for some m, and x is in A if and only if m ≥ n and x = f (m−n)(a).
Then A is recursive.)

b) Every recursive set is a splinter . (Ullian [1960])
c) Every creative set is a splinter . (Myhill [1959], Ullian [1960]) (Hint: let B be

creative, and 〈x, y〉 ∈ A ⇔ x ∈ B. A and B have the same m-degree and hence, by
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III.7.5, the same 1-degree. By III.7.13, they are recursively isomorphic. Thus we can
just prove that A is a splinter. Let {an}n∈ω be a one-one enumeration of B. Picture
the pairs of numbers as a double array: we have to generate the rows corresponding
to pairs with first elements in B, i.e. the elements of the kind 〈an, y〉. Note that
A = A0 ∪ A1, where A0 = {〈an, y〉 : n < y},and A1 = {〈an, y〉 : y ≤ n}. A0 is
recursive, and thus there is an enumeration {bn}n∈ω of it in increasing order. It is
then enough to define f recursive that steps from one element of the following list to
the following:

〈a0, 0〉, b0
〈a1, 0〉, 〈a1, 1〉, b1
〈a2, 0〉, 〈a2, 1〉, 〈a2, 2〉, b2
. . .

Then let f(〈an, n〉) = bn, f(bn) = 〈an+1, 0〉, and f(〈x, y〉) = 〈x, y + 1〉) otherwise.)

Young [1967] has proved that there are pseudocreative sets which are not splin-

ters.

Recursive isomorphism types

After having strengthened m-reducibility by requiring the reducing function to
be one-one, we can make a further step and ask for ontoness as well.

Definition III.7.11 (Post [1944]) A is recursively isomorphic to B
(A ≡ B) if, for some one-one onto recursive function f , x ∈ A⇔ f(x) ∈ B.

The equivalence classes of sets w.r.t. recursive isomorphism are called re-
cursive isomorphism types.

Note that ≡ is an equivalence relation, because the class of one-one and onto
recursive functions (called recursive permutations) is closed under inverses.

Exercises III.7.12 (Rogers [1967]) a) The recursive permutations form a group,
which is not finitely generated . (Hint: if the group were finitely generated, the recur-
sive permutations could be recursively enumerated, and the diagonal method would
produce a contradiction.)

b) The group of the recursive permutations is not a normal subgroup of the group
of all permutations of ω. (Hint let h be a nonrecursive permutation, and

f(x) =

{
x if x odd
2h(x

2
) if x even

g(x) =

{
x− 1 if x odd
x+ 1 if x even.

Then f−1gf is not a recursive permutation.)

In Set Theory, the Cantor-Schröder Theorem shows that two sets which can
be one-one mapped into one another must have the same cardinality. The next
result is a constructive version of it.
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Theorem III.7.13 (Isomorphism Theorem (Myhill [1955]) 1-degrees
and isomorphism types coincide, i.e. for any pair of sets A and B,

A ≡1 B ⇔ A ≡ B.

Proof. Let f and g be one-one recursive functions, such that

x ∈ A⇔ f(x) ∈ B and x ∈ B ⇔ g(x) ∈ A.

We want to define a recursive permutation h that interchanges A and B, and
thus we will satisfy the condition x ∈ A ⇔ h(x) ∈ B. Since h has to be total,
from time to time we ensure that the least element not yet in the domain gets
into it (by defining h on it). Similarly, h has to be onto, and from time to time
we ensure that the least element not yet in the range gets into it (by letting
it be the value of h for some argument). We then have to show how to ensure
that h is both one-one and a function. But h is a function when h−1 is one-one,
and thus we will have a symmetric construction, that alternates steps to make
h total and one-one, to steps to make it onto and a function.

We can easily start by letting h(0) = f(0). Then

0 ∈ A⇔ f(0) ∈ B ⇔ h(0) ∈ B.

Now take the first y not yet in the range (i.e. y 6= f(0)): we want an element
x such that h(x) = y (towards ontoness), and x 6= 0 (to ensure that h is a
function). We obviously try g(y): if this is not 0 then we have what we want,
and can let h(y) = g(y), since

y ∈ B ⇔ g(y) ∈ A⇔ h(y) ∈ A.

But if g(y) = 0 then we have two different elements y and f(0), and we know
that g(f(0)) cannot be 0, since g is one-one. Then we can let h(g(f(0))) = y,
since

y ∈ B ⇔ g(y) = 0 ∈ A⇔ f(0) ∈ B ⇔ g(f(0)) = h(y) ∈ A.

The procedure is perfectly general. At any stage, having defined h on a set
of elements {x0, . . . , xn} in such a way that

xi ∈ A⇔ h(xi) ∈ B,

we know that, given x 6∈ {x0, . . . , xn} and y 6∈ {h(x0), . . . , h(xn)},

• one of f(x), f(x0), . . . , f(xn) is not in {h(x0), . . . , h(xn)}

• one of g(y), g(h(x0)), . . . , g(h(xn)) is not in {x0, . . . , xn}.
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f(x) = h(xi1)

f(xi1) = h(xi2)

h(x)

y

h(xi1)

· · ·

x

xi1

· · ·

g(y) = xi1

g(h(xi1)) = xi2

h−1(y)

f

h−1

g

h

Figure III.1: Defining h(x) and h−1(y)
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We can then proceed inductively, and extend h to a new element xn+1, by
letting xn+1 be the least element not yet in {x0, . . . , xn} if n is odd, and h(xn+1)
be the least element not yet in {h(x0), . . . , h(xn)} if n is even.

The procedure to find h(xn+1) given xn+1 must succeed after at most n+ 1
trials. It is illustrated in Figure 1, and can be described recursively as follows.
Given x not yet in the domain of h, let z = x, and consider f(z): if it is not
yet in the range of h, let h(x) = f(z). Otherwise, change z into h−1(f(z)),
and try again. The procedure must stop after finitely many steps, as already
noted, because the domain of h is finite, x is not in it, and f is one-one. And
x ∈ A ⇔ h(x) ∈ B because both f and h have this property, the latter by
induction hypothesis.

The procedure to find xn+1 given h(xn+1) is symmetric, by using g and h
in place of f and h−1. 2

Corollary III.7.14 The creative sets are all recursively isomorphic.

Proof. The creative sets are exactly the 1-complete ones, by III.7.5, and thus
are all 1-equivalent. 2

Note that it also immediately follows that the infinite, coinfinite recursive
sets are all recursive isomorphic (Post [1944], Dekker [1953]), although this can
easily be proved directly.

Exercise III.7.15 The effectively inseparable pairs of r.e. sets are all recursively

isomorphic, i.e. if (A,B) and (C,D) are effectively inseparable, there is a recur-

sive permutation that simultaneously exchanges A and C, and B and D. (Muchnik

[1958a], Smullyan [1961]) (Hint: use III.6.27.d.)

Rogers [1967] introduced Klein’s approach in Recursion Theory, and stressed
the importance of considering properties invariant under recursive permuta-
tions. We leave to the reader the verification that all concepts introduced so
far (with only one exception, see III.7.16.c), as well as those that will be in-
troduced in the next chapters, are indeed recursively invariant. Frequently,
III.7.13 is a useful tool in such verifications.

Exercises III.7.16 a) The property of being regressive is invariant under recursive
permutations. (Hint: if A = {a0, a1, . . .} is regressed by ϕ, then the partial recursive
function ψ such that ψ(h(x)) ' h(ϕ(x)) regresses h(A) = {h(a0), h(a1), . . .}. Note
that the enumeration of the set has changed: thus, even if A is retraceable, in general
h(A) is only regressive.)

b) The property of containing an infinite retraceable subset is invariant under
recursive permutations. (Dekker [1962]) (Hint: if A contains an infinite retraceable
set B, and h is a recursive permutation, then h(B) is an infinite regressive subset of
h(A), by part a), and it contains, by II.6.20, an infinite retraceable subset.)
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c) The property of being retraceable is not invariant under recursive permutations,
even for co-r.e. sets. (McLaughlin [1966]) (Hint: this requires the priority method.
We fix the permutation in advance, and let h exchange 2x and 2x + 1. We then
build A = {a0 < a1 < · · · }, and ϕ retracing it. The construction has to be effective
to give ϕ partial recursive, and this produces A co-r.e. We ensure that h(A) is not
retraceable. Choose a2e and a2e+1 to witness the fact that ϕe does not retrace h(A).
Also, let ϕ(an+1) = an and ϕ(a0) = a0, so that ϕ retraces A. At stage s + 1, let
ϕs be the approximation of ϕ obtained so far. Consider the smallest e ≤ s such
that the condition ‘ϕe does not retrace h(A)’ has not yet been satisfied and not
injured afterwards (in particular, as2e+1 = as2e + 1), and ϕe,s(a

s
2e+1) = as2e. Then

ϕe,s(h(a
s
2e)) = h(as2e+1), and we want to destroy this. Let x be the smallest odd

element which is greater than both as2e+1 and every element in the domain of ϕs, and
let x = as+1

2e+1, and ϕs+1(x) = as2e. The reason for doing this is that, if as2e = a2e,
then ϕe(h(a2e)) is not in h(A), and so ϕe does not retrace h(A).)

d) There are r.e. sets coregressive, but not coretraceable. (McLaughlin [1966])
(Hint: by the proof of part c), h(A) = h(A) is such a set.)

Degtev [1971] and Soare [1972] have shown that every nonrecursive r.e. T -degree

contains an r.e. set which is coregressive but not coretraceable.

Recursive equivalence types and isols ?

Dekker [1955] defines the relation of recursive equivalence as:

A ∼= B ⇔ for some one-one, partial recursive function ϕ,

A ⊆ domϕ and ϕ(A) = B.

∼= is an equivalence relation, which may be seen as a constructivization of
the property of having same cardinality, and its equivalence classes are called
recursive equivalence types (r.e.t.), and are thus constructive analogues of
cardinals.

In Set Theory there are two notions of finiteness: A is finite if it can be
one-one mapped on a proper initial segment of ω, and is Dedekind-finite if
it cannot be one-one mapped on a proper subset of itself. The two notions
coincide if choice is assumed, but in choiceless Set Theory the latter is weaker,
and some infinite sets may still be Dedekind-finite. A set A is recursively
equivalent to a proper subset of itself if and only if it is infinite and not immune,
and thus the r.e.t.’s of finite or immune sets (called isols, because such sets are
isolated in the usual topology, see p. 186) may be seen as a constructive version
of Dedekind-finite cardinals (even more appropriately they arise, via Kleene
realizability, from standard cardinal arithmetic on subsets of ω, in Intuitionistic
Set Theory, see McCarty [1986]).

The set Λ of isols can be given operations of sum and product, induced by
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A⊕B and A ·B, and a partial order relation ≤ defined as

x ≤ y ⇔ (∃z)(x+ z = y).

The structure of isols is quite rich: ω is embedded in Λ (by identifying n with
the isol of finite sets of cardinality n), Λ has 2ℵ0 elements, and 〈Λ,≤〉 embeds
every countable partial ordering (as well as many others, see Ellentuck [1973]).

Myhill [1958] has introduced a way to extend certain functions from ω to
Λ. First note that each function f : ω → ω can be written as

f(n) =
∞∑
i=0

ci

(
n
i

)
where the ci’s (Sterling coefficients) are positive or negative integers. If they
are all positive or null, then f is called a combinatorial function. Thus every
function on ω is the difference of two combinatorial ones. A combinatorial func-
tion is recursive if and only if the sequence {ci}i∈ω is. Combinatorial functions
of many variables are defined similarly. The class of combinatorial functions
is a rich one, closed under composition, and containing Ini , the constant func-
tions, sum, product, factorial and positive-base exponential. A combinatorial
set function is a function on P(ω) that maps each finite set to a finite set,
and that respects cardinalities, intersections and countable unions (in partic-
ular, the function is generated by its behavior on the finite sets). It is called
effective if the restriction to finite sets is recursive (on the characteristic in-
dices). Combinatorial set functions induce functions on ω (since they preserve
finite cardinalities), and effective combinatorial set functions induce functions
on r.e.t.’s, in particular on Λ. The basic connection between the two notions
is that the (recursive) combinatorial functions are exactly those induced by
(effective) combinatorial set functions. Thus for each recursive combinatorial
function f on ω, there is a function fΛ on Λ extending it .

It is immediate to note that for each recursive relation R on ω there is a re-
lation RΛ on Λ extending it , since given R there are f, g recursive combinatorial
functions such that

R(x) ⇔ f(x) = g(x),

and thus it is enough to define

RΛ(x) ⇔ fΛ(x) = gΛ(x).

Note that if a recursive relation R admits an algebraic characterization on ω,
RΛ does not necessarily coincide with the interpretation of the characterization
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on Λ. E.g., if Pr is the set of prime numbers, PrΛ is different from the set of
prime isols, defined as

x prime ⇔ 2 ≤ x ∧ ∀y∀z(y · z = x⇒ y = 1 ∨ z = 1).

Nerode [1961], [1962] has used these translations to show that a substantial
part of the theory of (finite cardinal) arithmetic can be extended to isols. Con-
sider a first-order language with equality, function constants for all recursive
combinatorial functions, and relation constants for all recursive relations. Then
a universal Horn sentence (see p. 39) holds over ω if and only if its translation
holds over Λ. It immediately follows that, e.g., the following hold for isols:

x 6= x+ 1, nx = ny ⇒ x = y, 2x · 2y = 2x+y.

The result holds in much greater generality than stated, but some restric-
tions are needed, because there are universal sentences true in ω that fail in Λ,
e.g. the fact that every element is even or odd. Ellentuck [1967] has discovered
a notion of universal isol (as an isol avoiding RΛ, for each coinfinite recursive
R, and thus having a sort of genericity): there are 2ℵ0 such isols, and each of
them provides counterexamples to each universal sentence true in ω but false
in Λ. E.g. a universal isol is prime, but not a member of PrΛ.

The notion of isol can be regarded as an extension not only of the notion
of integer, but also of nonstandard integer . Indeed, Nerode [1966] has proved
that any countable nonstandard model of Arithmetic correct for diophantine
equations (i.e. such that if an equation has a solution in the model, then it has
a solution in the integers) can be embedded in the isols. Conversely, any subset
of the isols whose differences generate an integral domain can be embedded in
a nonstandard model of Arithmetic.

The theory of 〈Λ,+, ·〉 is at least as complicated as that of 〈ω,+, ·〉 (in
particular is not decidable), because the set of finite isols is definable over Λ,
by the formula

Fin(x) ⇔ (∀y)(x ≤ y ∨ y ≤ x)

(Dekker and Myhill [1960]). Actually, the first-order theory of 〈Λ,≤〉 is re-
cursively isomorphic to the Second Order Arithmetic (Nerode and Manaster
[1971]), and the same holds for the theory of 〈Λ,+, ·〉 (Ellentuck [1973a]).

For a treatment of the theory of isols (and r.e.t.’s in general) see Dekker and
Myhill [1960], Dekker [1966], Crossley and Nerode [1974], McLaughlin [1982].

III.8 Variations of Truth-Table Reducibility ?

In this section we play on the theme of tt-reducibility, by first considering
bounds on the number of elements used in the truth-tables, and then by relaxing
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the condition that we know in advance the effect of the answers to the queries
made to the oracle. At the end we also introduce a number of other strong
reducibilities.

Bounded truth-table degrees

The variation we consider first is, like c-reducibility or d-reducibility, a strength-
ening of tt-reducibility, but in a different direction. We impose restrictions not
on the kind of truth tables we allow, but rather on their size.

Definition III.8.1 (Post [1944]) A is btt-reducible to B (A ≤btt B) if,
for some recursive function f and some number m, called the norm of the
reduction,

1. x ∈ A⇔ B |= σf(x)

2. σf(x) uses at most m elements.

If m is the norm, we also write A ≤btt(m) B.
A is btt-equivalent to B (A ≡btt B) if A ≤btt B and B ≤btt A.

Exercises III.8.2 a) If A is recursive, then A ≤btt B for any set B.
b) If A ≤btt B and B is recursive, so is A.

c) A ≤btt(1) A.

Note that ≤btt is a reflexive and transitive relation, and thus ≡btt is an
equivalence relation.

Definition III.8.3 The equivalence classes of sets w.r.t. btt-equivalence are
called btt-degrees, and (Dbtt, ≤) is the structure of btt-degrees, with the
partial ordering ≤ induced on them by ≤btt.

The btt-degrees containing r.e. sets are called r.e. btt-degrees, and two of
them are:

1. 0btt, the btt-degree of recursive sets

2. 0′
btt, the btt-degree of K.

A set A is btt-complete if its r.e. and its btt-degree is 0′
btt, i.e. if K ≤btt A.

In general ≤btt(m) is not transitive, but ≤btt(1) is. Since a set is always
reducible to its complement by a bounded truth-table reduction of norm 1, but
not always by m-reductions, ≤m and ≤btt(1) differ in general. But they agree
on nontrivial r.e. sets.
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Proposition III.8.4 If A and B are r.e. sets, B 6= ∅, ω and A ≤btt(1) B, then
A ≤m B.

Proof. Since A ≤btt(1) B, there is a recursive function f such that, depending
on x,

x ∈ A⇔ f(x) ∈ B or x ∈ A⇔ f(x) 6∈ B.

We want a recursive function g such that x ∈ A ⇔ g(x) ∈ B. There are two
cases:

• if x ∈ A⇔ f(x) ∈ B, we just let g(x) = f(x)

• if x ∈ A⇔ f(x) 6∈ B, then exactly one of x ∈ A and f(x) ∈ B happens.
Generate A and B simultaneously, and find out which one. If x ∈ A then
we want g(x) ∈ B. If f(x) ∈ B then x 6∈ A, and we want g(x) 6∈ B. Since
B 6= ∅, ω we can pick up a ∈ B and b 6∈ B, and let g(x) be a in the first
case, and b in the second. 2

Exercise III.8.5 m-reducibility and btt-reducibility differ on the r.e. sets. (Fischer

[1963]) (Hint: Let 〈x, y〉 ∈ A ⇔ x ∈ B ∧ y ∈ B, where B is the simple tt-complete

set of III.3.5: then A ≤btt(2) B. If A ≤m B, there would be g recursive such that

x ∈ B ∧ y ∈ B ⇔ g(x, y) ∈ B, and B would be creative because, if h is gotten by

iteration of g, x ∈ K ⇔ Fx ⊆ B ⇔ h(x) ∈ B.)

When A ≤btt B, only a finite number m of elements are used in the reduc-
tion, and hence at most 22m

truth-tables may be used. Actually much more
is true: a single truth-table is enough (although, in general, with a different
norm).

Proposition III.8.6 (Fischer) If B 6= ∅, ω and A ≤btt B, then A is reducible
to B by a fixed truth-table.

Proof. Consider e.g. the case of norm 1, and let A be reducible to B via σf(x).
Fix a ∈ B and b 6∈ B. Since σf(x) is either y ∈ X or y 6∈ X for some y, let σg(x)
be the fixed formula

(y ∈ X ∧ z ∈ X) ∨ (y 6∈ X ∧ z 6∈ X),

where y is the element appearing in σf(x), and

z = a if σf(x) is y ∈ X
z = b if σf(x) is y 6∈ X.

Then B |= σf(x) ⇔ B |= σg(x).
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The general case is similar, although the addition of more than one variable
is required, to be able to distinguish among many cases. 2

Thus a btt-reduction can actually be seen as the assignment, to every x, of
a fixed number of elements {bx1 , . . . , bxn}, such that the answer to the question
‘is x in A?’ depends solely on the membership of the bxi ’s in B.

Proposition III.8.7 A set is btt-reducible to K if and only if it is in the
smallest Boolean algebra generated by the r.e. sets.

Proof. If a set A is in the smallest Boolean algebra generated by the r.e.
sets, it can be obtained from a finite number of r.e. sets A1, . . . , An by the
set-theoretical operations of union, intersection and complementation. Express
x ∈ A as a propositional formula involving the Ai’s, and then substitute each
atomic formula x ∈ Ai with fi(x) ∈ K, where fi is an m-reduction of Ai to K,
which exists because Ai is r.e. E.g. let A = A1 − (A2 ∩A3). Then

x ∈ A ⇔ x ∈ A1 ∧ ¬(x ∈ A2 ∧ x ∈ A3)

and, if
σg(x) = f1(x) ∈ X ∧ ¬(f2(x) ∈ X ∧ f3(x) ∈ X),

then x ∈ A⇔ K |= σg(x), and A ≤btt K.
Conversely, if A ≤btt K then, by the previous proposition, A can be reduced

to K by a fixed truth-table, and the procedure just given can be inverted. 2.

The analogue of Post’s Problem for btt-reducibility is: are there r.e. sets
which are neither recursive, nor btt-complete? We already know that simple
sets are not m-complete, and we now extend this result to show that they are
also not btt-complete.

Theorem III.8.8 (Post [1944]) A simple set is not btt-complete.

Proof. Let K ≤btt A. We try to define a disjoint strong array {Fn}n∈ω
intersecting A, with every element of fixed cardinality: then A is not simple,
because an infinite r.e. subset of A can be obtained by the following procedure.
Simultaneously generate A and the Fn’s: as soon as all but one element of Fn
have been generated in A, we know that the other is in A. The only trouble is
that there could be only finitely many n for which Fn has exactly one element
in A, and this procedure would not produce an infinite set. But if this happens
then (by eliminating the finitely many exceptions) we may suppose that each
Fn has at least two elements in A. Again we can proceed as above, if there
are infinitely many n for which Fn has exactly 2 elements in A. In general, let
z be the least number such that, for infinitely many n, Fn ∩ A has exactly z
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elements. Then, for some n0 and all n ≥ n0, Fn ∩ A has at least z elements.
Generate simultaneously A and the Fn’s, for n ≥ n0: as soon as all but z
elements of some Fn have been generated in A, the others must be in A.

If K ≤btt A, then so too is K ≤btt A. Let x ∈ K ⇔ A |= σf(x), for some
recursive function f , with a given reduction {bx1 , . . . , bxm}. Suppose we have
already chosen

F0 = {bx0
1 , . . . , bx0

m } · · · Fn−1 = {bxn−1
1 , . . . , bxn−1

m }

with the property that

Fi ∩A 6= ∅ and A |= σf(xi).

To define Fn, let C be the set consisting of all the x for which the formula σf(x)

is deducible, in the propositional calculus, from σf(x0), . . . , σf(xn−1) and the
conditions ‘z ∈ X’, for z ∈ A. By the inductive hypothesis (that A |= σf(xi))
and logical properties,

x ∈ C ⇔ A |= σf(x) ⇔ x ∈ K,

and hence C ⊆ K. If C = Wa, let xn = a. From a ∈ K − C we have:

• A |= σf(a), because a ∈ K

• {ba1 , . . . , bam} ∩ A 6= ∅. Otherwise, being σf(a) true in A, and using only
the elements ba1 , . . . , b

a
m which are all in A, σf(a) would be deducible from

the conditions ‘z ∈ X’ for z ∈ A. Then a ∈ C, contradiction.

However, we cannot prove that the Fn’s are disjoint on A. But this is unnec-
essary: it is enough to show that, given Fn, there are only finitely many sets of
our sequence, with the same intersection on A. Indeed, consider {bx1 , . . . , bxm}:
since only membership in A or A matters, there are only 2m possibilities, If two
given conditions have same elements on A, they are not only equivalent: they
are also deducible one from the other from the conditions ‘z ∈ X’ for z ∈ A.
Thus in our sequence, by definition of C, at most 2m conditions may have the
same intersection on A. Then the procedure described at the beginning still
produces an infinite subset of A. 2

Corollary III.8.9 There are tt-complete, btt-incomplete sets.

Proof. By III.3.5 there is a simple tt-complete set: by simplicity it cannot be
btt-complete. 2
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Exercises III.8.10 a) A pseudosimple set is not btt-complete. (Shoenfield [1957])
b) If B ≤btt A and B is part of a recursively inseparable pair of r.e. sets, then A

is not simple. (Kobzev [1973]) (Hint: by induction on m, prove that if A is simple
and {Fn}n∈ω is a strong array of m-tuples intersecting A, there is a finite set D ⊆ A
such that, for all n, Fn∩D 6= ∅. Then let B ≤btt A via {bx1 , . . . , bxm}, and consider the
two cases {bx1 , . . . , bxm} ⊆ A⇒ x ∈ B, and {bx1 , . . . , bxm} ⊆ A⇒ x 6∈ B. If e.g. the first
holds, and B and C are recursively inseparable, then x ∈ C ⇒ {bx1 , . . . , bxm} ∩A 6= ∅.
Let D ⊆ A be finite, and such that x ∈ C ⇒ {bx1 , . . . , bxm} ∩ D 6= ∅. Moreover, let
x ∈ R⇔ {bx1 , . . . , bxm} ∩D 6= ∅.Then R is recursive, C ⊆ R, and B ∩ R and C are
recursively inseparable. Split R into m recursive parts

x ∈ R1 ⇔ x ∈ R ∧ bx1 ∈ D x ∈ R2 ⇔ x ∈ R−R1 ∧ bx2 ∈ D · · ·

For at least one i, B ∩Ri and C ∩Ri are recursively inseparable, and B ∩Ri ≤btt A
with norm m− 1. So A is not simple by induction hypothesis. For m = 1 recall that

≤btt(1) coincides with ≤m on the r.e. sets, and see III.6.23.)

Theorem III.8.11 (Kobzev [1974], Lachlan [1975]) A btt-complete set is
d-complete.

Proof. Let K ≤btt A: for some recursive f

x ∈ K ⇔ A |= σf(x)

and, for some n, σf(x) uses exactly n elements. We want to get

x ∈ K ⇔ Dh(x) ∩A 6= ∅,

for some recursive h. The obvious approach is to consider

Gx = {elements used in σf(x)}.

We can certainly modify the reduction in such a way to suppose that, whenever
x is enumerated in K, then some element of Gx is enumerated in A at the same
stage. This gives in particular

x ∈ K ⇒ Gx ∩A 6= ∅,

but we do not have the opposite: some element of Gx could go in A even if
x 6∈ K.

We thus consider the set Gx dynamically: at every stage s we see the set
Gx ∩ As+1, and can consider the remaining elements of Gx. We thus have n
r.e. sets Fi, and Fi consists of elements zix which, at a certain stage s+ 1, are
put in Fi because |Gzi

x
∩As+1| = i. We try to consider zix in place of x and, as

above,
if x ∈ K ⇒ zix ∈ K then x ∈ K ⇒ |Gzi

x
∩As+1| > i.
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If, for j > i and at stage s + 1, we put in Fj only elements z not yet in
Ks+1, and such that |Gz ∩ As+1| = j, and we avoid putting in K elements zix
which are also in Fj (to avoid a situation in which ziy goes in K when y 6∈ K),
then for the greatest i such that Fi is infinite, and for almost every x, we also
have

|Gzi
x
∩A| > i⇒ x ∈ K.

Indeed, only finitely many zix’s can be in Fj for some j > i, and thus only for
finitely many x’s not in K it will be |Gzi

x
∩A| > i.

There are however two problems.

1. We want x ∈ K ⇒ zix ∈ K, but we do not have any control over K, and
thus we cannot directly force zix into K. What we can do, is to build an
r.e. set D, and use a recursive function g such that x ∈ D ⇔ g(x) ∈ K:
and g can be used in the construction of D itself, by the Fixed-Point
Theorem. Thus putting x in D will force g(x) into K. We will thus
consider Gg(zi

x), in place of Gzi
x
.

The construction is finally the following: at stage s+ 1,

• if x ∈ Ks+1−Ks and zix ∈ Fi,s (i.e. the x-th element of Fi has already
been generated), put zix in D, unless zix ∈ Fj , for some j > i.

• if, for some i and some x ≤ s,

x 6∈ Ds+1 ∧ g(x) 6∈ Ks+1 ∧ x 6∈ Fi,s ∧ |Gg(x) ∩As+1| = i,

then choose i maximal, x minimal, and put x in Fi.

2. Let now i be the greatest such that Fi is infinite. Let

Dh(x) = Gg(zi
x) ∩As+1,

where s+ 1 is the stage in which zix is generated in Fi. We would like to
show

x ∈ K ⇔ Dh(x) ∩A 6= ∅,

but here comes the second problem: by construction, Dh(x) ∩A 6= ∅ only
for those x which are generated in K after zix is generated in Fi. So
consider these elements:

x ∈ K∗ ⇔ ∃s(x ∈ Ks+1 −Ks ∧ zix ∈ Fi,s).

Then K−K∗ is recursive, so K∗ is creative, and to have A d-complete is
enough to prove

x ∈ K∗ ⇔ Dh(x) ∩A 6= ∅.
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If x ∈ K∗ then Dh(x) ∩A 6= ∅ by construction, since an element of Gg(zi
x)

is generated in A at the same stage in which g(zix) is generated in K,
hence after the stage zix is generated in Fi.

The opposite holds for almost every x, because i is the greatest such that
Fi is infinite, and thus, except for finitely many x, we have Dh(x)∩A 6= ∅
only if x ∈ K∗, by the first part of the construction. 2

Since btt-complete sets are d-complete and hence quasicreative, and quasi-
creative sets are not simple (III.6.18), we have a different proof of III.8.8.

Exercises III.8.12 a) A semirecursive set is not btt-complete. (Jockusch [1968a])
(Hint: a semirecursive set is not p-complete, by III.5.3.b.)

b) A set is btt-complete if and only if, for some recursive function f and some

n, |Df(x)| ≤ n, and Wx ⊆ A ⇒ Df(x) ⊆ A ∧Df(x) 6⊆ Wx. (Kobzev [1974]) (Hint: a

btt-complete set is bounded d-complete, and thus the bounded version of the quasi-

creativeness criterion for d-completeness applies.)

Weak truth-table degrees

Recall that truth-table reducibility differs from Turing reducibility in that it
is possible to foresee ahead of time, in a computation, both the elements on
which the oracle is going to be queried, and the outcome of all possible an-
swers. A natural intermediate reducibility is obtained by retaining the first
characteristic, while relaxing the second.

Definition III.8.13 (Friedberg and Rogers [1959]) A is wtt-reducible
to B (A ≤wtt B) if cA ' ϕBe for some number e and some recursive function f ,
and the calculation of ϕe(x) requires only queries to the oracle B on elements
less than f(x).

A is wtt-equivalent to B (A ≡wtt B) if A ≤wtt B and B ≤wtt A.

The main difference with truth-table reducibility is in the fact that weak
truth-table reductions may diverge. If ϕXe is a weak truth-table reduction of A
to B, then ϕXe needs to be total only for X = B, but not for oracles X different
from B. Actually, by III.3.2, this must be the case if the reduction is not a
truth-table one.

Exercise III.8.14 A set A is wtt-reducible to K if and only if it is tt-reducible to

it . (Hint: if ϕXe is a wtt-reduction to K with bound f , given x we may consider all

the sets X ⊆ {0, . . . , f(x)}. Each of them is recursive, and so we can ask, recursively

in K, if ϕXe (x) converges. This makes it possible to build the appropriate truth-table.)

Note that ≤wtt is a reflexive and transitive relation, and thus ≡wtt is an
equivalence relation.
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Definition III.8.15 The equivalence classes of sets w.r.t. wtt-equivalence are
called wtt-degrees, and (Dwtt, ≤) is the structure of wtt-degrees, with the
partial ordering ≤ induced on them by ≤wtt.

The wtt-degrees containing r.e. sets are called r.e. wtt-degrees, and two
of them are:

1. 0wtt, the wtt-degree of recursive sets

2. 0′
wtt, the wtt-degree of K.

A set A is wtt-complete if it is r.e. and its wtt-degree is 0′
wtt, i.e. if K ≤wtt A.

Proposition III.8.16 (Friedberg and Rogers [1959]) A hypersimple set
is not wtt-complete.

Proof. We refer to the proof of III.3.10, which goes through practically un-
changed, by letting

x ∈ C ⇔ ϕA
∗

e (x) ' 0,

where cK ' ϕAe , with bound f . If C = Wa then ϕA
∗

e (a) and ϕAe (a) are both
convergent and different, so there must be an element of A between the given
n and f(a). The rest proceeds as before. 2.

A simple but useful observation is that permitting preserves wtt-reducibi-
lity . This allows us to extend many results from T -degrees to wtt-degrees. E.g.
every nonrecursive r.e. wtt-degree contains a simple set (III.3.18), although
not always a hypersimple one (since a hypersimple set is not wtt-complete).
Jockusch [1981a] shows that not every nonrecursive r.e. tt-degree contains a
simple set .

Another useful fact to notice is that the completeness criterion for
T -reducibility (III.1.5) extends to wtt-reducibility as well, with the obvious
definition of wtt-reducibility for functions, and a similar proof:

Proposition III.8.17 (Arslanov [1981]) An r.e. set A is wtt-complete if
and only if there is a function f ≤wtt A without fixed-points.

Recall that an application of the original criterion showed that every effec-
tively simple set is T -complete (III.2.18). Here the same results holds, for all
the effectively simple sets not ruled out by the previous result.

Proposition III.8.18 (Kanovich [1970], [1970a], Arslanov [1981]) Ev-
ery effectively simple, not hypersimple set is wtt-complete.
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Proof. Let
We ⊆ A⇒ |We| ≤ g(e).

Define f ≤T A such that

Wf(e) = {the first g(e) + 1 elements of A}.

Then f has no fixed-points, as in III.2.18. We show that f ≤wtt A. Since A is
not hypersimple, there is a strong array h intersecting A. Thus the first g(e)+1
elements of A are below the maximum of

⋃
z≤g(e)Dh(z), and this provides the

needed recursive bound to the questions f has to answer. 2

In particular, Post’s simple set is wtt-complete (Ladner). As we have al-
ready noted, the tt-completeness of Post’s simple set depends on the acceptable
system of indices for the r.e. sets (III.3.6, III.9.2).

Exercise III.8.19 Not every strongly effectively simple set is wtt-complete. (Hint:

let A be any coinfinite r.e. set. If it is not hypersimple itself, it has a hypersimple

superset, namely A ∪
⋃
x∈B Df(x), where f is a disjoint strong array intersecting A,

and B any hypersimple set. And if A is strongly effectively simple, so is any coinfinite

r.e. superset of it.)

Exercises III.8.20 a) An r.e. set A is wtt-complete if and only if

Wx ⊆ A⇒ Dg(x) 6⊆ A ∪Wx

for some recursive function g. (Kanovich [1969], [1970a]) (Hint: if such a g exists,
let Wf(x) = Dg(x) ∩ A. Then f ≤wtt A, since it uses the oracle only for elements

in Dg(x). Suppose Wf(x) = Wx: then Wx ⊆ A, so Dg(x) 6⊆ A ∪ Wx, contradicting

Wx = Dg(x) ∩A. Then f has no fixed-points, and A is wtt-complete. Conversely, let
f ' ϕAe with bound h be without fixed-points. Given x, let

ϕi(z) '
{

1 if z shows up first in A
0 if z shows up first in Wx.

Since ϕi is recursive, there is z such that Wϕ
ϕi
e (z) = Wz (by the Fixed-Point Theo-

rem). Since Wf(z) 6= Wz, ϕ
ϕi
e (z) 6= f(z). If Wx ⊆ A, then ϕi is correct on A ∪Wx,

hence there must be an element of A ∪Wx below h(z). Then let Dg(x) be the set
{0, . . . , h(z)}.)

b) For every nonrecursive r.e. set A there is f recursive such that

Wx ⊆ A⇒Wf(x) finite ∧Wf(x) 6⊆ A ∪Wx.

(Soloviev [1976]) (Hint: put in Wf(x) the smallest element that does not appear to
be in A ∪Wx.)
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c) The class of wtt-complete sets is properly included in the class of T -complete,

not hypersimple sets. (Soloviev [1976]) (Hint: let A be T -complete and hypersimple,

and B be an infinite recursive subset of it. Consider A−B: it is T -complete because

A is, and is not simple. It is also not wtt-complete, since A−B ≤wtt A, and A is not

wtt-complete.)

Other notions of reducibility ?

The reader certainly feels that we have introduced enough reducibilities, but
many more have been considered. We just review some of them.

A natural way to weaken reducibilities is by letting the finiteness condition
in the sets defining them become an r.e. condition, like we did e.g. for c-reduci-
bility, obtaining Q-reducibility. In a similar way, d-reducibility is weakened into
s-reducibility, defined as follows: A ≤s B if and only if, for some recursive
function f ,

x ∈ A ⇔ Wf(x) ∩B 6= ∅.

Then the r.e. sets fall in just two s-degrees, one consisting of all the nonempty
r.e. sets, and the other consisting of ∅ alone.

Similarly, positive reducibility is weakened in enumeration reducibility,
introduced in Section II.3 (p. 197). Recall that A ≤e B if and only if, for some
recursive function f ,

x ∈ A ⇔ (∃u)(Du ⊆ B ∧ u ∈ Wf(x)).

There is just one r.e. e-degree, which is also the least e-degree. As we have
already seen, this reducibility is particularly suitable for the study of partial
function (through their graphs), and we will deal with it in volume II.

A number of other reducibilities can be introduced by limiting the size of the
sets used in defining known reducibilities, like we did for btt-reducibility. Thus
we can define, in a natural way, notions of bounded conjunctive, disjunc-
tive, positive, weak truth-table and Q-reducibility. Also T -reducibility
can be restricted in a similar way, once we recall (III.1.4) that, on r.e. sets,
A ≤T B if and only if there is a recursive function f such that

x ∈ A⇔ (∃u)(Du ⊆ B ∧ u ∈ Wf(x)).

Then A is bounded Turing reducible to B if, moreover, there is a fixed
number n bounding the size of Wf(x).

There are other ways of imposing bounds on known reducibilities. E.g.
wtt-reducibility is obtained by restricting the number of elements queried in
a computation. A restriction on the number of queries can be imposed too.
Jockusch [1972a] calls A bounded search reducible to B (A ≤bs B) if A
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is Turing reducible to B with a recursive bound on the number of queries to
the oracle. Since we may suppose that, once the oracle has been queried, the
answer to the query is stored and remembered, a bound on the size of the
queries implies a bound on their number. Thus

A ≤wtt B ⇒ A ≤bs B ⇒ A ≤T B.

Jockusch [1972a] proves that ≤bs is not transitive, the intuitive reason being
that if A ≤bs B ≤bs C then, given x, we know that the oracle on B is queried a
recursively bounded number of times, but we do not know for which elements,
and thus we cannot use the fact that the queries on C are also recursively
bounded. The special case of a constant recursive bound is obviously transi-
tive. Jockusch has proved that there are bs-complete sets which are not wtt-
complete, and Soloviev [1976] shows that there are T -complete sets which are
not
bs-complete.

A different way to weaken reducibilities is by considering partial function in
place of total ones, thus obtaining partial reducibilities. E.g. Ershov [1977]
calls a set A partially m-reducible to a set B (A ≤pm B) if, for some partial
recursive function ϕ,

x ∈ A ⇔ ϕ(x)↓ ∧ ϕ(x) ∈ B.

This reducibility is particularly important for the study of the ∆0
2 sets.

For results on some of the reducibilities quoted above, see Degtev [1979],
[1981], [1982], [1983], Soloviev [1976a], Omanadze [1976a], [1980], Zakharov
[1984], [1986].

III.9 The World of Complete Sets ?

We summarize here the work done in this chapter with respect to completeness
properties. We have already proved most of the positive results, and only
some counterexamples are missing. Some of them are constructed by using the
priority method, and should therefore wait until Chapter X. Since however this
is the right place for them, we sketch their proofs here anyway, for the reader
already acquainted with the method.

Relationships among completeness notions

Our goal is to show that the following implications hold, and no other one does:
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All the implications are trivially true, except for the fact, proved in III.8.11,
that a btt-complete set is d-complete. We thus have only to provide counterex-
amples to the missing implications. They come from different sources, including
Post [1944], Lachlan [1965], Young [1965], Jockusch [1968a], Gill and Morris
[1974], Odifreddi [1981].

We first prove that no other arrow holds.

1. There is a Q-complete, not wtt-complete set
A hypersimple set is not wtt-complete, by III.8.16, and we proved on
p. 297 that there is a Q-complete, hypersimple set.

2. There is a btt-complete, not Q-complete set
We build two r.e. sets A and B such that K ≤btt A, and B 6≤Q A. The
first condition ensures that A is btt-complete, the second that it is not
Q-complete.

To get K ≤btt A we let

x ∈ K ⇔ {2x, 2x+ 1} ∩A 6= ∅.

If at stage s+ 1 we see x ∈ Ks but {2x, 2x+ 1}∩As = ∅, we put in A the
first element between 2x and 2x+ 1 which is not restrained. If both are
restrained, we put in A the one restrained by the condition with lower
priority.

To get B 6≤Q A, we want to spoil every reduction

x ∈ B ⇔ Wϕe(x) ⊆ A.

Pick up a witness ae, and wait until ϕe(ae) converges. If it does not,
then ϕe was not a Q-reduction. Otherwise, wait for a later stage s + 1
for which Wϕe(ae) 6⊆ As, i.e. Wϕe(ae) ∩ As 6= ∅. If it never comes, then
Wϕe(ae) ⊆ A, and ae never gets into B, so ϕe does not Q-reduce B to
A. Otherwise, choose an element xe of Wϕe(ae) which is not yet in A,
restrain it from entering A, and put ae into B. If the condition is never
injured, i.e. xe does not go into A for satisfaction of a requirement of the
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first type (to make A btt-complete), then Wϕe(ae) 6⊆ A, while ae ∈ B, and
again ϕe does not reduce B to A. Otherwise, a new attempt will have to
be made, to satisfy the requirement.

3. There is a c-complete, not d-complete set
Post’s example III.3.5 of a simple set which is tt-complete, actually pro-
duces a c-complete set. But no simple set can be d-complete, by III.6.18.

4. There is a btt-complete, not c-complete set
The set built in part 2 above is btt-complete, and not Q-complete. It
cannot be c-complete, since c-reducibility implies Q-reducibility.

We now prove that no arrow can be reversed.

5. There is a T -complete, not Q-complete set
By III.4.23, there is a T -complete maximal set. Being hyperhypersimple,
it cannot be Q-complete (by III.4.10).

6. There is a Q-complete, not c-complete set
We noted on p. 297 that a hypersimple set can be Q-complete, but by
III.8.16 such a set cannot be wtt-complete, and in particular it cannot be
c-complete.

7. There is a c-complete, not m-complete set
There is a simple tt-complete set, by III.3.5, but a simple set is not
m-complete, by III.2.7.

8. There is a btt-complete, hence p-complete, set which is not c-complete,
hence not m-complete
The set built in part 2 is p-complete but not Q-complete, and hence not
c-complete.

9. There is a d-complete, not btt-complete set
This is a modification of the proof of part 2. We build two r.e. sets A
and B such that K ≤d A, and B 6≤btt A. Thus A is d-complete, but is
not btt-complete.

To get K ≤d A we let

x ∈ K ⇔ Ix ∩A 6= ∅,

where I0 = {0}, I1 = {1, 2}, . . . , and Ix has x + 1 elements. Of course
we have to use tables with unbounded number of elements, otherwise
we would have K ≤btt A, and there would be no hope of satisfying the
remaining condition. To spoil btt-reductions with norm n we have to take



344 III. Post’s Problem and Strong Reducibilities

care of n elements, and almost every Ix has more than n elements. This
makes the argument work.

To get B 6≤btt A, we want to spoil every reduction of bounded norm

x ∈ B ⇔ A |= σϕe(x).

Pick up a witness ae, and wait until ϕe(ae) converges. If it does not,
then ϕe was not a btt-reduction. Otherwise, wait for a later stage s + 1
for which As |= σϕe(x). If it never comes, A |= σϕe(ae) fails but ae never
gets into B, so ϕe does not btt-reduce B to A. Otherwise, restrain from
entering A all the elements used in σϕe(ae) and not yet in A, and put ae
into B. If the condition is never injured, i.e. no element used in σϕe(ae)

and not in As goes into A for satisfaction of a requirement of the first
type (to make A d-complete), then A |= σϕe(ae) fails, while ae ∈ B, and
again ϕe does not reduce B to A. Otherwise, a new attempt will have to
be made, to satisfy the requirement.

10. There is a p-complete, not d-complete set
The simple tt-complete set of III.3.5 is actually c-complete, hence p-com-
plete, but is not d-complete by III.6.18, being simple.

11. There is a tt-complete, not p-complete set
A semirecursive set is not p-complete, by III.5.3.b, but may be tt-com-
plete, by III.5.5.a.

12. There is a T -complete, not wtt-complete set
A hypersimple set is not wtt-complete by III.8.16, but can be T -complete,
by III.3.13.

As the reader will have noticed, only one result is missing. Its proof is more
complicated than the ones given so far.

Theorem III.9.1 (Lachlan [1975]) There is a set which is wtt-complete, but
not tt-complete.

Proof. We want to build A wtt-complete, but not tt-complete. We will reduce
K to A, with a recursive bound. We will thus define a recursive function f
(such that f(0) = 0), and a sequence of boxes

Ix = {z : f(x) ≤ z < f(x+ 1)}.

• To get K ≤wtt A is enough to ensure that, whenever x ∈ Ks+1−Ks, some
element of Ix ∩As enters As+1. Then, to know if x ∈ K, we look for s so
big that all elements of Ix ∩ A have been generated in As, and then see
if x ∈ Ks.
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• To get A not tt-complete, we define B r.e. such that B 6≤tt A. The
strategy for this is the usual one: to spoil the e-th reduction, choose a
witness ae, wait for ϕe,s(ae) to converge, and then put ae in B if and
only if σϕe(ae) fails on A.

Since requirements of the first kind have to be satisfied immediately (i.e.
they have highest priority), they might interfere with the satisfaction of re-
quirements of the second kind. To avoid this, we define a positive equivalence
relation η which breaks down the boxes into pieces, i.e. such that, at any stage,
its equivalence classes are subintervals of the boxes. Also, As is η-closed, and
consists of initial segments of the boxes. In other words, at stage s a typical
box Ix looks like this:

A ∩ Ix

f(x) f(x+ 1)

The construction is as follows. Suppose that K is enumerated in such a way
that, for infinitely many stages, nothing is enumerated in it. At stage s+ 1 we
do the following:

• if x ∈ Ks+1 − Ks, take the smallest element of Ix ∩ As, and put its
equivalence class into A. We will define f in such a way that Ix ∩ As is
always nonempty, so that this is always possible.

• if no element is generated in K at stage s+ 1, look for the smallest e ≤ s
such that the requirement

Re : ¬(B ≤tt A via ϕe)

has not yet been satisfied and not injured afterwards, and ϕe,s(ase) con-
verges (where ase is the current witness for Re). Consider the smallest
m ≥ e such that all elements used in σϕe,s(as

e) are in
⋃
i≤m Ii. We act in

such a way to ensure that the truth value of A |= σϕe,s(as
e) depends, after

stage s+ 1, only on A ∩ (
⋃
i<e Ii), i.e. on the first e boxes. This requires

action on Ie, . . . , Im. We show how to act on Im: the same action will
be taken on Im−1, . . . , Ie. Consider Im at stage s: let n0, . . . , nq be the
biggest element of the equivalence classes of Im.
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A ∩ Im

f(m) nqn0 n1 . . .

Since, by construction, we put equivalence classes into A, the final value
of A ∩ Im will be one of {z : f(m) ≤ z ≤ ni}, for some i ≤ q. The final
value of A∩(

⋃
i<m Ii) is one of 2f(m) many (since there are f(m) elements

in the first m boxes). For each ni, there are thus 22f(m)
possibilities: it

follows that, if q ≥ 22f(m)
, then at least two ni’s determine the same truth-

value of σϕe,s(as
e), for any possible choice of A below f(m). In general,

if q ≥ 2r·2
f(m)

then there are r + 1 of the ni’s which determine the same
truth-value of σϕe,s(as

e), for any possible choice of A below f(m).

We will define f in such a way that r is big enough to ensure that, for
any t, Im ∩ At 6= ∅. Thus let r ≤ q be the maximum number such that
there exists a subsequence p0, . . . , pr of n0, . . . , nq which determines the
same truth-value of σϕe,s(as

e), for any possible choice of A below f(m).
Let

Im ∩As+1 = {z : f(m) ≤ z ≤ p0},

and, for i < r, let {z : pi < z ≤ pi+1} be the new equivalence classes of η
on Im. Since in the future

Im ∩A = {z : f(m) ≤ z ≤ pi}

for some i ≤ r (by construction), the truth-value of σϕe,s(as
e) depends now

only on the first m boxes.

We proceed similarly on Im−1, . . . , Ie by descending induction, determin-
ing Ii ∩As+1 for e ≤ i ≤ m, and in the end we have

As+1 = As ∪
⋃

e≤i≤m

(Ii ∩As+1).

Note that the truth-value of A |= σϕe,s(as
e) depends only on the first e

boxes. Put Ase into B if and only if As+1 |= σϕe,s(as
e) fails. The require-

ment Re is now satisfied, and can be injured only if something changes
on the first e boxes.

Of course we could have gone all the way down to I0, to fix the truth-value of
σϕe,s(as

e) once and forever. The trouble with this is that the size of the boxes
is finite, and we are not able to avoid a collapse, if every condition is free to
interfere with every box. By letting Re interfere with Ii only for i ≥ e, we
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ensure that only finitely many conditions interfere with a given box Ix, and
we are thus able to show that Ix ∩As is always nonempty (something which is
needed to satisfy the first kind of requirements).

It only remains to determine f . Note that the internal situation of Ix can
be changed only if either x gets into K, or some Re with e ≤ x is satisfied. Now
Re can be satisfied at two different stages only if it gets injured between them,
and to injure Re we must take action on

⋃
i<e Ii. This is possible only if some

i < e gets into K (which can happen only e times), or some Ri with i < e is
satisfied. By induction, it follows that Re can be satisfied less than 2e+1 times,
hence Ix can change at most

∑
e≤x 2e+1 = 2x+2 times. It is thus enough to let:

f(0) = 0
f(x+ 1) = 22x+2·2f(x)

. 2

Exercise III.9.2 There is an acceptable system of indices for which Post’s simple

set is tt-incomplete. (Lachlan [1975]) (Hint: apply the method of III.3.6 to the above

proof.)

We briefly discuss now bounded truth-table reducibilities (p. 340). The
interesting fact is that the notions of bd, bp, btt and bwtt-completeness coincide
(Lachlan [1975], Kobzev [1974], [1977]), the first three because a btt-complete
set is d-complete and p-complete (III.8.11), and the last two with a proof similar
to III.9.1. Moreover, from the next theorem it follows that bc and m-complete-
ness coincide, and thus there are only two interesting notions of completeness
for bounded truth-table reducibilities.

Theorem III.9.3 (Lachlan [1966]) If A ·B is m-complete, so is at least one
of A and B.

Proof. We want to build an r.e. set D such that one of the following holds:

1. K ≤m D ≤m A

2. K ≤m D ≤m B.

Note that, no matter how we define D, it will be an r.e. set. Since A · B is
m-complete, there will be a recursive function h such that

x ∈ D ⇔ h(x) ∈ A ·B,

and thus there will be two recursive functions f and g such that

x ∈ D ⇔ f(x) ∈ A ∧ g(x) ∈ B.
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By the Fixed-Point Theorem we can use D itself in its own definition, and
hence we may suppose f and g given beforehand.

Consider the set

D∗ = {z : (∃t)(z 6∈ Dt ∧ g(z) ∈ Bt}.

For z ∈ D∗ we have z ∈ D ⇔ f(z) ∈ A, since g(z) ∈ B already. There are then
two cases:

• If D∗ is infinite, let {z0, z1, . . . } be a recursive enumeration of it. Then
zx ∈ D ⇔ f(zx) ∈ A, and we can easily ensure condition 1 by letting
x ∈ K ⇔ zx ∈ D.

• If D∗ is finite we have z ∈ D ⇔ g(z) ∈ B, with at most finitely many
exceptions. Indeed, if z ∈ D then g(z) ∈ B; and there are only finitely
many z such that g(z) ∈ B ∧ z 6∈ D, since they must be in D∗. Then we
can easily ensure condition 2 by letting D and K differ only finitely.

The construction of D is the following. At stage s+ 1 we have Ks, Ds, and
an enumeration {z0, . . . , zi} of the elements of

D∗
s = {z : (∃t ≤ s)(z 6∈ Dt ∧ g(z) ∈ Bt}.

Then:

• if x ∈ Ks+1, let zx ∈ Ds+1 (if zx exists, i.e. if enough elements have
already been generated in D∗)

• if x ∈ Ks+1 and x 6∈ D∗
s , let x ∈ Ds+1 (this kills x, in the sense that it

ensures x 6∈ D∗, since x goes into D).

If D∗ is infinite then x ∈ K ⇔ zx ∈ D: if x ∈ K then zx ∈ D by the first
part of the construction; and if zx ∈ D then it must be x ∈ K, since the second
part of the construction puts in D only elements of D∗, while zx ∈ D∗.

If D∗ is finite, then the second part of the construction applies, except for
finitely many cases, and thus, for almost every z, z ∈ K ⇔ x ∈ D. 2

Corollary III.9.4 A bc-complete set is m-complete.

Proof. A set A is bc-complete if there is a recursive function f such that

x ∈ K ⇔ Df(x) ⊆ A,

where the size of Df(x) is bounded by a fixed number n. By possibly adding
elements of A to it, we can suppose that Df(x) always has exactly n elements.
But then there are n recursive functions fi such that

x ∈ K ⇔ f1(x) ∈ A ∧ · · · ∧ fn(x) ∈ A
⇔ 〈f1(x), . . . , fn(x)〉 ∈ A · · ·A.
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But then A · · ·A is m-complete and thus, by repeatedly applying the theorem,
so is A. 2

Structural properties and completeness

We now summarize the connections between structural properties on one side,
and completeness properties on the other.

We first look at properties implying completeness.

1. A set is creative if and only if it is 1-complete (or m-complete) (III.6.6,
III.7.5).

2. A set is quasicreative if and only if it is d-complete (III.6.16).

3. A set is subcreative if and only if it is Q-complete (III.6.20).

4. An effectively simple set is T -complete (III.2.18), but it may be Q-incom-
plete (III.4.24.b, III.4.10) or wtt-incomplete (III.8.19).

5. A strongly effectively simple set is Q-complete (III.6.21.a), but it may be
wtt-incomplete (III.8.19).

We then look at properties implying incompleteness.

6. A simple set is not d-complete, and hence not btt-complete (III.6.18.a),
but it may be c-complete (III.3.5).

7. A hypersimple set is not wtt-complete (III.8.16), but it may be Q-complete
(p. 297).

8. A hyperhypersimple set is not Q-complete (III.4.10), but it may be
T -complete (III.4.23).

9. A semirecursive set is not p-complete, and hence not btt-complete
(III.5.3.b), but it may be tt-complete (III.5.5.a) or Q-complete (p. 297).

We finally look at naturally defined sets with completeness properties.

10. K is 1-complete and m-complete.

11. Post’s simple set (III.2.11) is wtt-complete (being effectively simple and
not hypersimple, III.8.18) and not m-complete (being simple), and can
be tt-complete (actually c-complete, III.3.6) or not (III.9.2), depending
on the acceptable system of indices.

12. The deficiency set of K is T -complete (III.3.13) but not wtt-complete
(being hypersimple).
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III.10 Formal Systems and R.E. Sets ?

As we have seen (p. 253), the theory of r.e. sets arose from problems con-
nected with the study of formal systems, and Post’s problem was motivated
by methodological considerations. But we have pushed the study of r.e. sets
quite far, and it is natural to enquire whether we have lost touch with ‘reality’.
We will see here that, far from being so, many of the notions so far introduced
have bearing on our original study of formal systems, and provide appropriate
tools to describe natural phenomena.

Formal systems and r.e. sets ?

An abstract approach to formal systems, which isolates their basic properties,
is the following. Fix a formal countable language, and identify (by arithme-
tization) the sets of well-formed formulas and of sentences (formulas with no
free variable) with two recursive sets F and S, with S ⊆ F .

Definition III.10.1 A formal system F in the given language is a pair
(T,R) of r.e. sets contained in S and interpreted, respectively, as the sets of
(codes of) theorems and of refutable formulas. F is said to be:

1. consistent if T ∩R = ∅

2. complete if T ∪R = S

3. decidable if T and R are recursive

4. undecidable if T is not recursive.

By Post’s Theorem, a consistent and complete formal system is decidable
(Janiczak [1950]): given the code n ∈ S of a sentence, enumerate T and R
simultaneously, until n appears in one (and exactly one) of them.

Usually T is generated by isolating an r.e. subset Ax of S (set of axioms),
and n-ary functions r : Sn → S (called rules of deduction). Then T is
the closure of Ax under the rules. R can be generated in the same way, and
independently of T , or there may be a function n : S → S (called negation)
such that R = n(T ).

Exercise III.10.2 Every formal system can be generated by means of finitely many

recursive rules of deduction, from a finite set of axioms. (Kleene [1952]) (Hint: since

T is r.e., for some recursive R is x ∈ T ⇔ ∃yR(x, y). As a system of axioms take

the equations of a system which Herbrand-Gödel computes the characteristic func-

tion f of R. As rules, take R1 and R2, together with the rule that produces x from
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f(x, y) = 1.)

While the abstract notion of formal system is certainly broad enough to
include all the common examples, the formal systems associated to r.e. sets
(like in III.10.2) may look unnatural and ad hoc. In mathematics one usually
uses first-order formal systems, whose axioms include all axioms of first-
order logic with equality, the set of theorems is generated from the axioms
by the first-order logical rules, and the refutable formulas are the negations
of theorems. For first-order formal systems, inconsistency implies that every
sentence is a theorem, because if ϕ and ¬ϕ are both provable then so is ¬ϕ∨ψ
(i.e. ϕ→ ψ) for any sentence ψ, and then ψ follows by modus ponens.

The next result shows that the r.e. sets do describe (at least up to T -equiv-
alence) formal systems of common use.

Proposition III.10.3 (Feferman [1957]) Every r.e. T -degree contains a
first-order formal system.

Proof. Let A r.e. be given. The idea is to consider a decidable theory, and
code A into it. Consider the language of field theory (containing =,0,1,+,×).
First note that:

• The theory of algebraically closed fields of any given characteristic is com-
plete and decidable.
If neither ϕ nor ¬ϕ are provable, both are consistent with the theory,
and by the Completeness Theorem of first-order logic there are two al-
gebraically closed fields of the given characteristic and same uncountable
cardinality, satisfying one ϕ, and the other ¬ϕ. But this is against Steinitz
Theorem, according to which any two such fields must be isomorphic, and
in particular must satisfy the same formulas. Thus the theory is a com-
plete and consistent formal system, and it is then decidable.

We use field characteristics to code the given r.e. set A: let TA be the theory
of algebraically closed fields whose characteristic is not pn, for any n ∈ A (i.e.
add to the axioms of algebraically closed fields the statements 1 + . . .+ 1︸ ︷︷ ︸

pn times

6= 0,

for n ∈ A). Then:

• A ≤T TA
Indeed n ∈ A ⇔ `TA

1 + . . .+ 1︸ ︷︷ ︸
pn times

6= 0, for the following reasons.

If n ∈ A then 1 + . . .+ 1︸ ︷︷ ︸
pn times

6= 0 is obviously provable, being an axiom. And
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if n 6∈ A then 1 + . . .+ 1︸ ︷︷ ︸
pn times

6= 0 cannot be provable, because in this case TA

is consistent with the theory of algebraically closed fields of characteristic
pn.

• TA ≤T A
By definition TA is r.e. in A. It is then enough to show also that its
complement is r.e. in A. Since a formula ϕ is provable in TA if and only
if it is true in some algebraically closed field of characteristic 0 or pn, for
some n 6∈ A, by completeness of the theories of algebraically closed fields
of given characteristic we have that ϕ is not provable in TA if and only
its negation is true in some field of characteristic either 0 or pn, for some
n 6∈ A. Then, by decidability of the same theories, TA is r.e. in A. 2

More results on the connections between degrees and formal systems are
in Feferman [1957], Shoenfield [1958], and Hanf [1965]. In particular, every
r.e. tt-degree contains a finitely axiomatizable first-order formal system. On
the other hand, not every r.e. m-degree contains a first-order formal system,
because closure under conjunction implies that if A is the set of theorems of
a first-order formal system, then A · A ≤m A, and this fails in general for r.e.
sets (see III.8.5).

Undecidability

To express in full generality the methods to prove undecidability, suppose that
the language contains constants n, for every n. Fix an effective enumeration
{ψe}e∈ω of the formulas of the language with one free variable, and suppose
that there is a recursive substitution function s, such that s(e, n) is the code
of ψe(n) as a sentence. The notion of representability of predicates (I.3.4) can
be easily generalized to this abstract setting: a set A is weakly representable
in F if, for some e,

x ∈ A⇔ s(e, x) ∈ T.

Note that every set weakly representable in a formal system must be r.e.
The direct methods to prove the undecidability of a formal system are

summarized in the following:

Theorem III.10.4 Direct undecidability proofs (Tarski, Mostowski
and Robinson [1953], Bernays [1957], Putnam [1957], Smullyan
[1958], Vaught) A formal system F is undecidable if one of the following
holds:

1. Every recursive set is weakly representable in F .
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2. Some nonrecursive r.e. set is weakly representable in F .

Proof. If F is decidable, the diagonal set

n ∈ T ∗ ⇔ s(n, n) ∈ T

is recursive, and then so is T ∗. If every recursive set is representable in F ,
there is e such that

n ∈ T ∗ ⇔ s(e, n) ∈ T.

For n = e we get a contradiction, and this proves the first part.
The second method is trivial: if F is decidable, every set weakly repre-

sentable in it must be recursive. 2

The two methods are substantially different in principle: the undecidabil-
ity is forced in one case by the quantity of sets represented, despite the fact
that all of them may be computable (the underlying reason being that there
is no recursive enumeration of all the recursive sets), in the other by the (non-
computable) quality of some of them. It is not obvious however that they
are distinct, since it could be that once all the recursive sets are weakly rep-
resentable, also some nonrecursive r.e. set is. Actually, for the examples of
II.2.17 much more is true: every r.e. set is weakly representable. In particular,
all these examples weakly represent K, and thus the sets of their theorems are
all T -complete. Thus the positive solution to Post’s Problem implies that not
every undecidable formal system can weakly represent every r.e. set , but this
does not solve our question yet. The answer has been obtained by Shoenfield
[1961], with a formal system in which the weakly representable sets are exactly
the recursive ones. The proof introduces a difficult extension of the priority
method used for the solution of Post’s Problem, and will be given in Chapter X.

There is also an indirect method to prove undecidability, and this was Post’s
direct concern. Formal systems can be interpreted one into another. The
simplest way is having a recursive function f that translates formulas and
preserves theorems: given F and F ′ with sets of theorems F and F ′,

x ∈ F ⇔ f(x) ∈ F ′.

But this is only one possible way, and we can say in general that F is inter-
pretable in F ′ if F ≤T F ′. Then the following is simply an observation:

Theorem III.10.5 Indirect undecidability proofs. F is undecidable if an
undecidable formal system is interpretable in it.
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The undecidability of the Predicate Calculus was obtained this way (II.2.18),
as well as the undecidability of the formal systems of current use in mathemat-
ics (see e.g. Tarski, Mostowski and Robinson [1953], Ershov, Lavrov, Taimanov
and Taitslin [1965], Hanson [198?]), using as starting point systems that (like
R) are all T -complete, and thus showing that they are all T -complete as well.
Thus the positive solution to Post’s Problem implies that there are undecidable
formal systems that cannot be proved undecidable by interpreting R in them.

Essential undecidability

Since a consistent formal system F is described in terms of a pair of disjoint r.e.
sets (T,R) contained in a recursive set S, and respectively coding the theorems
and the refutable formulas, we may first of all expect that the theory of pairs
of r.e. sets might be relevant.

Definition III.10.6 (Tarski [1949]) A consistent formal system F = (T,R)
is essentially undecidable if T and R are recursively inseparable.

If we say that F ′ = (T ′, R′) is an extension of F = (T,R) (in the same
language) when T ′, R′ ⊆ S, T ⊆ T ′ and R ⊆ R′, then essential undecidability
means that not only the system itself, but also every consistent extension of it
in the same language is undecidable.

The notion of representability of sets can be generalized to pairs. Recall
that s is the substitution function, and s(e, n) is the code of the formula ψe(n),
for a given enumeration {ψe}e∈ω of the formulas of the language with one free
variable.

Definition III.10.7 (Kleene [1952], Putnam and Smullyan [1960])
Given a formal system F = (T,R) and two disjoint sets A and B, we say
that A and B are separable in F if there is e such that

x ∈ A⇒ s(e, x) ∈ T and x ∈ B ⇒ s(e, x) ∈ R.

As in the case of simple undecidability, we have two methods to prove
essential undecidability.

Theorem III.10.8 Direct proofs of essential undecidability (Kleene
[1952], Tarski, Mostowski and Robinson [1953], Smullyan [1958],
Putnam and Smullyan [1960]) A consistent formal system F is essentially
undecidable if one of the following holds:

1. Every pair of disjoint recursive sets is separable in F .
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2. Some recursively inseparable pair is representable in F .

Proof. Note that everything separable in F remains separable in any consistent
extension of it. And if every pair of disjoint recursive sets is separable in
a consistent system (T ′, R′), every recursive set is weakly representable in it
(given A recursive, let e be the number of the formula separating A and A:
then

x ∈ A ⇒ s(e, x) ∈ T ′
x ∈ A ⇒ s(e, x) ∈ R′ ⇒ s(e, x) 6∈ T ′

by consistency, and hence x ∈ A ⇔ s(e, x) ∈ T ′). Then every consistent
extension of F is undecidable, by III.10.4 (because every recursive set is weakly
representable in it), and F is essentially undecidable.

The second part holds because F , if not essentially undecidable, has a de-
cidable consistent extension (T ′, R′), in which the given recursively inseparable
pair (A,B) is still separable:

x ∈ A⇒ s(e, x) ∈ T ′ and x ∈ B ⇒ s(e, x) ∈ R′.

But then the recursive set {x : s(e, x) ∈ T ′} would separate A and B. 2

Exercises III.10.9 A set A is representable in F = (T,R) if, for some e,

x ∈ A⇒ s(e, x) ∈ T and x ∈ A⇒ s(e, x) ∈ R,

i.e. if A and A are separable in F .

a) Every recursive set is representable in F if and only if every pair of disjoint
recursive sets is separable in it .

b) If some nonrecursive set is representable in F , then some recursively insepara-

ble pair of sets is separable in it, but not conversely . (Hint: in R only recursive sets

are representable, by II.2.16, but every pair of disjoint r.e. sets is separable, see below.)

As already for the undecidability proofs, the two methods for essential un-
decidability are substantially different and distinct. We now see that they both
apply, as usual, to consistent extensions of R.

Theorem III.10.10 (Rosser [1936], Putnam and Smullyan [1960]) In
any consistent formal system F extending R, every disjoint pair of r.e. sets is
separable.

Proof. If A and B are disjoint r.e. sets, there exist recursive relations R and
Q such that

x ∈ A⇔ ∃yR(x, y) and x ∈ B ⇔ ∃yQ(x, y).
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We already know that all the recursive relations are representable in F (II.2.16),
and then there are formulas ψ1 and ψ2 such that

R(x, y) ⇒ `F ψ1(x, y) and ¬R(x, y) ⇒ ` ¬ψ1(x, y)
Q(x, y) ⇒ `F ψ2(x, y) and ¬Q(x, y) ⇒ ` ¬ψ2(x, y).

Then the formula

ϕ(x) ⇔ ∃y[ψ1(x, y) ∧ (∀z < y)¬ψ2(x, z)]

separates A and B:

• x ∈ A ⇒ `F ϕ(x)
If x ∈ A then, for some y, R(x, y) holds, and hence `F ψ1(x, y). Since
A and B are disjoint, x 6∈ B: hence, for every z, ¬Q(x, z) and so `F
¬ψ2(x, z). By the axioms of R we can treat bounded quantifiers, and
hence we also have `F (∀z < y)¬ψ2(x, z). Then `F ϕ(x).

• x ∈ B ⇒ `F ¬ϕ(x)
Note that ¬ϕ(x) ⇔ ∀y[¬ψ1(x, y) ∨ (∃z < y)ψ2(x, z)]. If x ∈ B then,
for some z, Q(x, z) holds, and hence `F ψ2(x, z). Since A and B are
disjoint, x 6∈ A and so, for every y, ¬R(x, z) holds, and `F ¬ψ1(x, y). By
the axioms of R we know that, for every y and a fixed z, y ≤ z ∨ z < y.
Thus we only have to consider finitely many cases because, again by the
axioms of R, y ≤ z means that y is actually the numeral corresponding
to some y ≤ z. If y ≤ z then `F ¬ψ1(x, y). If z < y then, from ψ2(x, z),
we have (∃z < y)ψ2(x, z)). Thus `F ¬ϕ(x). 2

Corollary III.10.11 If F is a consistent formal system extending R then F
is essentially undecidable, and the sets of (codes of) theorems and of refutable
formulas of F are effectively inseparable (and in particular creative).

Proof. Both criteria for essential undecidability are applicable, since every
pair of disjoint r.e. sets is separable in F , in particular every pair of disjoint
recursive sets, and any recursively inseparable pair.

Moreover, separability of A and B provides a simultaneous m-reduction of
them to the sets of theorems and of refutable formulas. These are then effec-
tively inseparable, because there is a pair A and B of effectively inseparable
r.e. sets. 2

Smullyan [1961] calls F = (T,R) a Gödel theory if every r.e. set is weakly
representable in it, and a Rosser theory if every pair of disjoint r.e. sets is
separable in it. These two notions simply express m-completeness, respectively
for r.e. sets and pairs of disjoint r.e. sets. Thus if F is a Gödel theory then T is
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creative, and if F is a Rosser theory then T and R are effectively inseparable.
The fact that two disjoint creative sets may be recursively separable (III.6.26.d)
can be seen as saying that a Gödel theory is not necessarily essentially unde-
cidable. On the other hand, the existence of recursively inseparable pairs in
any nonrecursive r.e. T -degree (III.6.22) shows that an essentially undecidable
formal system is not necessarily a Rosser theory .

Pour El [1968] calls effectively extensible a theory F = (T,R) for which
there is an effective procedure that produces, for any consistent extension F ′ of
it, a formula which is neither provable nor refutable in F ′. This notion is clearly
equivalent to the effective inseparability of T and R (see III.6.27.b), and stresses
the effective content of the proof of Gödel’s Theorem, which effectively exhibits
undecidable sentences for any sufficiently strong consistent formal system.

The last results and comments show that the notions of creativeness and
effective inseparability are useful tools for the description of common theories,
for what concerns the description of undecidability and related phenomena.
The limits of this usefulness are pointed out by III.7.13 and III.7.15 (and their
extensions considered in Pour El and Kripke [1967], Pour El [1968]): from a
recursion-theoretic point of view, all effectively inseparable (and, in particular,
a great number of common) formal systems are isomorphic, and thus mere
variations one of another. To get a finer analysis the recursive, purely exten-
sional approach (only considering the sets of theorems) has to give in to a
proof-theoretical, intensional one (accounting for the way the theorems are ob-
tained). As Kreisel [1971] puts it, Proof Theory begins where Recursion Theory
ends.

Independent axiomatizability

Since consistent theories have disjoint sets of theorems and refutable formulas, if
we call a formal system nontrivial when it has at least infinitely many theorems
and infinitely many refutable formulas, then (the sets associated to) consistent
nontrivial formal systems are not simple. This does not mean that the notion
of simplicity, as well as its strengthenings, has no relevance for the description
of formal systems, as we now see.

Until now we have looked at decidability questions, and thus recursive enu-
merability was seen as opposed to recursiveness. This depended on the fact
that we considered formal systems only, that is r.e. sets of formulas. But in
mathematics theories need not be r.e. (and the results on the limitations of
formal systems show that there is no other way to override the incompleteness
phenomena, while preserving expressive power).

Definition III.10.12 A set of formulas in a given language is called a first-
order theory if it is closed under logical consequence. A theory is:
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1. axiomatizable if it is the closure under logical consequence of an r.e.
set of formulas {αe}e∈ω, called the axioms

2. independently axiomatizable if moreover, for every e, the axiom αe
is not a logical consequence of the remaining axioms

3. finitely axiomatizable if it has a finite set of axioms.

Note that the axiomatizable theories are just the first-order formal systems,
because the closure of an r.e. set of formulas under recursive rules (like the ones
of any standard complete formalization of the Predicate Calculus) is still an r.e.
set of formulas. Moreover, axiomatizable theories always have a recursive set
of axioms (Craig [1953]), because any formula is implied by the conjunction of
itself with other formulas, and thus we can substitute the n-th axiom with the
conjunction of the first n ones, obtaining a set enumerated in increasing order,
and hence recursive. Finally, a finitely axiomatizable theory is independently
axiomatizable.

Proposition III.10.13 (Kreisel [1957], Pour El [1968a]) The following
are equivalent, for an axiomatizable first-order theory F :

1. F is independently axiomatizable

2. for any axiomatization {αe}e∈ω of F , the set

n ∈ A⇔ α0 ∧ · · · ∧ αn |= αn+1

is not hypersimple

3. for some axiomatization {αe}e∈ω of F , the set

n ∈ A⇔ α0 ∧ · · · ∧ αn |= αn+1

is not hypersimple.

Proof. Note that the conditions are trivially equivalent when F is finitely
axiomatizable (because in this case the set A is finite, and certainly not hyper-
simple), and then we can suppose that F is not finitely axiomatizable. We first
prove that if F is independently axiomatizable, and {αe}e∈ω is any axiomati-
zation of it, then the set

n ∈ A⇔ α0 ∧ · · · ∧ αn |= αn+1

is not hypersimple. Fix an independent axiomatization {βn}n∈ω of F . It is
enough to show that, given any n, we can effectively find an m > n such that
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{n, . . . ,m− 1} ∩A 6= ∅ (since this permits an inductive generation of a strong
array intersecting A). Given α0, · · · , αn we can find first of all a number p such
that they are deducible from β0, . . . , βp. Then we can find a number m such
that βp+1 is deducible from α0, . . . , αm. Now one of n, . . . ,m − 1 is not in A
otherwise, inductively, all of αn+1, . . . , αm would be deducible from α0, . . . , αn,
and hence from β0, . . . , βp. But then so would be βp+1, contradicting the fact
that the β’s are an independent axiomatization.

We now show that if, for any axiomatization {αe}e∈ω of F , the set

n ∈ A⇔ α0 ∧ . . . ∧ αn |= αn+1

is not hypersimple, then F is independently axiomatizable. We do this in two
steps:

• there is an effective procedure that produces, given any theorem γ of F ,
another theorem γ′ that is not deducible from it
By hypothesis, we have a strong array {Df(x)}x∈ω that intersects A.
Given any theorem γ of F , find first an n such that γ is deducible from
α0, . . . , αn, and then an x such that Df(x) contains only numbers greater
than n. The conjunction γ′ of the αn+1’s such that n is in Df(x) is
then a theorem of F (because a conjunction of axioms) that cannot be
deduced from γ. Indeed, one number n in Df(x) is not in A, i.e. αn+1

cannot be deduced from the α’s with smaller indices, and in particular is
not deducible from γ. But αn+1 is a conjunct of γ′, and thus γ′ is not
deducible from γ either.

• there is an independent axiomatization of F
Let {αn}n∈ω be an enumeration of the theorems of F . We want to
generate this set with a set of independent axioms {βn}n∈ω. The first part
of the proof produces, given any formula γ, a formula γ′ not deducible
from it. The opposite is not necessarily true, since γ′ could be too strong,
and imply γ. To have independent formulas, we have to relax γ′ a little,
and this can be done by considering ¬γ ∨ γ′, i.e. γ → γ′. This is not
deducible from γ as before, since otherwise (by modus ponens) so would
be γ′. And if γ is not valid, it is not deducible from γ → γ′, otherwise
from ¬γ (which is stronger than ¬γ ∨ γ′) we would get γ, and then γ
would be valid. More generally, the sequence

γ γ → γ′ γ′ → γ′′ · · ·

is independent. We still have to make sure that all the αn’s are going
to be deducible from the axioms, and we simply add them one by one
as conclusions, so that αn can be obtained from the first n + 1 axioms.
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Thus our set of independent axioms for F is a set of formulas inductively
defined as follows. First we let

β0 = α′0.

This makes sure that we start from a formula that is not valid. Then, if
βn = δn → γn,

βn+1 = γn → αn ∧ (αn ∧ γn)′. 2

Exercise III.10.14 For any hypersimple set A there is a consistent first-order formal
system F extending R, and an axiomatization {αe}e∈ω of it, such that

n ∈ A⇔ α0 ∧ · · · ∧ αn |= αn+1

In particular, F is not independently axiomatizable. (Kreisel [1957]) (Hint: let α0

be the conjunction of the finitely many axioms of Q, see p. 23, and of the formula

∀x(ϕ(x) → P (x)), where P is a new predicate, and ϕ weakly represents A in R.

Moreover, let αn+1 be P (n). Then αn+1 can be deduced from α0 only when n ∈ A.)

Pour El [1968a] shows that Q, and more generally every theory with effec-
tively inseparable sets of theorems and of refutable formulas, has a consistent
extension which is not independently axiomatizable, and with the same lan-
guage as the original theory.

For more recursion-theoretical results about formal systems see p. 510, as
well as Smullyan [1961], Martin and Pour El [1970], and Downey [1987].

æ



Chapter IV

Hierarchies and
Weak Reducibilities

The theme of this chapter is definability in given languages, and a classifica-
tion of sets and relations according to their best definition. Of course definabil-
ity is not an absolute notion, and it depends on the given language. Here we
will consider three natural ones, the first two for Arithmetic, the last one for
Set Theory. The first two will differ in that we will allow only number quan-
tifications in one case, but also function (or set) quantifications in the other,
and will define, respectively, the arithmetical and analytical sets. The third
approach will lead us to the constructible sets.

Definability is a linguistical, more than computational, notion. However,
we already know that it is possible to characterize the recursive sets in a purely
linguistical way, see I.3.6. This suggests the possibility of considering definabil-
ity as an abstract version of computability, and we will see in later chapters
that this program is indeed feasible, for some of the definability notions that
will be introduced in this chapter.

We only scratch the surface of the subject in here, and refer to Volumes
II and III for a detailed study of the arithmetical and the analytical sets, to
which the two volumes are respectively dedicated. But we will prove a number
of interesting results already in this chapter, providing some nontrivial charac-
terizations of a number of classes. In particular, we deal with: the limit sets,
that can be obtained as limits of recursive functions; the hyperarithmetical
sets, that can be effectively computed modulo number-theoretical quantifica-
tion; and the Σ1

2 sets, that can be defined over the constructible universe in a
particularly simple way.
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IV.1 The Arithmetical Hierarchy

We start by considering, as the simplest framework for the definition of sets
of natural numbers, First-Order Arithmetic. We first introduce the notion
of arithmetical definability, and then classify sets definable in Arithmetic by
looking at their best possible definitions. We will thus obtain classes closely
related, both in computational content and in structure theory, to the classes
of recursive and recursively enumerable sets.

The definition of truth ?

Pilate said unto him, What is truth?
And when he had said this, he went out.

(John, Gospel , XVIII, 38)

The idea for a definition of truth comes from Aristotle (Metaphysica, Γ 7,
1011b, 25–27):

it is false to say that the being is not or that the non-being is; it is
true to say that the being is and that the non-being is not.

Thus e.g.
‘it is raining’ is true if and only if it is raining,

where the quoted phrase is the one whose truth we are trying to establish, and
it is considered as a purely syntactical object, while the unquoted phrase is
taken semantically, for what it means. And the quoted phrase is true if and
only if it reflects what happens in the world, as expressed by the unquoted
phrase.

For natural languages this explains the meaning of truth, but it is not
particularly manageable. The advantage of formal languages is that they are
built by induction, and thus we can actually apply the ideas just introduced to
produce an inductive definition of truth. The original definition will be applied
directly only to atomic formulas, while for compound formulas we will rely on
induction, and will force only the interpretation of the new symbols introduced.
This was first done by Tarski [1936].

Truth in First-Order Arithmetic

There are two natural first-order languages that come to mind, for the pur-
pose of classifying arithmetical definitions. They are in some sense extreme
examples, allowing respectively for a minimal and a maximal set of nonlogical
primitive functions and predicates. We consider both of them, and prove that
their definitional power is the same.
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Definition IV.1.1 Definition of truth in Arithmetic (Tarski [1936])
Let L be the first-order language with equality, augmented with constants n for
each number n, and binary function symbols + and ×, and let A be the intended
structure for L, i.e. the natural numbers, with the usual sum and product.

Given a closed formula ϕ of L, ϕ is true in A (A |= ϕ) is inductively
defined as follows:

A |= m+ n = p ⇔ m+ n = p
A |= m× n = p ⇔ m · n = p
A |= ¬ψ ⇔ not (A |= ψ)
A |= ϕ0 ∧ ϕ1 ⇔ A |= ϕ0 and A |= ϕ1

A |= ϕ0 ∨ ϕ1 ⇔ A |= ϕ0 or A |= ϕ1

A |= ∃xψ(x) ⇔ for some n, A |= ψ(n)
A |= ∀xψ(x) ⇔ for all n, A |= ψ(n).

An n-ary relation P is definable in First-Order Arithmetic (briefly,
is arithmetical) if, for some formula ϕ with n free variables,

P (x1, . . . , xn) ⇔ A |= ϕ(x1, . . . , xn).

As we have already noted, this definition explicitly defines the meaning
of any syntactical first-order formula over Arithmetic by first reducing the
meaning of compound statements to the meaning of simpler ones, and then by
forcing the meaning of the function constants + and × to agree with the usual
standard meaning of sum and product. After this, being arithmetical is then
defined in the same way as being representable (I.3.4), but with the notion of
provability in a formal system replaced by the notion of truth in First-Order
Arithmetic.

This procedure of defining truth for formulas of a given language over some
structure is quite general, and in the future we will simply indicate the changes
needed to extend the above definition of truth to different languages and struc-
tures.

Definition IV.1.2 (Kleene [1943], Mostowski [1947]) Let L∗ be the first-
order language with equality, augmented with constants n for each number n,
and a relation symbol ϕR for each recursive relation R, and let A∗ be the
intended structure for L∗, i.e. the natural numbers, with all the recursive rela-
tions.

Given a closed formula ϕ of L∗, A∗ |= ϕ is defined inductively as above,
starting from

A∗ |= ϕR(x1, . . . , xn) ⇔ R(x1, . . . , xn).
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An n-ary relation P is in the Arithmetical Hierarchy if, for some for-
mula ϕ of L∗ with n free variables,

P (x1, . . . , xn) ⇔ A∗ |= ϕ(x1, . . . , xn).

Briefly stated, the Arithmetical Hierarchy consists of the relations definable
in First-Order Arithmetic, with the recursive relations as parameters. This
seems natural from our point of view, since we want to classify sets and relations
according to their noneffectiveness, as expressed by the complexity of their
definition, and thus the recursive relations may be given for free. The next
result shows that we are classifying the same sets as before.

Theorem IV.1.3 (Gödel [1931]) The Arithmetical Hierarchy contains ex-
actly the arithmetical relations.

Proof. One direction comes from the fact that the relations represented by
the atomic formulas of the language L are recursive, being built up from plus
and times only. The other direction follows from the fact, proved in I.3.6, that
the recursive relations are representable in R, and hence (since the axioms of
R are true in A) are arithmetical. 2

The Arithmetical Hierarchy

Before we can classify relations according to their definition in L∗, we need to
be able to put these definitions in some kind of normal form. This is easily
accomplished in a standard way, by manipulation of quantifiers.

Proposition IV.1.4 The following transformations of quantifiers are permis-
sible (up to logical equivalence):

1. permutation of quantifiers of the same type

2. contraction of quantifiers of the same type

3. permutation of two quantifiers, one of which bounded

4. substitution of a bounded quantifier with an unbounded one of the same
type.

Proof. Part 1 is obvious. Part 2 can be accomplished by codifying the various
quantified variables into a single one. E.g., given a formula

∀x1 . . .∀xnR(x1, . . . , xn),
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this is equivalent to the formula

∀xR((x)1, . . . , (x)n),

where x = 〈x1, . . . , xn〉.
Part 3 is obvious when the two quantifiers are of the same type. For the

remaining cases, consider e.g.

(∀x ≤ a)(∃y)R(x, y).

If we let yx be a number such that R(x, yx), for x ≤ a, then y = 〈y0, . . . , ya〉
witnesses the truth of

(∃y)(∀x ≤ a)R(x, (y)x+1),

and thus the former formula implies the latter, while the converse implication
holds trivially. The other case is treated similarly.

Part 4 is standard:

(∀x ≤ a)R(x) ⇔ ∀x(x ≤ a→ R(x))
(∃x ≤ a)R(x) ⇔ ∃x(x ≤ a ∧ R(x)). 2

Proposition IV.1.5 Prenex Normal Form (Kuratowski and Tarski
[1931]). Any relation in the Arithmetical Hierarchy is equivalent to one with
a list of alternated quantifiers in the prefix, and a recursive matrix.

Proof. The previous transformations allow to contract quantifiers of the same
type, without changing the recursiveness of the matrix. Thus we only have to
show how to push quantifiers in front. This is accomplished by the following
well-known transformations, read from left to right, and which again work up
to logical equivalence.

First of all note that bound variables can be renamed, according to the
rules:

∃xα(x) ⇔ ∃yα(y)
∀xα(x) ⇔ ∀yα(y),

where y is any variable that does not occur free in α. Thus we can always
suppose that, in the following rules, x does not occur free in β.

¬(∃x)α ⇔ (∀x)¬α
¬(∀x)α ⇔ (∃x)¬α

(∃xα) ∧ β ⇔ ∃x(α ∧ β)



IV.1 The Arithmetical Hierarchy 367

(∀xα) ∧ β ⇔ ∀x(α ∧ β)
(∃xα) ∨ β ⇔ ∃x(α ∨ β)
(∀xα) ∨ β ⇔ ∀x(α ∨ β)

(∃xα) → β ⇔ ∀x(α→ β)
(∀xα) → β ⇔ ∃x(α→ β)
β → (∃xα) ⇔ ∃x(α→ β)
β → (∀xα) ⇔ ∀x(α→ β) 2

It should be noted that the rules to bring a formula into prenex normal
form can be applied in any order. In particular, prenex normal forms are
not unique, and may have different numbers of quantifiers. However, since
there are only finitely many possible manipulations, the prenex normal form
with smallest number of quantifiers can always be found, starting from a given
formula. Note that we are not claiming that there is an algorithm that gives
the best prenex normal form to which the formula is equivalent, since better
prenex normal forms might be produced by equivalent formulas.

The Prenex Normal Form suggests that we only have to count the num-
ber of alternations of quantifiers in the prefix, to measure the distance from
recursiveness. And of course there are, for each such number, two possibili-
ties, according to whether the first quantifier is existential or universal. It just
remains to give everything a name.

Definition IV.1.6 The Arithmetical Hierarchy (Kleene [1943], Most-
owski [1947])

1. Σ0
n is the class of relations definable over A∗ by a formula of L∗ in prenex

form with recursive matrix, and n quantifier alternations in the prefix, the
outer quantifier being existential.

2. Π0
n is defined similarly, with the outer quantifier being universal.

3. ∆0
n is Σ0

n∩Π0
n, i.e. the class of relations definable in both the n-quantifier

forms.

4. ∆0
ω is the class of the arithmetical relations.

By extension, we will call a formula Σ0
n or Π0

n, if it is in prenex normal form,
with n quantifier alternations in the prefix, the outer one being, respectively,
existential or universal.

Note also that, by contraction of quantifiers, n quantifier alternations are
equivalent to n alternated quantifiers.
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The levels of the Arithmetical Hierarchy

The first levels of the hierarchy are inhabited by old friends. First of all, the
level 0 obviously consists of the recursive relations (because no quantifier is
involved). More interestingly,

∆0
1 = recursive

Σ0
1 = recursively enumerable.

This obviously follows from II.1.10 and II.1.19.
If we wished to, we could define a similar hierarchy for formulas of L. If

we count quantifier alternations, and ask the matrix to be quantifier free (i.e.
a Boolean combination of diophantine equations), we still get the r.e. sets at
the first existential level, by Matiyasevitch result (see p. 135), and thus this
hierarchy coincides, from the first level on, with the Arithmetical Hierarchy.
By using L∗ we simply avoid the proof of this representation theorem for the
r.e. sets on one side, and have more freedom in the computations on the other.

If we are willing to compromise a little, we may allow the matrix to contain
bounded quantifiers. Then the proof of IV.1.3 would suffice to show that the
r.e. sets are at the first existential level of this hierarchy (because of the form
the formulas that represent recursive relations in R have). The ∆0

0 relations
of this hierarchy (namely the sets definable with plus and times, by using con-
nectives and bounded quantifiers) form the interesting class of rudimentary
predicates (Smullyan [1961]), to which we will return in Chapter VIII.

Exercises IV.1.7 The Bounded Arithmetical Hierarchy (Davis [1958], Harrow
[1978]) Let ∆0

0 be the class of relations definable over L by using only connectives and
bounded quantifiers. We can stratify it by counting the number of bounded quantifier
alternations, getting classes Σ0

0,n and Π0
0,n in the natural way. Because of the collapse

in d) below, ∆0
0,n is defined as the class of sets A such that both A and A are in the

n-th level of the hierarchy.
a) Π0

0,n and Σ0
0,n are closed under conjunction and disjunction.

b) For n ≥ 1, Π0
0,n is closed under universal quantification bounded by a poly-

nomial, and Σ0
0,n is closed under existential quantification bounded by a polynomial .

(Hint: by induction, since e.g.

(∃z ≤ p(~x) + q(~x))P (z) ⇔ (∃a ≤ p(~x))(∃b ≤ q(~x))P (a+ b)

(∃z ≤ p(~x) · q(~x))P (z) ⇔ (∃a ≤ p(~x))(∃b < q(~x))P (p(~x) · b+ a).)

c) The matrix can always be reduced to a diophantine equation. (Hint: diophantine
equations p(~x) = 0, where p is a polynomial with integral coefficients, are closed under
Boolean combinations. Precisely,

p(~x) = q(~x) ⇔ p(~x)− q(~x) = 0

p(~x) 6= 0 ⇔ p(~x) < 0 ∨ 0 < p(~x)
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p(~x) = 0 ∨ q(~x) = 0 ⇔ p(~x) · q(~x) = 0

p(~x) = 0 ∧ q(~x) = 0 ⇔ p2(~x) + q2(~x) = 0

p(~x) < q(~x) ⇔ (∃z ≤ q(~x))(p(~x) + z + 1 = q(~x)).

By part b), quantification bounded by a polynomial is allowed.)
d) Π0

2n+1 = Π0
2n and Σ0

2n+2 = Σ0
2n+1, and thus the Bounded Arithmetical Hierar-

chy reduces to

Π0
0,0 ⊆ Σ0

0,1 ⊆ Π0
0,2 ⊆ Σ0

0,3 . . .

(Hint: the universal quantification of a diophantine equation is still diophantine.
Indeed, consider

R(z, ~x) ⇔ (∀y ≤ z)(p(y, ~x) = 0) ⇔ (
∑
y≤z

p2(y, ~x)) = 0.

This is a polynomial in y and ~x, while we want it to be a polynomial in z and ~x.
Since p2 is a polynomial, it can be written as

∑
n≤k qn(~x) · yn. Thus we have

R(z, ~x) ⇔
∑
n≤k

[qn(~x) ·
∑
y≤z

yn] = 0.

It only remains to note that, by induction,
∑

y≤z y
n is indeed a polynomial in z, of

degree n+1, and with rational coefficients, that can be turned into integral coefficients
by taking common denominators.)

e) The negation of a set in a given level belongs to the next level, and thus

Π0
0,2n ⊆ ∆0

0,2n ⊆ Σ0
0,2n+1 ⊆ ∆0

0,2n+1 ⊆ Π0
0,2n+2.

f) If for any n two of the previous classes coincide, the hierarchy collapses. (Hint:
if two classes coincide, then the common class is closed under both bounded quantifi-
cations, and thus is the whole hierarchy.)

It is not known whether the Bounded Arithmetical Hierarchy collapses or not.

The properties of the first level of the Arithmetical Hierarchy are inherited
at higher ones, by very similar proofs, which we just sketch.

Proposition IV.1.8 Closure properties (Kleene [1943], Mostowski
[1947])

1. R is Σ0
n if and only if ¬R is Π0

n

R is Π0
n if and only if ¬R is Σ0

n

2. ∆0
n is closed under negations

3. Σ0
n, Π0

n and ∆0
n are closed under conjunction, disjunction and bounded

quantification
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4. for n ≥ 1, Σ0
n is closed under existential quantification, and Π0

n is closed
under universal quantification

5. the universal quantification of a Σ0
n relation is Π0

n+1, and the existential
quantification of a Π0

n relation is Σ0
n+1.

Proof. Everything easily follows from logical operations and quantifier manip-
ulations. E.g., let ∃x∀yR and ∃x∀yQ be Σ0

2 formulas. Then, if v, w, z, and w
do not occur free in Q or R,

(∃x∀yR) ∧ (∃x∀yQ) ⇔ (∃v∀wR) ∧ (∃z∀tQ)
⇔ ∃v∃z∀w∀t(R ∧Q),

and this is a Σ0
2 formula. 2

Theorem IV.1.9 Enumeration Theorem (Kleene [1943], Mostowski
[1947]) For each n,m ≥ 1 there is an m+ 1-ary Σ0

n relation that enumerates
the m-ary Σ0

n relations. Similarly for Π0
n.

Proof. This is simply a consequence of the Normal Form Theorem for r.e.
relations, II.1.10, according to which there is an m + 1-ary Σ0

1 relation enu-
merating the m-ary Σ0

1 relations. Then its negation enumerates the m-ary Π0
1

relations.
Inductively, let R(e, x, ~z) be an m + 2-ary Σ0

n relation enumerating the
m+ 1-ary Σ0

n relations. Then ∀xR(e, x, ~z) is an m+ 1-ary Π0
n+1 relation enu-

merating the m-ary Π0
n+1 relations, and its negation enumerates the m-ary

Σ0
n+1 relations. 2

Definition IV.1.10 A set A is Σ0
n-complete if it is Σ0

n, and every Σ0
n set is

m-reducible to it. Π0
n-complete sets are defined similarly.

The concept of Σ0
n-completeness is the analogue, at level n, of the concept

of m-completeness for r.e. sets. By induction we thus have:

Proposition IV.1.11 For each n ≥ 1, Σ0
n-complete and Π0

n-complete sets
exist.

In Chapter X we will see that many natural index sets (p. II.2.8) are com-
plete at some level of the Arithmetical Hierarchy.

Exercises IV.1.12 Partial truth definitions. Let {ψe}e∈ω be an effective enu-
meration of the closed formulas of L.

a) For each n ≥ 1, the set

e ∈ Tn ⇔ ψe is Σ0
n ∧ A |= ψe
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is Σ0
n-complete. Similarly for Π0

n. (Hint: first note that to check, of a given formula,
whether it is Σ0

n is a recursive procedure. To show that Tn is Σ0
n proceed induc-

tively, using the definition of truth in A: note that if there are no quantifiers then
the formulas are recursive, and their truth can be effectively determined. To show
completeness, use the existence of Σ0

n-complete sets.)
b) The set

〈e, n〉 ∈ T ⇔ e ∈ Tn
is not arithmetical . (Tarski [1936]) (Hint: if it were, it would be Σ0

n for some n. This

would contradict the Hierarchy Theorem given below.)

Theorem IV.1.13 Hierarchy Theorem (Kleene [1943], Mostowski
[1947] The Arithmetical Hierarchy does not collapse. More precisely, for any
n ≥ 1 the following hold:

1. Σ0
n −Π0

n 6= ∅, and hence ∆0
n ⊂ Σ0

n

2. Π0
n − Σ0

n 6= ∅, and hence ∆0
n ⊂ Π0

n

3. Σ0
n ∪Π0

n ⊂ ∆0
n+1.

Proof. The first two parts are equivalent, by taking negations. The proof of
the first one is similar to the one of II.2.3: if R(e, x) enumerates the unary Σ0

n

relations, then
P (x) ⇔ R(x, x)

is Σ0
n. But it cannot be Π0

n, otherwise its negation would be Σ0
n, and there

would be e such that

R(e, x) ⇔ ¬P (x) ⇔ ¬R(x, x).

For x = e a contradiction would follow.
For the last part, note that we can always add dummy quantifiers in front or

at the end of the prefix, and thus Σ0
n ∪Π0

n ⊆ ∆0
n+1. To show that the inclusion

is strict, let P ∈ Σ0
n −Π0

n: then ¬P ∈ Π0
n − Σ0

n. If

Q(x, z) ⇔ [P (x) ∧ z = 0] ∨ [¬P (x) ∧ z = 1]

then Q ∈ ∆0
n+1. But Q is not in Π0

n, otherwise so would be

P (x) ⇔ Q(x, 0),

and similarly Q is not in Σ0
n. 2

The results just proved justify the picture of the Arithmetical Hierarchy
given in Figure 1 (p. 362), where upward connections mean strict inclusion,
and no other inclusion holds.
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We have defined the Arithmetical Hierarchy by iterating quantifiers and
proved, by direct arguments, properties of the various levels similar to those of
the first level. The next result gives a different, purely recursion-theoretical,
definition of the Arithmetical Hierarchy, and explains the similarities of the
various levels. It also suggests the possibility of different proofs for the results
proved above, by relativization of the results of the first level.

Theorem IV.1.14 Post’s Theorem (Post [1948], Kleene) A relation is:

1. ∆0
n+1 if and only if it is recursive in a Σ0

n or a Π0
n relation

2. Σ0
n+1 if and only if it is recursively enumerable in a Σ0

n or a Π0
n relation.

Proof. First note that, for what concerns relative recursive computations,
Σ0
n and Π0

n are interchangeable, because an oracle and its complement are
equivalent. We can thus use any of them.

We first prove part 2. Suppose P is Σ0
n+1: then, for some R in Π0

n,

P (~x) ⇔ ∃yR(~x, y).

By the relativized version of II.1.10, P is then r.e. in R, and hence r.e. in a Π0
n

relation.
Conversely, let P be r.e. in a Π0

n relation Q. Then P is r.e. in a Π0
n set A,

obtained by coding Q:

〈x1, . . . , xm〉 ∈ A⇔ Q(x1, . . . , xm).

By the relativized version of II.1.10, together with compactness and monotonic-
ity (II.3.13), there is an r.e. relation R such that

P (~x) ⇔ ∃u∃v(Du ⊆ A ∧Dv ⊆ A ∧R(~x, u, v)).

Note that
Du ⊆ A⇔ (∀x ∈ Du)(x ∈ A).

Since Du is finite, the quantifier is bounded: but A is in Π0
n, and then so is the

whole expression Du ⊆ A. Similarly,

Dv ⊆ A⇔ (∀x ∈ Dv)(x 6∈ A)

is Σ0
n, because the negation of A is used. Thus both expressions are Σ0

n+1,
and so is R, being r.e. (and hence Σ0

1). But Σ0
n+1 is closed under existential

quantification, and thus P is in it.
Part 1 follows from part 2 and the relativized version of II.1.19. If P is

recursive in a Σ0
n relation, then both P and ¬P are r.e. in it, and hence Σ0

n+1.
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But then P is both Σ0
n+1 and Π0

n+1, and hence ∆0
n+1. The converse is similar:

suppose that P and ¬P are each r.e. in some (not necessarily the same one)
Σ0
n+1 relation. Then they are r.e. in the complete Σ0

n+1 set, and hence both
Σ0
n+1. Thus P is ∆0

n+1. 2

Exercises IV.1.15 a) For any n ≥ 1, the union of two Σ0
n sets can be reduced to

the union of two disjoint Σ0
n sets. (Hint: see II.1.23.)

b) For any n ≥ 1, there are two disjoint Σ0
n sets that cannot be separated by a ∆0

n

set . (Hint: see II.2.5.)

c) Any two Σ0
n-complete sets are recursively isomorphic. (Hint: use III.7.13.)

∆0
2 sets

As a special case of Post’s Theorem, we get:

Proposition IV.1.16 A set is ∆0
2 if and only if it is recursive in K.

Proof. K is Σ0
1-complete, and hence any Σ0

1 or Π0
1 relations is recursive in it.

Thus, being recursive in some Σ0
1 or Π0

1 relation is equivalent to being recursive
in K. 2

This allows us to prove an interesting characterization, useful in construc-
tions.

Proposition IV.1.17 The Limit Lemma (Shoenfield [1959]) A is ∆0
2 if

and only if its characteristic function is the limit of a recursive function g, i.e.

cA(x) = lim
s→∞

g(x, s).

Proof. If g is given, then

x ∈ A ⇔ ∀s∃t(t ≥ s ∧ g(x, t) = 1)
⇔ ∃s∀t(t ≥ s→ g(x, t) = 1),

and A is ∆0
2.

Conversely, if A is ∆0
2 then A ≤T K. Let e be such that cA ' ϕKe , and

g(x, s) ' ϕKs
e (x).

Then cA is the limit of g. 2

This characterization of ∆0
2 suggests a possible hierarchy for it, obtained

by bounding the number of times the approximating function g may change.
The r.e. sets can be obtained by approximations that change at most once (let
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g(x, s) be 0 until it is discovered that x is in the set, and 1 afterwards). If
we consider the sets whose approximation may change only n times, we have
the Boolean Hierarchy, which stratifies the set belonging to the smallest
Boolean algebra generated by the r.e. sets (or, by III.8.7, the sets btt-reducible
to K) (Addison [1965], Gold [1965], Putnam [1965], Ershov [1968]). Obviously,
∆0

2 is not exhausted by the Boolean Hierarchy (since there are sets recursive
in K and not btt-reducible to it), but this can be achieved by an appropriate
transfinite extension of the hierarchy (Ershov [1968a], [1970], see Chapter XI).

Exercises IV.1.18 The Boolean hierarchy (Ershov [1968]). For n ≥ 1, let Σ−1
n

be the class of sets with a recursive approximation g which changes at most n times,
and such that g(x, 0) = 0. Π−1

n is the class of complements of sets in Σ−1
n , and

∆−1
n = Σ−1

n ∩ Π−1
n . A set is called n-r.e. if it is Σ−1

n , and weakly n-r.e. if it is
∆−1
n+1.

a) Σ−1
1 is the class of r.e. sets.

b) For n ≥ 1, Σ−1
n is the class of sets of the form (A1−A2)∪ (A3−A4) · · · , with

Ai r.e.
c) For each n ≥ 1, there are Σ−1

n -complete sets. (Hint: let

〈x, y〉 ∈ A ·B ⇔ x ∈ A ∧ y ∈ B and 〈x, y〉 ∈ A+B ⇔ x ∈ A ∨ y ∈ B,

and consider the sequence of sets

K K · K (K · K) +K · · · )

d) For each n ≥ 1, Σ−1
n −Π−1

n 6= ∅, and Π−1
n −Σ−1

n 6= ∅. (Hint: use the sets given
in part c.)

e) For each n ≥ 2, there is a ∆−1
n -complete set . (Hint: if A and B are, respectively,

Σ−1
n -complete and Π−1

n -complete, then A⊕B is ∆−1
n+1-complete.)

f) For any n, Σ−1
n ∪Π−1

n ⊂ ∆−1
n+1. (Hint: use the set given in part e.)

g) For n ≥ 1, a set is ∆−1
n+1 if and only if it has a recursive approximation that

changes at most n times. (Hint: suppose A is both Σ−1
n and Π−1

n . Then both A and

its complement can be approximated by recursive functions g and h that change at

most n + 1 times, and with value 0 at stage 0. For any x, we then know that one

of g(x, 0) and h(x, 0) is wrong. Look for the first s such that g(x, s) 6= h(x, s), and

let g(x, s) be the first value of a new function f approximating A. Let f change only

when g does, and g and h differ. Then f changes at most n times.)

Note that there is nothing special about the second level: the characteriza-
tion of ∆0

2 obviously extends, by relativization, to all levels.

Proposition IV.1.19 Shoenfield [1959]) For n ≥ 1, A is ∆0
n+1 if and only

if there is an n+ 1-ary recursive function g such that

cA(x) = lim
s1→∞

· · · lim
sn→∞

g(x, s1, . . . , sn).
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Relativizations ?

We can relativize all the work done so far to a given oracle X, defining the
classes Σ0,X

n , Π0,X
n and ∆0,X

n , and obtaining similar results, simply by substi-
tuting ‘recursive’ with ‘recursive in X’. In particular, we have

A ≤T B ⇔ A ∈ ∆0,B
1 .

We might thus think that a number of other reducibilities can be defined, by
looking at higher levels. The next result shows that this is not the case.

Proposition IV.1.20 The relation

A ≤∆0
n
B ⇔ A ∈ ∆0,B

n

is transitive only for n = 1.

Proof. The transitivity for n = 1 follows from the fact that in this case ≤∆0
1

is simply Turing reducibility. For any n > 1, we show a counterexample. Let
A ∈ Σ0

n−Π0
n, which exists by the Hierarchy Theorem. Then there is B ∈ Π0

n−1

such that
x ∈ A⇔ ∃yB(x, y).

By definition A is in Σ0,B
1 , and hence in ∆0,B

n (since n > 1). Since B is in ∆0
n

by its choice, if ≤∆0
n

were transitive we would have A ∈ ∆0
n, and hence A ∈ Π0

n,
contradiction. 2

The obvious reason why the transitivity of ≤∆0
n

fails for n > 1, is that
quantifiers simply sum up: if B has n quantifiers, and we stick n more in front
of it, one might collapse (if the leftmost quantifier of the prefix of B is of the
same type of the rightmost added in front of it), but the others are going to
remain. This ceases to be a problem, if we do not care anymore for a fixed
number of quantifiers.

Definition IV.1.21 A is arithmetical in B (A ≤a B) if it is in the Arith-
metical Hierarchy relativized to B.

A is arithmetically equivalent to B (A ≡a B) if A ≤a B and B ≤a A.

Exercises IV.1.22 a) If A is arithmetical, then A ≤a B for any set B.

b) If A ≤a B and B is arithmetical, so is A.

Note that ≤a is a reflexive and transitive relation, and thus ≡a is an equiv-
alence relation.

Definition IV.1.23 The equivalence classes of sets w.r.t. arithmetical equiv-
alence are called a-degrees, and (Da, ≤) is the structure of a-degrees, with
the partial ordering ≤ induced on them by ≤a.

The structure of the a-degrees will be studied in Chapter XIII.
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IV.2 The Analytical Hierarchy

The Arithmetical Hierarchy certainly includes only a small portion of all pos-
sible sets, being countable (each set has a definition in L∗, and there are only
countably many definitions). Moreover, by Tarski’s Theorem (see p. 166, or
IV.1.12.b), there are natural examples of nonarithmetical sets (namely, the set
of codes of sentences of L true in Arithmetic). We thus feel the need of enlarg-
ing the Arithmetical Hierarchy. One natural way to proceed is by extending
the language and going to the second order, i.e. by considering quantifiers not
only over numbers, but also over functions.

Truth in Second-Order Arithmetic

As already for First-Order Arithmetic, there are at least two possible languages
of interest.

Definition IV.2.1 Definition of truth in Second-Order Arithmetic
(Tarski [1936]). Let L2 be the second-order language with first-order equality,
augmented with number constants n for each number n, and function constants
f for each total function f , among them + and ×. Let also A2 be the intended
structure for L2, i.e. the set of natural numbers and total functions over them.

Given a closed formula ϕ of L2, A2 |= ϕ is defined inductively as usual.
A relation P of n number variables and m function variables is definable

in Second-Order Arithmetic (from parameters) if, for some closed for-
mula ϕ of L∗2 with n free number variables and m free function variables,

P (x1, . . . , xn, f1, . . . , fm) ⇔ A∗2 |= ϕ(x1, . . . , xn, f1, . . . , fm).

If ϕ contains no function constant except plus and times, then P is simply
analytical.

Notice that ‘analytical’ is defined without the use of parameters (i.e. func-
tion constants other than + and ×). Since the use of parameters is like the
use of oracles (see Section II.3), the analytical relations are those that can be
defined in Second-Order Arithmetic, without any help.

The reason for the name ‘analytical’ comes from the fact that Second-Order
Arithmetic allows for the formalization of elementary Analysis, by coding real
numbers as functions of integers.

Definition IV.2.2 (Lusin [1925], Sierpinski [1925], Kleene [1955]) Let
L∗2 be the second-order language with first-order equality, augmented with num-
ber constants n for each number n, function constants f for each total function
f , and relation symbols ϕR for each restricted recursive relation of numbers
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and total functions. Let also A∗2 be the intended structure for L∗2, i.e. the set of
natural numbers and total functions over them, with all the restricted recursive
relations of numbers and total functions.

Given a closed formula ϕ of L∗2, A∗2 |= ϕ is defined inductively as usual.
A relation P of n number variables and m function variables is in the Pro-

jective Hierarchy if, for some closed formula ϕ of L∗2 with n free number
variables and m free function variables,

P (x1, . . . , xn, f1, . . . , fm) ⇔ A∗2 |= ϕ(x1, . . . , xn, f1, . . . , fm).

If ϕ contains no function constant except plus and times, then P is in the
Analytical Hierarchy.

It follows from IV.1.3 relativized that the Analytical Hierarchy contains
exactly the analytical relations.

The Analytical Hierarchy

Function quantifiers can be manipulated in a way similar to number quantifiers.

Proposition IV.2.3 The following transformations of function quantifiers are
permissible (up to logical equivalence):

1. permutation of quantifiers of the same type

2. contraction of quantifiers of the same type

3. permutation of a number quantifier and a function quantifier

4. substitution of a number quantifier with a function quantifier of the same
type.

Proof. Part 1 is obvious. Parts 2 needs only a way to code and decode finitely
many functions, e.g.

〈f1, . . . , fn〉(x) = 〈f1(x), . . . , fn(x)〉
(f)n(x) = (f(x))n.

Then e.g. the formula
∀f1 . . .∀fnR(f1, . . . , fn),

is equivalent to
∀fR((f)1, . . . , (f)n).
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Part 3 needs a way to code and decode infinitely many functions, e.g.

f(x) =
{
fn(z) if x = 〈n, z〉
0 otherwise

(f)n(z) = f(〈n, z〉).

Having this, and given e.g.

(∀x)(∃f)R(f, x),

let fn be such that R(fn, n) holds. Then the given formula is equivalent to

(∃f)(∀x)R((f)x, x).

Part 4 is easily obtained, noting that

∃xR(x) ⇔ ∃fR(f(0)) and ∀xR(x) ⇔ ∀fR(f(0)). 2

Proposition IV.2.4 Prenex Normal Form (Kuratowski and Tarski
[1931]). Any relation in the Analytical Hierarchy is equivalent to one with
a list of alternated function quantifiers in the prefix, and an arithmetical ma-
trix.

Proof. Similar to IV.1.5. 2

Proposition IV.2.5 (Kleene [1955]) The matrix of a relation in the Ana-
lytical Hierarchy can always be reduced to a single number quantifier, opposite
in type to the rightmost function quantifier of the prefix, followed by a recursive
predicate.

Proof. Having a formula in prenex normal form, with a prefix consisting of
alternated function quantifiers, and an arithmetical matrix, there are two cases.
If there are at least two function quantifiers, then all the number quantifiers
can be eliminated, by first moving near to the function quantifier of the same
type, then rising to function quantifiers, and being contracted; afterwards, one
dummy number quantifier can be reintroduced. If there is only one number
quantifier, then this works only for the number quantifiers of its same type,
while the other remain, and can be contracted to a single one.

More precisely, proceed as follows.

• Reduce the matrix in prenex normal form, with a prefix of alternated
number quantifiers, and a recursive matrix.

• Take the leftmost number quantifier, and confront it with the rightmost
function quantifier of the prefix. If they are of the same type, raise the
number quantifier to a function quantifier, and then contract.
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• If they are not of the same type, permute them. See if there is a function
quantifier to the left. If so, it must be of the same type as the number
quantifier, which can thus be eliminated as above. If not, proceed with
the next number quantifier in the matrix, inductively.

• At the end, either all number quantifiers have been eliminated, or a se-
quence of them, of the same type, lies to the left of the (necessarily
unique) function quantifier. Contract them, and permute the resulting
number quantifier back to the matrix. 2

Exercises IV.2.6 Set quantifiers. a) The same analytical classes are obtained if
we use set quantifiers in place of function quantifiers, and matrices with at most two
number quantifiers. (Kleene [1955]) (Hint: sets and their characteristic functions can
be identified, and we can thus work with the latter. In one direction, to say that a
function is a characteristic function only involves a number quantifier, e.g.

(∃A)R(cA) ⇔ ∃f [∀x(f(x) ≤ 1) ∧ R(f).]

In the other direction, functions can be substituted by their graphs, and saying that
f is the characteristic function of the graph of a total function is an arithmetical
condition: f has values bounded by 1; whenever it is 1 for z, then z = 〈x, y〉, i.e. it
codes a relation; whenever it is 1 for 〈x, y〉 and 〈x, y′〉 then y = y′, i.e. the relation
is a function; and for every x there is y such that f(〈x, y〉) = 1, i.e. the function is
total. Note that this last condition introduces two number quantifiers.)

b) Set quantifiers and matrices with only one number quantifier are not suffi-

cient to generate the whole Analytical Hierarchy . (Kreisel) (Hint: the predicate

∀A∃xR(ĉA(x)), with R recursive, is r.e. Indeed, the set of sets is finitely branch-

ing. Thus, by König’s Lemma, if for every A there is x such that R(ĉA(x)) holds,

there must be an x that works for every A. This means that we only have to look for

x such that (∀A)R(ĉA(x)) holds. For a fixed x this is a recursive condition, because

there are only finitely many possible sequence numbers of length x. Thus the whole

condition is r.e.)

Exactly like we did for the Arithmetical Hierarchy, we can now count the
number of alternations of function quantifiers, and stratify the Analytical Hi-
erarchy.

Definition IV.2.7 The Analytical Hierarchy (Lusin [1925], Sierpinski
[1925], Kleene [1955])

1. Σ1
n is the class of relations definable over A∗2 by a formula of L∗2 (without

parameters) in prenex form with arithmetical matrix, and n quantifier
alternations in the prefix, the outer quantifier being existential.

2. Π1
n is defined similarly, with the outer quantifier being universal.
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3. ∆1
n is Σ1

n∩Π1
n, i.e. the class of relations definable in both the n-quantifier

forms.

4. ∆1
ω is the class of the analytical relations.

By extension, we will call a formula without parameters Σ1
n or Π1

n if it is in
prenex normal form with n function quantifier alternations in the prefix, the
first of which, respectively, existential or universal.

Note also that, by contraction of quantifiers, n function quantifier alterna-
tions are equivalent to n alternated function quantifiers.

The levels of the Analytical Hierarchy

A good part of the theory of the Arithmetical Hierarchy goes through for the
Analytical Hierarchy as well, with similar proofs, that we do not repeat.

Proposition IV.2.8 Closure properties (Kleene [1955])

1. R is Σ1
n if and only if ¬R is Π1

n

R is Π1
n if and only if ¬R is Σ1

n

2. ∆1
n is closed under negations

3. Σ1
n, Π1

n and ∆1
n are closed under conjunction, disjunction and number

quantification

4. for n ≥ 1, Σ1
n is closed under existential function quantification, and Π1

n

is closed under universal function quantification

5. the universal function quantification of a Σ1
n relation is Π1

n+1, and the
existential function quantification of a Π1

n relation is Σ1
n+1.

Proof. Everything easily follows from logical operations and quantifier ma-
nipulations. E.g., closure under number quantification follows by moving the
number quantifier to the matrix, by successive permutations. 2

Theorem IV.2.9 Enumeration Theorem (Kleene [1955]) For each n and
m ≥ 1, and any l, there is a Σ1

n relation with m + 1 number variables and l
function variables that enumerates the Σ1

n relations with m number variables
and l function variables. Similarly for Π1

n.

Proof. Similar to IV.1.9, using this time the Normal Form Theorem for r.e.
relations of numbers and total functions, that follows from II.3.11. Note that,
because of IV.2.5, the hierarchy is inductively built up by starting from the r.e.
predicates, by negations and function quantifications. 2
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Corollary IV.2.10 Normal Form Theorem for Π1
1 sets (Lusin [1917],

Suslin [1917], Kleene [1955]) A is Π1
1 if and only if, for some recursive

predicate R,
x ∈ A⇔ ∀f∃yR(x, f̂(y)).

Definition IV.2.11 A set A is Σ1
n-complete if it is Σ1

n, and every Σ1
n set is

m-reducible to it. Π1
n-complete sets are defined similarly.

Proposition IV.2.12 For each n ≥ 1, Σ1
n-complete and Π1

n-complete sets
exist.

Theorem IV.2.13 Hierarchy Theorem (Lebesgue [1905], Lusin [1925],
Sierpinski [1925], Kleene [1955]) The Analytical Hierarchy does not col-
lapse. More precisely, for any n ≥ 1 the following hold:

1. Σ1
n −Π1

n 6= ∅, and hence ∆1
n ⊂ Σ1

n

2. Π1
n − Σ1

n 6= ∅, and hence ∆1
n ⊂ Π1

n

3. Σ1
n ∪Π1

n ⊂ ∆1
n+1.

We thus get a picture for the Analytical Hierarchy similar to the one ob-
tained for the Arithmetical Hierarchy, see Figure 1 (p. 362).

Despite the similarities between the Arithmetical and Analytical Hierar-
chies, there are differences. The most striking one seems to be the fact that
there is no recursion-theoretical generation of the Analytical Hierarchy from
below. Thus function quantifiers, unlike number quantifiers (that correspond
to relative recursive enumerability) seem to have no computational content . See
p. 395 for a precise statement of this fact.

Π1
1 sets

The Normal Form Theorem for Π1
1 sets suggests some natural representations

for them, in set-theoretical terms. To state them precisely, we first introduce
some terminology.

Definition IV.2.14 A set of sequence numbers T is a tree if it is closed
under subsequences. 〈∅〉 is the root, or vertex, of the tree. Elements of the
tree are called nodes. A branch of T is a maximal linearly ordered subset of
T . The terminal node of a branch is a leaf. A tree is well-founded if it has
no infinite branch.

Thus a tree is simply a subset of the tree of all sequence numbers ordered
by extension, such that whenever a node is in T , so are all nodes between it
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Figure IV.2: A tree

and the vertex 〈∅〉. Moreover, an infinite branch of a tree can be thought of
as a function f whose course-of-values determines the branch (recall, see p.
90, that the course-of-value of f is the function f̂ , where f̂(y) is the sequence
number coding the first y values of f).

Well-foundedness of a partial ordering usually refers to lack of infinite de-
scending sequences. Here a branch can be thought of as a descending sequence
(if we picture the tree as growing downward, as in Figure 2): thus the termi-
nology is consistent, and a tree is well-founded as a tree if and only if it is so
as a partial ordering. What makes well-founded trees interesting is that it is
possible to proceed by induction on them, from the leaves to the vertex. This
procedure of backward induction is called bar-recursion. The next result is
mostly a rephrasing of the Normal Form Theorem IV.2.10.

Theorem IV.2.15 First Representation Theorem for Π1
1 sets (Lusin

and Sierpinski [1923], Kleene [1955]) A set A is Π1
1 if and only if there is

a recursive sequence {Tx}x∈ω of recursive trees, such that

x ∈ A⇔ Tx is well -founded.

Proof. If A is Π1
1 then, for some recursive R,

x ∈ A⇔ ∀f∃yR(x, f̂(y)).

It is now enough to define

u ∈ Tx ⇔ Seq(u) ∧ (∀v < u)¬R(x, v),

where u and v range over sequence numbers and (see p. 90) < means proper
initial subsequence. Clearly Tx is a recursive tree, uniformly in x. A leaf corre-
sponds to a first place in which R holds. An infinite branch of Tx corresponds
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to a function f such that ∀y¬R(x, f̂(y)), and it exists if and only if x 6∈ A.
Thus x ∈ A if and only if Tx is well-founded.

Conversely, let {Tx}x∈ω be a recursive sequence of recursive trees, and sup-
pose

x ∈ A⇔ Tx is well-founded.

Then A is Π1
1, since

x ∈ A ⇔ ¬∃f∀y(f̂(y) ∈ Tx)

⇔ ∀f∃y(f̂(y) 6∈ Tx),

by the interpretation of infinite branches of trees as functions. Note that the
relation f̂(y) 6∈ Tx is recursive, as a relation of f , x, and y, because Tx is
uniformly recursive in x. 2

Corollary IV.2.16 The set T of characteristic indices of well -founded recur-
sive trees is Π1

1-complete.

Proof. T is Π1
1 because ‘being the index of the characteristic function of a

tree’ is an arithmetical condition, and ‘having no infinite branch’ is Π1
1:

e ∈ T ⇔ (∀x)(∃y)[y ≤ 1 ∧ ϕe(x) ' y] ∧
(∀x)[ϕe(x) ' 1 → Seq(x)] ∧
(∀x)(∀y)[x v y ∧ ϕe(y) ' 1 → ϕe(x) ' 1] ∧
(∀f)(∃y)[ϕe(f̂(y)) ' 0].

T is Π1
1-complete by the proof of the First Representation Theorem. More

precisely, if
x ∈ A⇔ ∀f∃yR(x, f̂(y))

for some recursive R then there is, by the Smn -Theorem, a recursive function g
such that

ϕg(x)(u) '
{

1 Seq(u) ∧ (∀v < u)¬R(x, v)
0 otherwise.

Then A ≤m T , because

x ∈ A⇔ g(x) ∈ T . 2

Notice that it is possible to assign to each well-founded tree T an ordinal,
as follows (by bar-recursion):
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Definition IV.2.17 If T is a well -founded tree, the ordinal of a node u on
T is defined as:

ordT (u) =
{
sup{1 + ordT (u ∗ 〈n〉)} if (∃n)(u ∗ 〈n〉 ∈ T )
1 otherwise.

The ordinal of a well-founded tree T is defined as:

ord(T ) =
{
ordT (〈∅〉) if T 6= ∅
0 otherwise.

Thus we assign 1 to the terminal nodes of each branch of a tree, and then we
climb the tree by assigning to each nonterminal node the least ordinal not yet
assigned to any of its successors. A nonempty tree has the ordinal of its vertex
〈∅〉. Of course the whole procedure works because the tree is well-founded,
and thus the inductive procedure of climbing the tree from the terminal nodes
makes sense. The interesting fact is that this is really an equivalent way to
look at countable ordinals.

Proposition IV.2.18 An ordinal α is countable if and only if there is a well -
founded tree T such that α = ord(T ).

Proof. Note that an ordinal is assigned to a node of T only if all the smaller
ordinals have already been assigned to some of its successors. Since a tree has
only countably many nodes, being made of sequence numbers, its ordinal can
have only countably many predecessors, and it is thus countable.

Let now α be a countable ordinal: we define a well-founded tree T such
that α = ord(T ), by induction on the countable ordinals.

• α = 0.
Let T = ∅.

• α = β + 1
Let T0 be a well-founded tree such that β = ord(T0). We only have to
build a tree T that consists of a subtree isomorphic to T0, and one vertex
on top of it. Let

T = {〈∅〉} ∪ {〈0〉 ∗ u : u ∈ T0}.

• α = supn∈ω αn
Let Tn be well-founded trees such that αn = ord(Tn). We only have to
build a tree T that consists of subtrees isomorphic to the Tn’s, and one
vertex on top of them. Let

T = {〈∅〉} ∪
⋃
n∈ω

{〈n〉 ∗ u : u ∈ Tn}. 2
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Since the notion of well-founded tree is easily constructivized, by considering
recursive well-founded trees, we have a natural constructive analogue of the
notion of ordinal: a recursive ordinal is an ordinal α such that α = ord(T ),
for some recursive well-founded tree T . Since the node of a tree is assigned an
ordinal only if all smaller ordinals have already been assigned to some of its
successors, and the subtree consisting of the extensions of a node of a recursive
tree is isomorphic to a recursive tree, the recursive ordinals form an initial
segment of the ordinals. The first nonrecursive ordinal is indicated by ωck

1 ,
because it is the constructive analogue of the first uncountable ordinal ω1,
and it was introduced by Church and Kleene [1937]. Clearly ωck1 is countable,
because there are only countably many recursive trees, and thus only countably
many recursive ordinals. The theory of recursive ordinals will be developed in
Volume III, and will be useful for a finer analysis of the hyperarithmetical
(p. 391) and Π1

1 sets.
Another way to introduce countable ordinals is by looking at countable

well-orderings (equivalently, at well-orderings of ω), and thus we may guess
that there is a result similar to IV.2.15, using well-orderings instead of well-
founded trees.

Definition IV.2.19 A (recursive) partial ordering � is a (recursive) bi-
nary relation on a (recursive) set A of numbers which is reflexive, antisymmet-
ric and transitive, i.e. such that, for every x, y, z ∈ A,

1. x � x

2. x � y ∧ y � x⇒ x = y

3. x � y ∧ y � z ⇒ x � z.

A linear partial ordering is a partial ordering which is total on A, i.e. such
that, for every x, y ∈ A,

4. x � y ∨ y � x.

A well-ordering is a linear partial ordering with no infinite descending se-
quence of elements.

As usual, we will write x ≺ y for x � y ∧ x 6= y.

Theorem IV.2.20 Second Representation Theorem for Π1
1 sets (Lusin

and Sierpinski [1923], Kleene [1955], Spector [1955]) A set A is Π1
1 if

and only if there is a recursive sequence {≺x}x∈ω of recursive linear orderings,
such that

x ∈ A ⇔ ≺x is a well -ordering.
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Proof. By IV.2.15, it is enough to show that it is possible to go back and
forth, in an effective way, from recursive trees to recursive linear orderings of
ω, preserving well-foundedness and well-ordering.

Let ≺ be a recursive linear ordering of ω: we want a recursive tree T≺ such
that

≺ is a well-ordering ⇔ T≺ is well-founded.

It is enough to define

〈x1, . . . , xn〉 ⇔ xn ≺ · · · ≺ x1.

Thus branches of T≺ code maximal descending sequences of elements w.r.t. ≺,
and there are infinite branches in T≺ if and only if there are infinite descending
sequences in ≺.

Let T be a recursive tree: we want a recursive linear ordering ≺T such that

T is well-founded ⇔ ≺T is a well-ordering.

A natural way to linearly order a tree is the lexicographical one: given two
sequence numbers, we look at the branches on which they lie, and give the
precedence to the one on the leftmost branch when the branches differ, and to
the one on the higher level if they are on the same branch. But for our purposes
this is overkilling: the resulting order is always a well-ordering (since each node
has only finitely many predecessors at the same level, on different branches, and
only finitely many predecessors at lower levels, on the same branch).

The reason why this ordering is not sensitive to infinite branches of the
tree is because it follows each branch in increasing order: we then have only
to modify it, and reverse the order on single branches. Thus we will still order
lexicographically sequence numbers lying on different branches, but reverse the
lexicographical order on single branches (and thus the only way to produce
infinite descending sequences will be to have infinite branches). The wanted
linear ordering is thus, for x, y ∈ T ,

x ≺T y ⇔ y < x ∨ (∃n)[(x)n < (y)n ∧ (∀i < n)((x)i = (y)i)].

This is sometimes called the Kleene-Brouwer ordering (Lusin and Sierpinski
[1923], Brouwer [1924]) associated to T . 2

Exercises IV.2.21 a) The set W of characteristic indices of recursive well-orderings
of ω is Π1

1-complete. (Lusin and Sierpinski [1923], Spector [1955]) (Hint: the proof
above shows that T ≤m W, if ≺T is extended to a total ordering, e.g. by putting all
numbers not in T before everything, with their usual ordering. Thus it is enough to
show that W is Π1

1.)
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b) T and W are recursively isomorphic. (Hint: this holds in general, for Π1
1-com-

plete sets.)

Since well-orderings of ω are another way of looking at countable ordinals,
we might think of defining the recursive ordinals by looking at recursive well-
orderings, instead than recursive well-founded trees. Happily, by the proof
just given, the class of ordinals defined by recursive well -founded trees on one
side and recursive well -orderings on the other coincide, thus showing that the
notion of recursive ordinal is natural and stable.

We have just scratched the surface of the theory of Π1
1 sets, which will be

developed in detail in Volume III. We just hint here at the fact that Π1
1 sets

admit a natural interpretation in terms of infinitary computations. Consider a
recursive finitely branching tree: by König’s Lemma, the process of determining
whether it is well-founded or not is r.e. (see IV.2.6.b). Thus the process of
determining whether a recursive tree is well-founded can be seen as an infinitary
analogue of an r.e. question. This can be made precise, and it turns out that
the Π1

1 sets are exactly the r.e. sets relative to the ordinal ωck1 (see p. 385).

∆1
1 sets

The level 0 of the Analytical Hierarchy corresponds to the arithmetical sets, be-
cause we allow for arithmetical matrices. To describe ∆1

1 we take a constructive
stand, and will show how to obtain any member of it from below.

Recall that we constructed the smallest Boolean algebra generated by the
r.e. sets by closing them under complements and finite unions, and by so doing
we did not even exhaust ∆0

2. The idea here is to consider not only finite
unions, but infinite ones as well. Of course we have to be careful, since the
singletons are r.e. sets, and if we allow arbitrary countable unions then we get
any possible set: this shows that infinite unions are too powerful. We consider
only constructive unions, i.e. unions of r.e. families of sets, and a great deal of
the power is maintained, since we obtain this way all the ∆1

1 sets.

Theorem IV.2.22 Suslin-Kleene Theorem (Suslin [1917], Kleene
[1955a]) ∆1

1 is the smallest class of sets

1. containing every singleton set {n}

2. closed under complements

3. closed under effective unions.

Proof. To be able to talk about effective unions, we are going to assign indices
to sets in the class, and operate on them by using recursive functions. We thus
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call a class of sets C = {Cx}x∈C an SK-class (for Suslin-Kleene) if there are
recursive functions f1, f2 and ϕ such that

• Cf1(n) = {n}

• Cf2(n) = Cn

• if ϕn is total then ϕ(n)↓ and Cϕ(n) =
⋃
x∈ω Cϕn(x).

The theorem thus amounts to proving that ∆1
1 is the smallest SK-class. We

do this in two steps, first explicitly defining the smallest SK-class, and then
showing that it coincides with ∆1

1.

1. Definition of the smallest SK-class G
We first define, by induction, the system of indices we are going to use,
as the smallest set G such that

• 〈0, n〉 ∈ G
• if n ∈ G then 〈1, n〉 ∈ G
• if ϕn is total and ∀x(ϕn(x) ∈ G) then 〈2, n〉 ∈ G.

These indices obviously correspond to the three clauses of the definition
of a SK-class. We can then define the class G = {Gx}x∈G in the natural
way:

• G〈0,n〉 = {n}

• G〈1,n〉 = Gn

• G〈2,n〉 =
⋃
x∈ω Gϕn(x).

By definition, G is a SK-class. It is also the smallest such one, intuitively
because we put in it only what is strictly required by the definition of
SK-class, and formally because if C = {Cx}x∈ω is a SK-class, and
f1, f2, ϕ are the recursive functions associated to it, then

x ∈ G⇒ Gx = Cg(x),

i.e. each element of G is in C, where g is any recursive function such that

g(x) =


f1(n) if x = 〈0, n〉
f2(g(n)) if x = 〈1, n〉
ϕ(e) if x = 〈2, n〉 and ϕe(z) ' g(ϕn(z))
0 otherwise.

Note that such a function exists by the Fixed-Point Theorem.
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2. G is contained in ∆1
1

We have to show that if x ∈ G then Gx ∈ ∆1
1. It is enough to prove

that Gx ∈ Π1
1 for every x ∈ G: then, since Gx = G〈1,n〉, Gx ∈ Π1

1 and
Gx ∈ Σ1

1, hence Gx ∈ ∆1
1.

The reason why Gx ∈ Π1
1 is that G is the smallest class of sets satisfying an

arithmetical condition, which means that every class satisfying the same
condition must contain it: this can be expressed by a universal quantifier
over classes of sets, and an arithmetical matrix, and it is ‘almost’ Π1

1.
We only have to talk about sets, rather than classes of sets, and this can
easily be accomplished by considering an indexed class of sets as a binary
relation, which can then be coded as a set. Precisely, we are going to
show that G is uniformly Π1

1, i.e. that there is a Π1
1 set A such that

z ∈ Gx ⇔ 〈z, x〉 ∈ A.

We will write an arithmetical predicate P (z, x,X), meaning that X is a
set coding a class satisfying the conditions of the definition of SK-class,
and then we will say that A is the smallest such set, as follows:

〈z, x〉 ∈ A⇔ (∀X)(P (z, x,X) → 〈z, x〉 ∈ X).

Then A will be Π1
1. It just remains to define P :

P (z, x,X) ⇔ [x = 〈0, n〉 ∧ z = n] ∨
[x = 〈1, n〉 ∧ 〈z, n〉 6∈ X] ∨
[x = 〈2, n〉 ∧ ϕn total ∧ (∃t)(〈z, ϕn(t)〉 ∈ X)].

3. ∆1
1 is contained in G

Suppose A is ∆1
1: there are two recursive relations R and Q such that

x ∈ A ⇔ ∀f∃yR(x, f̂(y))
x ∈ A ⇔ ∀g∃y Q(x, ĝ(y)).

To show that A ∈ G, it is enough to find a recursive function h such that

Gh(x) =
{
{x} if x ∈ A
∅ otherwise.

Then A =
⋃
x∈ω Gf(x), i.e. A is an effective union of members of G, and

hence is in G.

Since A is Π1
1, consider the representation of A by uniformly recursive

trees Tx given by the First Representation Theorem IV.2.15. If x ∈ A
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then Tx is well-founded, and thus each branch is finite. We might label
the leaves with the set {x}, and climb our way to the top of the tree,
by giving the same label {x} to any node whose successors all have that
label. Then, if x ∈ A, the vertex (corresponding to the empty sequence
number 〈∅〉) also has that label. This is easily defined in recursive terms,
by first giving the function

ϕ0(x, u) '
{
{x} if R(x, u) ∧ (∀v < u)¬R(x, v)⋃
n∈ω ϕ0(x, u ∗ 〈n〉) otherwise,

and then considering ϕ0(x, 〈∅〉). Note that there is a partial recursive
function ψ0(x, u) such that Gψ0(x,u) = ϕ0(x, u), by the Fixed-Point The-
orem:

ψ0(x, u) '
{
〈1, x〉 if R(x, u) ∧ (∀v < u)¬R(x, v)
〈2, e〉 if ϕe(n) ' ψ0(x, u ∗ 〈n〉), otherwise.

This almost produces what we want, and there is only one problem:
ϕ0(x, 〈∅〉) is undefined when x ∈ A, because in this case some branch of
the tree has no leaf, and thus we cannot climb our way to the top, since
we never define ϕ0 on that path. However, if x ∈ A then we can play
a similar strategy on the other tree, corresponding to Q. We can thus
get a function ϕ1 such that ϕ1(x, 〈∅〉) gives ∅ if x ∈ A, and is undefined
otherwise. Moreover, we can find a partial recursive function ψ1 such
that Gψ1(x,u) = ϕ1(x, u).

Since x is either in A or in A, one and only one of ϕ0(x, 〈∅〉) and ϕ1(x, 〈∅〉)
is defined, and we can thus let

h(x) =
{
ψ0(x, 〈∅〉) if ψ0(x, 〈∅〉) converges
ψ1(x, 〈∅〉) if ψ1(x, 〈∅〉) converges.

Then, as wanted,

Gh(x) =
{
{x} if x ∈ A
∅ otherwise. 2

Corollary IV.2.23 The arithmetical sets are properly included in ∆1
1.

Proof. We prove, by induction on n, that every Σ0
n set is ∆1

1. Each r.e. set
can be obtained as effective union of recursive sets. Precisely, if

x ∈ A⇔ (∃y)R(x, y)
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then A is the union, over y ∈ ω, of the sets

Ay = {x : R(x, y)}.

By relativization, each Σ0
n+1 can be obtained as the effective union of Π0

n sets.
By induction hypothesis, every Σ0

n set is ∆1
1, and by closure under complements

so is every Π0
n set. Thus every Σ0

n+1 set is ∆1
1.

Let now Bn be a Σ0
n-complete set, for every n ≥ 1. The set

Cn = {〈x, n〉 : x ∈ Bn}

is still Σ0
n, and hence ∆1

1. Then the set

C =
⋃
n≥1

Cn

is also ∆1
1. If it were arithmetical, it would be Σ0

n for some n. But then e.g.

x ∈ Bn+1 ⇔ 〈x, n+ 1〉 ∈ C,

and the Σ0
n+1-complete set Bn would be Σ0

n, contradiction. 2

The characterization just given suggests the possibility of building a hier-
archy for ∆1

1, by looking at the stages in which a given relation is generated, in
the inductive definition of the class. This will be done in Volume III, and will
define the Hyperarithmetical Hierarchy (Davis [1950], Mostowski [1951],
Kleene [1955a]), which can be seen as a transfinite extension (of length ωck1 ,
see p. 385) of the Arithmetical Hierarchy (by the proof of the corollary).

A suggestive reformulation of the Suslin-Kleene Theorem is that the ∆1
1 sets

are exactly the sets computable with the help of an oracle that embodies number
quantification (disguised in the operation of union). Otherwise stated, the ∆1

1

sets are the sets computable modulo a finite number of quantifications over ω.
This can be made precise with the extension of the notion of relative recursive-
ness to higher types (see p. 199). Then the ∆1

1 sets are the sets recursive in
the type-2 object

E(f) '
{

0 if ∃x(f(x) = 0)
1 otherwise

(Kleene [1959]).
Before too great expectations arise, we immediately show that no result

similar to the Suslin-Kleene Theorem may possibly hold for higher levels of
the Analytical Hierarchy , in a precise sense. Thus IV.2.22 is an exceptional
characterization, working only because one function quantifier is needed to
express the notion of ‘smallest set satisfying a given condition’: ∆1

1 has no
power to swallow it up, but all other higher ∆1

n’s do.
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Proposition IV.2.24 (Addison and Kleene [1957]) There is no n > 0
such that ∆1

n+1 is the smallest indexed class of sets uniformly satisfying a ∆1
n

condition.

Proof. Let P (z, x,X) be a ∆1
n formula meaning that X codes a class of sets

indexed by numbers, as follows:

z ∈ Gx ⇔ 〈z, x〉 ∈ X.

Then the smallest class of sets G defined by P is strictly contained in ∆1
n+1.

Indeed, let A be the set coding it:

〈z, x〉 ∈ A⇔ (∀X)(P (z, x,X) → 〈z, x〉 ∈ X).

Then A is Π1
n and hence, since n > 0, ∆1

n+1. The set B defined as

x ∈ B ⇔ 〈x, x〉 6∈ A

is thus ∆1
n+1 too, but it cannot be in the class coded by A, otherwise there

would be an e such that

x ∈ B ⇔ 〈x, e〉 ∈ A,

and for x = e we would get a contradiction. 2

Descriptive Set Theory ?

The Arithmetical and Analytical Hierarchies resemble very much, both in no-
tions and results, classical hierarchies that were studied at the beginning of the
century in Descriptive Set Theory, which started as a way of generating from
below interesting and graspable classes of functions and sets (on reals, not on
natural numbers), as opposed to the definition of the continuum as a whole,
by the power axiom. Part of the motivation was to prove the Continuum Hy-
pothesis for larger and larger classes of sets, with the hope of finally getting to
a complete solution of the problem.

The classical development has its first landmarks in Borel [1898], who in-
troduces Borel sets (as the smallest class containing the open sets, and closed
under complements and countable unions), Baire [1899], who introduces Baire
sets (via Baire functions, defined as the smallest class containing the contin-
uous functions, and closed under limits), and Lebesgue [1905], in which the
classes of Borel and Baire sets are proved to coincide. Lebesgue also introduces
the analytic sets (not to be confused with the analytical sets dealt with in this
section) as projections of Borel sets, and falsely claims that an analytic set
is Borel. This is corrected by Suslin [1917], where it is proved that a set is
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Borel if and only if it is both analytic and coanalytic. The projective hierarchy,
obtained by iterating projections and complements, is defined and studied in
Lusin [1925] and Sierpinski [1925]. The classical period ends in the late Thir-
ties, when a stumbling block is reached, with the impossibility of extending
the theory beyond the second level of the Projective Hierarchy. This will be
explained later, after the introduction of the methods to prove the indepen-
dence of the Continuum Hypothesis (Gödel [1940], Cohen [1963]): the theory
of higher projective classes is mostly independent of ZFC, and thus it cannot
be pursued without additional set-theoretical hypothesis.

A second period of development for the subject comes when the recursion
theorists attempt to classify sets of natural numbers, from their own point of
view. Kleene [1943] and Mostowski [1947] introduce the Arithmetical Hierar-
chy, and while the former works without awareness of the classical work, the
latter explicitly develops the hierarchy as an analogue of the Projective Hier-
archy. After the introduction by Kleene [1955] of the Analytical Hierarchy, the
analogies begin to clarify. Addison [1954], [1959] not only makes them precise,
but also sees that there is more: classical Descriptive Set Theory can be ob-
tained by relativization of the theory of recursion-theoretical hierarchies, using
the fol- lowing translations (in which the left-hand side is the effective version
of the right-hand one):

recursive function continuous function
r.e. set open set
hyperarithmetical set Borel set
Σ1

1 set analytic set
analytical set projective set.

In particular, the recursion-theoretical versions of classical results are stronger,
and imply their classical counterparts. This explains the double assignment of
credit to results, in this section.

After the classical and the effective periods, the subject has entered its mod-
ern era with the introduction of new set-theoretical axioms (which, as we have
quoted, are necessary to go beyond the first two levels of the Analytical Hier-
archy). The first axiom to imply results about analytical sets was the Axiom
of Constructibility (IV.4.2): Gödel [1940] and Addison [1959a] showed that a
coherent theory for all levels of the Analytical Hierarchy can be obtained from
it. Although provably consistent with ZFC, the Axiom of Constructibility is
however taken more as a useful technical tool than as a real additional axiom
of Set Theory. The existence of measurable cardinals is taken more seriously,
and it does provide for additional results about analytical sets (Solovay [1969],
Martin and Solovay [1969]), but its influence does not seem to extend much
beyond the fourth level of the hierarchy. The most successful axiom to date for
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the development of Descriptive Set Theory is the Axiom of Projective Deter-
minacy , a restricted version of the full Axiom of Determinacy (V.1.15) saying
that all projective games are determined. This can be seen as an axiom about
the existence of very large cardinals and, starting from Blackwell [1967], Ad-
dison and Moschovakis [1968], and Martin [1968], have implied an extremely
coherent picture of the Analytical Hierarchy. We will come back to this subject
in the last chapter of our book.

Classical references for Descriptive Set Theory are Hausdorff [1917], Lusin
[1930a], Sierpinski [1950], Kuratowski and Mostowski [1968]. The definitive test
about the subject, treating classical, effective and modern theory, is Moschova-
kis [1980].

Relativizations ?

As for the Arithmetical Hierarchy, the work done for the Analytical Hierarchy
can also be relativized to a given oracle X, defining the classes Σ1,X

n , Π1,X
n and

∆1,X
n , and obtaining similar results. This time a number of new reducibilities

do arise.

Proposition IV.2.25 (Shoenfield [1962]) The relation

A ≤∆1
n
B ⇔ A ∈ ∆1,B

n

is transitive, for any n.

Proof. For n = 0 this is obvious, since then ≤∆1
0

is just arithmetical reducibil-
ity. Let then n > 0, A ∈ ∆1,B

n , and B ∈ ∆1,C
n . There are P ∈ Π1,B

n−1 and
R ∈ Σ1,B

n−1 such that

x ∈ A⇔ ∃fP (x, f,B) ⇔ ∀fR(x, f,B).

To show that A ∈ Σ1,C
n , note that

x ∈ A⇔ ∃D[D = B ∧ ∃fP (x, f,D)].

The expression B = D can be rewritten as

∀x[(x ∈ B → x ∈ D) ∧ (x ∈ D → x ∈ B)].

By using the Π1,C
n form for B in the first conjunct, and the Σ1,C

n form in the
second one we get, by manipulation of quantifiers, a Σ1,C

n form for B = D
which, substituted above, produces a Σ1,C

n form for A.
Similarly, noting that

x ∈ A⇔ ∀D[D = B → ∀fR(x, f,D)],
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we get a Π1,C
n form for A, which is then ∆1,C

n . 2

The relation ≤∆1
n

is obviously reflexive and thus it induces, as usual, an
equivalence relation.

Definition IV.2.26 For n ≥ 1, the equivalence classes of sets w.r.t. the equiv-
alence relation

A ≡∆1
n
B ⇔ A ≤∆1

n
B ∧B ≤∆1

n
A

are called ∆1
n-degrees, and (D1

n, ≤) is the structure of ∆1
n-degrees, with the

partial ordering ≤ induced on them by ≤∆1
n
.

The ∆1
1-degrees are also called hyperdegrees, and will be studied in Vol-

ume III, together with the other ∆1
n-degrees. For an anticipation, see p. 441.

The nice closure properties that produce the transitivity of ≤∆1
n

also have
some very negative consequences, to the effect that no level of the Analytical
Hierarchy can be thought of as built from below . More precisely, no analogue
of Post’s Theorem IV.1.14 exists. Recall that, for the Arithmetical Hierarchy,
∆0
n+1 was actually the class of sets recursive in some Σ0

n set. This result fails
very badly to generalize here, even if recursive (i.e. ∆0

1) is substituted by any
∆1
n.

Proposition IV.2.27 (Addison and Kleene [1957], Shoenfield [1962])
There is no n such that ∆1

n+1 is the class of sets ∆1
n in some Σ1

n set.

Proof. By the result proved above, the class of sets ∆1
n in some Σ1

n set is
contained in ∆1

n+1. We have to show that the inclusion is always proper. For
n = 0 this is clear, since there are ∆1

1 sets which are not arithmetic. Suppose
then n ≥ 1: we prove that there is A ∈ ∆1

n+1 such that, for any set B ∈ Σ1
n, A

is not ∆1
n in it. Let C be a Σ1

n-complete set: since any other Σ1
n set is recursive

in it, it is enough to get A not ∆1
n in C. Since we want to limit its complexity,

the obvious first choice for A is a Σ1,C
n -complete set, which is certainly not ∆1

n

in C. Moreover, by the transitivity of ≤∆1
n+1

, A is ∆1
n+1, being Σ1

n in the Σ1
n

set C. 2

Recall that we also proved another negative result (IV.2.24), to the effect
that only ∆1

1 can be constructed from below. Notice that even this case is not
a real exception: the very notion of ‘smallest set satisfying a given condition’ is
Π1

1, and thus in some sense is more complicated than the class ∆1
1 itself. And

as soon as it becomes less complicated than a given class ∆1
n (i.e. for n > 1),

no such characterization is possible anymore.
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Post’s Theorem in the Analytical Hierarchy ?

We have seen that, in a precise sense, Post’s Theorem IV.1.14 has no analogue
in the Analytical Hierarchy. But we should not forget that, in stepping up from
the Arithmetical to the Analytical Hierarchy, the universe has changed quite
radically: functions are now treated as objects, like we did with numbers all
along, and we quantify over them. But there has been no corresponding increase
in the power of computations: we have retained the notion of computability
that we found suitable for numbers. In particular, the µ-operator is available as
a search operator over numbers, but nothing of the kind exists over functions.
The negative results obtained above could thus be interpreted as signs of the
inadequacy of the notion of recursiveness as a notion of computability over the
continuum.

Notions of computability over abstract domains have been proposed, see
p. 202, and they all basically reduce to either prime or search computability
(p. 203), which are abstract analogues of deterministic and nondeterministic
computability. We have made a great use of searches over numbers in the
proofs of the results of Section 1: computationally, the existential quantifiers
are handled by searching for elements that satisfy the matrix. In particular,
Post’s Theorem is a relativization of II.1.19, whose proof amounted to a parallel
search. This suggests that, in an abstract setting, it is search computability
that we need. Moschovakis [1969] has indeed proved that, once the notion
of recursiveness is replaced by that of search computability, and a Projective
Hierarchy is defined in analogy to the Arithmetical Hierarchy (i.e. by allowing
search computable matrices, and quantifications over the domain), then the
theory of the Arithmetical Hierarchy, including Post’s Theorem, generalizes to
abstract domains.

It only remains to apply the general theory, and translate the notion of
search computability over the continuum in the familiar terms of the Analytical
Hierarchy. It turns out that a relation is ∆1

n+2 if and only if it is search
computable in Π1

n+1, and this provides for an analogue of Post’s Theorem for
the Analytical Hierarchy (Hinman and Moschovakis [1971]).

The idea of the proof for n = 0 (the other cases being similar by rela-
tivization) is the following. The main computation concerns the complexity
of domains of functions search computable in Π1

1, which are the analogues of
(relativized) r.e. relations. One direction requires an arithmetization of the
computation tree similar to that of I.7.3. Since the relevant objects can be
coded only as functions (instead than as numbers), a search computable func-
tion converges if and only if there is a function coding a computation tree for
it, and this introduces an outer existential function quantifier. Moreover, since
computation trees are not finite objects anymore, they must well-founded, and
to express this we need a universal function quantifier. Thus the whole relation



IV.3 The Set-Theoretical Hierarchy 397

is Σ1
2. If the function is search computable in some oracle the complexity of

the computation tree is accordingly increased, but Π1
1 oracles only require a

universal quantifier, which is present anyway because of well-foundedness, and
in this case the total complexity is still Σ1

2. Conversely, let A be Σ1
2: then the

function that searches for a witness of the Π1
1 matrix is search computable in

the characteristic function of the latter, and converges if and only if the witness
exists. Thus A is the domain of a function search computable in Π1

1.
By a refinement of the argument sketched above, Hinman and Moschovakis

[1971] show that a relation is ∆1
2 if and only if it is search computable in the

equality predicate for functions.
These results point out that the proper analogue of recursiveness on the

continuum seems to be ∆1
2, rather than ∆1

1. See also p. 442 on this.

IV.3 The Set-Theoretical Hierarchy

Arithmetic is a natural environment for the study of sets and functions of
natural numbers, since these can arguably be seen as primitive objects. But
modern mathematics is usually done (formally or informally) in the framework
of Set Theory, in which the natural numbers can be defined. In this section we
look at definability in the language of (formalized) Set Theory, with an eye to
the applications to our subject.

Since this is not a book on Set Theory, we refer to Gödel [1944], [1964],
and Kreisel and Krivine [1966] for general discussion, Fraenkel, Bar-Hillel, and
Levy [1958] for foundations and history, Monk [1969] and Levy [1979] for the
fundamentals of the subject, and Cohen [1966], Jech [1978], and Kunen [1980]
for more advanced topics. However, this section and the next are mostly self-
contained, and require only the working knowledge of elementary Set Theory
used until now. We will also recall the needed concepts and results.

Truth in Set Theory

A primordial notion of set (Frege [1893]) corresponds to an extensional percep-
tion of properties. It can be formulated on two simple principles: extension-
ality, which ensures that a set is completely determined by its elements, and
full comprehension, according to which one can consider the set of all the
objects for which a given property holds, abstracting from the intensional way
the given property is expressed. Unless one admits partial properties, that may
possibly be undefined for a given argument, this naive point of view is shaken
by Russell’s paradox (p. 82), since the set corresponding to the property of not
being a member of itself is contradictory.
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One possible remedy to the situation is to switch to a different notion of
set, corresponding to an arbitrary collection of elements taken from a given
collection, like when we consider a set of natural numbers. This implies a
cumulative conception of the universe, in which sets are obtained by stages,
from simple to more complicated ones, and it suggests a number of properties
of the membership relation ∈. They fall into five different categories:

1. extensionality
Membership being the only concept at hand, a set is completely deter-
mined by its elements, and thus two sets with the same elements are
indistinguishable. As a particular instance of a more general principle
going back to Leibniz (identitas indiscernibilium), according to which
two objects that cannot be distinguished are equal, we get the Axiom of
Extensionality:

(∀z)(z ∈ x↔ z ∈ y) ⇒ x = y.

2. comprehension
Full comprehension is simply false for the present notion of set (Gödel
[1958]), since now a set is a collection not of arbitrary elements, but only
of elements already belonging to a given collection. In this setting it
takes the form of the Axiom of Separation, according to which one can
consider the subset of a given set consisting of all the objects in it for
which a given property holds.

3. set construction
Since the Axiom of Separation only isolates subsets of given sets, without
additional axioms we could not produce sets bigger than the given ones.
On the other hand the paradoxes show that there are collections that are
simply too big to be sets, and thus some restrain is needed. We com-
promise by adopting the doctrine of limitation of size (Cantor [1899],
Russell [1906]), according to which a construction principle should pro-
duce only sets which are not too large, compared to sets on which they
build.

Typical examples of natural construction principles are the following:
Pairing, Union, Power Set (taking the set P(a) of all subsets of a set
a), and Replacement (taking the image of a set under a function). To
avoid the consideration of functions replacement can be substituted, in
presence of the other axioms, by Collection (taking a set b such that
(∀x ∈ a)(∃y ∈ b)ϕ(x, y), provided (∀x ∈ a)(∃y)ϕ(x, y) holds).

4. set existence
The axioms given until now do not ensure, by themselves, the existence
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of any set: separation only produces subsets of given sets, while the
construction principles have to build on something. We thus need to
postulate the existence of at least a set. Even a single set, together with
the previous axioms, makes the subject nontrivial, as we will see in this
section. But to make possible the definition of the usual mathematical
objects, like the real numbers, we actually need an infinite set (say ω),
whose existence is ensured by the Axiom of Infinity.

The existence of a single infinite set, combined with the construction
principles, produces large sets. But the existence of very large sets (e.g.
of sets closed under replacement and power set) does not follow from the
axioms, and it must be postulated independently, if needed. See Drake
[1974] for a treatment of such axioms that, like the Axiom of Infinity,
usually postulate the existence of large cardinals.

5. foundation
If the membership relation is well-founded, not only sets are obtained
from simpler constituents: there are atomic constituents (urelements),
which all sets are ultimately built of. Then the process of generation of
sets can be seen as a well-ordered sequence of stages, through which the
cumulative universe comes into being. This implies a form of the vicious
circle principle, according to which a totality cannot contain members
that presuppose it (Poincaré [1906], Russell [1908]). In particular, there
cannot be sets x such that x ∈ x, otherwise they would give rise to an
infinitely descending chain · · · ∈ x ∈ x.

The well-foundedness of ∈ is stated by the Axiom of Foundation (Mir-
imanoff [1917])

(∃y)(y ∈ x) → (∃y)[y ∈ x ∧ (∀z ∈ y)(z 6∈ x)],

which says that every nonempty set has a minimal element w.r.t. ∈ (note
the analogy with the Least Number Principle, p. 21).

The usefulness of foundation is that it allows for recursion on ∈, also
called ∈–induction:

(∀z)[(∀y ∈ z)ϕ(y) → ϕ(z)] ⇒ (∀x)ϕ(x).

Suppose indeed that (∃x)¬ϕ(x). We have to find a nonempty set to
which apply the Axiom of Foundation. Fix x such that ¬ϕ(x) holds, and
consider

x̂ = {x} ∪ the downward closure of x w.r.t. ∈,

which is a set (see IV.3.12). By separation, consider the set consisting of
the elements of x̂ that do not satisfy ϕ. By foundation, it has a minimal
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element z w.r.t. ∈: by minimality, no element of x̂ belonging to z satisfies
ϕ. But every element of z is in x̂, by its downward closure, and thus
every element of z satisfies ϕ. Then, by hypothesis, also z satisfies it,
contradiction.

The Zermelo-Fraenkel system ZF (Zermelo [1908], Fraenkel [1922]) is
the first-order theory with equality, the relation symbol ∈ as the only nonlogical
symbol, and the axioms just stated. ZFC is obtained by adding to it the
Axiom of Choice or, equivalently, the Well-Ordering Principle (every set can
be well-ordered). We will mostly be concerned with the Generalized Kripke-
Platek system GKP (Kripke [1964], Platek [1966]), which is obtained from
ZF by dropping Infinity and Power Set (see also p. 421), and with ZF −, which
instead only drops the Power Set Axiom.

For convenience, the language of Set Theory is enriched of a term formation
symbol { }, defined according to the following rule: whenever we can prove that

∃y∀x(x ∈ y ↔ ϕ(x)),

then we can denote such a y (which, by extensionality, is necessarily unique)
by

{x : ϕ(x)}.

The existence of distinct urelements is not necessary for a development of
Set Theory, since a single object is enough to start the whole process, and it
is provided by the empty set (which has no elements). By extensionality, the
empty set is the only urelement. The existence of other urelements is sometimes
useful, and in these cases one can state the Axiom of Extensionality only for
nonempty sets.

Definition IV.3.1 The cumulative hierarchy is described, in terms of or-
dinals, as follows:

V0 = ∅
Vα+1 = P(Vα)
Vβ =

⋃
α<β Vα (β limit)

V =
⋃
α Vα.

In ZF we can prove, by ∈–induction, that ∀x∃α(x ∈ Vα). Indeed, suppose
(∀y ∈ x)(∃α)(x ∈ Vα). By collection, (∃α)(∀y ∈ x)(x ∈ Vα), and thus x ⊆ Vα,
i.e. x ∈ Vα+1.

The notion of extension of a property, which axiomatic Set Theory meant
to tame, can now be dealt with precisely. For any property ϕ, {x : ϕ(x)}
is a class. A class can be either a proper class, or a set. Sets are exactly
those classes which are members of (or, equivalently, are contained in) some
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Vα, and are thus not too big. Proper classes are exactly those classes which
are equinumerous to V .

V can be seen as the intuitive universe of Set Theory, and ZF as its axiom-
atization. To gain a better understanding of them we will consider different
structures, that can be seen as ‘models’ of (parts of) ZF , in the sense that they
satisfy some of the axioms of ZF . To make this more precise we need a notion
of truth for formulas of the language of Set Theory in given structures, which
we can define as usual (see IV.1.1).

Definition IV.3.2 Definition of truth in Set Theory (Tarski [1936])
Consider A = 〈A, ε〉, where A is a class, and ε is a binary relation on it. Let
LA be the first-order language with equality and ∈, augmented with constants
a for any a in A.

Given a closed formula ϕ of LA, ϕ is true in A (A |= ϕ) is inductively
defined as usual, starting with:

A |= a ∈ b ⇔ a ε b

A |= a = b ⇔ a = b.

An n-ary relation P is definable over A if, for some formula ϕ with n
free variables and x1, . . . , xn ∈ A,

P (x1, . . . , xn) ⇔ A |= ϕ(x1, . . . , xn).

Intuitively, ϕ is true in 〈A, ε〉 if the formula obtained from ϕ by replacing
∈ with ε, and restricting all quantifiers to A, is true (i.e. it holds in 〈V,∈〉).

Definition IV.3.3 A structure A is a model of a theory T with axioms in
the language of Set Theory, if all the axioms of T are true in A.

This notion is standard in logic, and so is the result that a first-order theory
is consistent if and only if it has a model whose universe is a set (Gödel [1930]).
By Gödel’s Second Theorem (p. 169), we cannot then prove in ZF that there
is a model of ZF with a set as universe. We will however find models whose
universe is a class.

Standard structures

Among the various possible structures for Set Theory we isolate a particularly
interesting class. The idea is that we would like our structures to satisfy some
minimal conditions, namely extensionality and well-foundedness.

The first property is completely captured by the Axiom of Extensionality,
which is satisfied by A if

〈A,∈〉 |= [(∀z)(z ∈ x↔ z ∈ y) → x = y].
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By the definition of truth this means that, whenever x, y ∈ A,

(∀z ∈ A)(z ∈ x↔ z ∈ y) ⇒ x = y,

that is
x ∩A = y ∩A ⇒ x = y.

A condition implying extensionality is thus transitivity of ∈ (i.e. if z ∈ x and
x ∈ A then z ∈ A), which amounts to saying that if x ∈ A then x ⊆ A, and
hence x ∩A = x.

For what concerns well-foundedness, there is some difficulty. A relation ε on
A is well-founded (on A) if every nonempty subset of A has a minimal element
with respect to ε. This can be written as:

(∃y)(y ∈ x) → (∃y)[y ∈ x ∧ (∀z ε y)(z 6∈ x)].

If we think of simply requesting 〈A, ε〉 to satisfy this, then we do not ensure well-
foundedness of ε. The reason is that the intention is to consider every possible
subset x of A, but either we leave the schema as such (by substituting x with
any formula ϕ), and then we only talk about the countably many definable
subsets of A, or we turn the schema into a second-order axiom, by universally
quantifying x, and then we only talk about the members of A (because of the
interpretation of quantifiers over a structure). In either case, a great deal of
subsets of A are not considered, by Cantor’s Theorem.

One reason to insist on well-foundedness of ε is that it almost justifies (in
presence of separation) transfinite induction on ε, i.e.

(∀y ∈ A)[(∀z ε y)ϕ(z) → ϕ(y)] ⇒ (∀y ∈ A)ϕ(y).

The only thing that does not go through in the proof of recursion on ∈ (p. 399)
is that we cannot prove that x̂ is a set. This is taken care by the additional
assumption that the predecessors of any element of A w.r.t. ε form a set (in
which case ε is called left-narrow).

One obvious way to have a well-founded membership relation is to let it be
the usual ∈. We are thus led to the following notion.

Definition IV.3.4 A structure 〈A, ε〉 is standard if A is transitive, and ε is
the membership relation restricted to A.

Since ε is intended as ∈, a standard structure is completely determined by
its universe A, and we will usually refer only to it. Also, by definition of ordinal
(set of smaller ordinals) and transitivity, the ordinals of a standard structure
are closed downward. If A is a transitive set it thus makes sense to talk of the
ordinal of A, meaning the smallest ordinal not in it or, equivalently, the set
of ordinals in it.
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The next result shows that standard structures really capture the essence
of extensionality and well-foundedness, and it can be seen as a generalization
of the fact that a well-ordered set is isomorphic, in a unique way, to an ordinal
(which is obtained as a special case of it, when ε is a total ordering on the set
A).

Theorem IV.3.5 The Collapsing Lemma (Gödel [1939], Mostowski
[1949]) If 〈A, ε〉 is an extensional, left-narrow, and well -founded structure,
i.e.

1. for every x, y ∈ A, if (∀z ∈ A)(z ε x↔ z ε y) then x = y

2. for every x ∈ A, the class {y : y ∈ A ∧ y ε x} is a set

3. every nonempty subset of A has a minimal element w.r.t. ε

then 〈A, ε〉 is isomorphic, in a unique way, to a standard structure.

Proof. Suppose 〈A, ε〉 is extensional and well-founded. The idea of the proof
is quite simple. We picture the internal structure of A w.r.t. ε as a tree, which
is well-founded because so is ε. We then relabel the tree, by assigning ∅ to
the leaves, and the set of its predecessors (which, by left-narrowness, is really
a set) to any nonterminal node. Thus we obtain a set which is transitive by
construction (because we never skip a level, and proceed from the leaves in an
orderly fashion), and is isomorphic to 〈A, ε〉 because their internal structures
are represented by the same tree.

Formally, we define the collapsing function f as

f(x) = {f(y) : y ∈ A ∧ y ε x},

and show that f is the required isomorphism between 〈A, ε〉 and 〈f(A),∈〉.

1. f is a function on A
By induction on ε it is easy to prove that, for each x ∈ A, f(x) exist and is
unique. Existence follows by collection and separation (or replacement),
applied to the set of predecessors (w.r.t. ε) of x in A, which is a set by
left-narrowness. Uniqueness follows by the Axiom of Extensionality, since
a set is completely determined by its elements. For more details, see the
proof of IV.3.10.

2. f(A) is transitive
Let z ∈ u ∈ f(A): by definition of f , there exists x ∈ A such that
u = f(x) = {f(y) : y ∈ A ∧ y ε x}. Since z ∈ u, there is y ∈ A such that
z = f(y), i.e. z ∈ f(A).
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3. if y ∈ A then y ε x⇒ f(y) ∈ f(x)
Since f(x) = {f(y) : y ∈ A ∧ y ε x}, from y ∈ A ∧ y ε x it follows that
f(y) ∈ f(x).

4. f is one-one
We show, by induction on the well-founded relation ε, that

if x, y ∈ A then f(x) = f(y) ⇒ x = y.

By induction hypothesis,

(∀s ε A)(∀t ε A)(s ε x ∧ t ε y ∧ f(s) = f(t) ⇒ s = t).

By extensionality, we will have x = y (since x, y ∈ A) if

(∀s ∈ A)(s ε x↔ s ε y).

Suppose s ∈ A ∧ s ε x. Then, by part 3, f(s) ∈ f(x). If f(x) = f(y)
then f(s) ∈ f(y) = {f(t) : t ∈ A ∧ t ε y}. Thus f(s) = f(t), for some
t ∈ A ∧ t ε y. By the induction hypothesis s = t, and hence s ε y. The
converse in similar.

5. if y ∈ A then f(y) ∈ f(x) ⇒ y ε x
Since f(x) = {f(t) : t ∈ A ∧ t ε x}, if f(y) ∈ f(x) then f(y) = f(t) for
some t ∈ A ∧ t ε x. From t ∈ A ∧ y ∈ A we have y = t by part 4, and
from t ε x then y ε x.

6. f is unique
Suppose there are two such isomorphisms: they induce an isomorphism
of two transitive classes. We prove, by induction on ∈, that if g : B → C
is an isomorphism and B,C are transitive, then g is the identity. Suppose
x ∈ B, and g(y) = y for every y ∈ x ∩B: we show that g(x) = x.

• x ⊆ g(x)
If y ∈ x then y ∈ B by transitivity, and thus y ∈ x∩B. By induction
hypothesis, g(y) = y. Since g is an isomorphism, g(y) ∈ g(x) because
y ∈ x, and thus y ∈ g(x).

• g(x) ⊆ x
If z ∈ g(x) then z ∈ C by transitivity and, since g is onto, there
is y ∈ B such that g(y) = z. Then g(y) ∈ g(x) and, since g is an
isomorphism, y ∈ x. From y ∈ x ∩ B and the inductive hypothesis,
y = g(y) = z. Thus z ∈ x.

Since g is the identity, there can be only one isomorphism of 〈A, ε〉 with
a transitive class. 2
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Corollary IV.3.6 An extensional class A can be collapsed to an isomorphic
transitive class in a unique way, with the transitive subclasses of A left un-
changed.

Proof. The Collapsing Lemma can be applied to 〈A,∈〉, since extensionality
holds by hypothesis, and ∈ is automatically left-narrow and well-founded. Thus
there is a unique isomorphism with a transitive class. Since now ε is ∈, the
definition of f is simply

f(x) = {f(y) : y ∈ x ∩A}.

Suppose z ⊆ A is transitive. We want to show, by induction on ∈, that
f(x) = x for x ∈ z, so that f does not change z. But if x ∈ z then x ⊆ z by
transitivity, thus x ⊆ A and x ∩A = x. Then

f(x) = {f(y) : y ∈ x}.

By induction hypothesis, f(y) = y if y ∈ x (since then y ∈ z, by transitivity),
and thus

f(x) = {y : y ∈ x} = x. 2

Note that, in particular, the transitive collapse of an extensional class does
not change the ordinals of the class.

For any Set Theory with the Axiom of Extensionality, the Collapsing Lemma
shows that there are only two kinds of models for it: the ones which are not
well-founded and, up to isomorphism, the standard ones. We will thus identify
the latter with the transitive models.

The Set-Theoretical Hierarchy

Manipulation of quantifiers similar to those already seen for number and func-
tion quantifiers in Arithmetic are possible also in our present context. Here we
call bounded quantifier a quantifier of the type (∀x ∈ a) or (∃x ∈ a).

Proposition IV.3.7 The following transformations of quantifiers are permis-
sible (up to provable equivalence in GKP ):

1. permutation of quantifiers of the same type

2. contraction of quantifiers of the same type

3. permutation of two quantifiers, one of which is bounded

4. substitution of a bounded quantifier with an unbounded one of the same
type.
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Proof. Part 1 is obvious. Part 2 uses the Pairing Axiom:

∃x∃yϕ(x, y) ⇔ ∃z(∃x ∈ z)(∃y ∈ z)[z = {x, y} ∧ ϕ(x, y)],

where z is a variable not occurring in ϕ.
Part 3 uses the Axiom of Collection:

(∀x ∈ z)(∃y)ϕ(x, y) ⇔ (∃a)(∀x ∈ z)(∃y ∈ a)ϕ(x, y),

where a is a variable not occurring in ϕ.
Part 4 is just the definition of bounded quantifiers:

(∀x ∈ a)ϕ(x) ⇔ ∀x(x ∈ a→ ϕ(x))
(∃x ∈ a)ϕ(x) ⇔ ∃x(x ∈ a ∧ ϕ(x)). 2

Proposition IV.3.8 Prenex Normal Form (Kuratowski and Tarski
[1931]). Any relation definable in the language of Set Theory is equivalent
in GKP to one with a list of alternated quantifiers in the prefix, and a matrix
without unbounded quantifiers.

Proof. The previous transformations allow us to contract quantifiers of the
same type, without introducing unbounded quantifiers in the matrix. And
quantifiers can be pushed in front by the usual transformations (see the proof
of IV.1.5). 2

In the style of the Arithmetical and Analytical Hierarchies, we can now
introduce a hierarchy for formulas of Set Theory.

Definition IV.3.9 The Set-Theoretical Hierarchy (Levy [1965])

1. Σn is the class of relations definable over the language of Set Theory by
a formula in prenex normal form with no unbounded quantifiers in the
matrix and n quantifier alternations in the prefix, the outer quantifier
being existential.

2. Πn is defined similarly, with the outer quantifier being universal.

3. ∆n is Σn∩Πn, i.e. the class of relations definable in both the n-quantifier
forms.

4. ΣTn , ΠT
n , ∆T

n are the classes of relations definable by formulas provably
equivalent, in the theory T , to (respectively) Σn,Πn,∆n formulas.

5. ΣAn , ΠA
n , ∆A

n are the classes of relations definable over the structure A by
(respectively) Σn,Πn,∆n formulas (also called Σn,Πn,∆n-definable over
A).
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By extension, we will call a formula Σn or Πn if it is in prenex normal form
with n quantifier alternations in the prefix, the outer one being, respectively,
existential or universal.

We will also say that a function is in a given class if its graph is.

∆GKP
1 functions

The level 0 of the Levy’s Hierarchy, which consists of the relations definable
by formulas without unbounded quantifiers, is quite interesting: inclusion, set
equality, ordered pair and relative projections, function, domain, range, graph,
ordinal, ordinal successor, limit, n, natural number (i.e. x ∈ ω), x ⊆ ω, and
x = ω are all ∆GKP

0 notions, as their natural definitions show. E.g., an ordinal
is a transitive set which is totally ordered by the ∈ relation (which induces the
order relation on the ordinals); x is a natural number if and only if it is either
0 (i.e. ∅) or a successor ordinal (i.e. of the form x ∪ {x}, with x ordinal),
together with all its predecessors; x is ω if it is a limit ordinal (i.e. neither 0
nor a successor) such that all its elements are natural numbers. However, the
existence of ω as a constant (is equivalent to, and hence) requires the Axiom
of Infinity, and is thus not provable in GKP alone. Thus we can use the single
natural numbers, but not their collection. Of course, ω is ∆KP−

1 .
The level 1 contains various other interesting notions. For example, well-

foundedness is ∆GKP
1 : a relation on a set x is well-founded if and only if every

nonempty subset of x has a minimal element w.r.t. it (this provides the ΠGKP
1

form), and if and only if there is a function with domain x and range contained
in the ordinals which is order preserving (this provides the ΣGKP1 form). Note
that the last assertion exploits the possibility of defining a function by recursion
on a well-founded relation (see IV.2.17 for details)

To prove a strong and useful closure property of ∆GKP
1 , we consider the

analogue of primitive recursion for set functions. Recall that a nonzero natural
number is inductively generated by its predecessor. A set is instead inductively
generated by its elements. In both cases, primitive recursion gives the value of
a function on a given element when its values are given for the elements that
inductively generate it.

Theorem IV.3.10 Primitive recursion on ∈ (Von Neumann [1923],
[1928], Karp [1967]) The class ∆GKP

1 is closed under primitive recursion on
∈. Formally, let g be a total ∆GKP

1 function, and

f̂(~x, y) = {f(~x, z) : z ∈ y}.

Then the function
f(~x, y) = g(~x, y, f̂(~x, y))

is total and ∆GKP
1 .
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Proof. We omit the parameters ~x, which are kept constant in the proof. We
consider the functions that satisfy the recursion equation on their domain: if
their domains are closed downward w.r.t. ∈ (i.e. transitive), they can be seen
as approximations to f . Formally, let

P (h) ⇔ h is a function ∧
Dom h is closed downward w.r.t. ∈ ∧
(∀y ∈ Dom h)[h(y) = g(y, ĥ(y)],

where Dom h is the domain of h. By the hypothesis on g, and the fact that
the remaining notions used in the definition are ∆GKP

0 , P is ∆GKP
1 . If we let

f(y) = z ⇔ (∃h)[P (h) ∧ h(y) = z],

then f is ΣGKP1 . We now show that f is the required function.

1. f is unique
By induction on ∈. Suppose P (h1)∧P (h2), and let h1 and h2 be defined
on y. Then

h1(y) = g(y, ĥ1(y)) and h2(y) = g(y, ĥ2(y)).

If z ∈ y then, by closure downward of the domains of h1 and h2 w.r.t.
∈, z is in them, and thus h1 and h2 are both defined on z. By induction
hypothesis they agree on z ∈ y: thus ĥ1(y) = ĥ2(y), and h1(y) = h2(y).

2. f is total
By induction on ∈ we show that f is defined on y. This means finding a
function h defined on y and satisfying P . By induction hypothesis,

(∀z ∈ y)(∃hz)[P (hz) ∧ z ∈ Dom hz].

By collection and separation, there is a set A containing the functions
satisfying P , and with some z ∈ y in their domains. The union of mem-
bers of A is thus a function defined on all z ∈ y, and we can let h be this
function extended to y by:

h(y) = g(y, ĥ(y)).

Note that ĥ(y) is determined by the (union of) functions in A. It remains
to be shown that h satisfies P , which can be easily verified:

• h is a function
Because g and the members of A are.
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• Dom h is transitive
Because the domain of h is the union of {y} and the domains of
the functions in A, and the union of the latter is a transitive set
containing all the predecessors of y w.r.t. ∈.

• h satisfies the recursion equation on its domain
On y this holds by the definition of h. On elements z of the domain
different from y, it is enough to note that they are in the domain of
some function h1 in A, which satisfies the recursion equation on its
domain by hypothesis (since it satisfies P ). But the domain of h1

is transitive, and thus h1 is defined on all predecessors of z. Then
ĥ1(z) = ĥ(z), and

h(z) = h1(z) = g(z, ĥ1(z)) = g(z, ĥ(z)).

3. f is ∆GKP
1

We already know that f is ΣGKP1 . Being total, it is also ΠGKP
1 :

f(y) 6= z ⇔ (∃u)[f(y) = u ∧ u 6= z].

4. f satisfies the recursion equation
This is similar to what we have proved at the end of part 2. Given y, let
h be a function satisfying P and defined on y. Its domain is transitive,
and thus it contains all predecessors of y w.r.t. ∈. By the uniqueness of f ,
ĥ(y) = f̂(y). But h satisfies the recursion equation on its domain, since
it satisfies P , and thus

f(y) = h(y) = g(y, ĥ(y)) = g(y, f̂(y)). 2

Course-of-values recursion on natural numbers gives the value of a function
using any set of values for previous elements, and not only the value for the
immediate predecessor. For sets, the set of previously generated elements can
be seen as the transitive closure of the set, i.e. its downward closure under ∈.

Definition IV.3.11 The transitive closure Tc(x)of a set x is the smallest
transitive set containing all elements of x.

Corollary IV.3.12 The transitive closure is a ∆GKP
1 function.

Proof. Let
Tc(x) = x ∪ (

⋃
y∈x

Tc(y)).

By the theorem, Tc(x) exists and it is ∆GKP
1 . Moreover, it is really the tran-

sitive closure:
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1. x ⊆ Tc(x)
By definition.

2. Tc(x) is transitive
By induction on ∈. Suppose that Tc(y) is transitive, for every y ∈ x. Let
z ∈ t ∈ Tc(x). By definition, there are two cases:

• t ∈ x
Then Tc(t) is transitive, z ∈ Tc(t) ⊆ Tc(x), and z ∈ Tc(x).

• t ∈
⋃
y∈x Tc(y)

Then t ∈ Tc(y) for some y ∈ x, and Tc(y) is transitive. Thus
z ∈ Tc(y) ⊆ Tc(x), and z ∈ Tc(x).

3. x ⊆ z ∧ z transitive ⇒ Tc(x) ⊆ z
By induction on ∈. Suppose

y ⊆ z ∧ z transitive ⇒ Tc(y) ⊆ z,

for every y ∈ x. Given such a y, from x ⊆ z we have y ∈ z, and y ⊆ z
by transitivity. Then the induction hypothesis applies, and Tc(y) ⊆ z.
Thus (

⋃
y∈x Tc(y)) ⊆ z. Since x ⊆ z by hypothesis, Tc(x) ⊆ z. 2

We can think of primitive recursion on the transitive closure as being the
analogue of course-of-values recursion. The next result is thus the analogue
of I.7.1, and it shows that ∆GKP

1 has sufficiently strong closure properties to
allow for the usual arithmetization results, in set-theoretical setting.

Corollary IV.3.13 Course-of-values recursion on ∈ (Von Neumann
[1923], [1928], Karp [1967]) The class ∆GKP

1 is closed under course-of-
values recursion over ∈. Formally, let g be a total ∆GKP

1 function, and

f(~x, y) = g(~x, y, f̂(~x, T c(y))).

Then f is total and ∆GKP
1 .

Proof. The proof of IV.3.10 is based on induction on ∈, i.e.

(∀z)[(∀y ∈ z)P (y) → P (z)] ⇒ (∀x)P (x).

The same proof goes through, once we prove that a similar principle of induction
on the transitive closure holds:

(∀z)[(∀y ∈ Tc(z))P (y) → P (z)] ⇒ (∀x)P (x).

Its hypothesis suggests to prove not (∀x)P (x) directly, but rather

(∀z)(∀x ∈ Tc(z))P (x)
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(from which the former follows, since x ∈ Tc({x})). We proceed by induction
on ∈. Given z we have, by induction hypothesis,

(∀y ∈ z)(∀x ∈ Tc(y))P (x),

and we want to prove (∀x ∈ Tc(z))P (x). If x ∈ Tc(z), there are two cases:

• x ∈ z
Then, by the induction hypothesis, (∀u ∈ Tc(x))P (u), and thus P (x)
holds by the hypothesis of the principle.

• x ∈
⋃
y∈z Tc(y)

Then, by the induction hypothesis, P (x) holds. 2

Exercises IV.3.14 a) Sum and product on the ordinals are ∆GKP
1 . (Hint: the order

relation on the ordinals is induced by ∈.)

b) The ∆GKP
1 functions are closed under composition and case definition. (Hint:

by logical operations and quantifier manipulations.)

The levels of the Set-Theoretical Hierarchy

The classes of the Set-Theoretical Hierarchy share a number of properties with
their analogues in the Arithmetical and Analytical Hierarchies.

Proposition IV.3.15 Closure properties (Levy [1965])

1. R is ΣGKPn if and only if ¬R is ΠGKP
n

R is ΠGKP
n if and only if ¬R is ΣGKPn

2. ∆GKP
n is closed under negations

3. ΣGKPn , ΠGKP
n , and ∆GKP

n are closed under conjunction, disjunction, and
bounded quantification

4. for n ≥ 1, ΣGKPn is closed under existential quantification, and ΠGKP
n is

closed under universal quantification

5. the universal quantification of a ΣGKPn relation is ΠGKP
n+1 , and the exis-

tential quantification of a ΠGKP
n relation is ΣGKPn+1 .

Proof. Everything easily follows from logical operations and quantifier manip-
ulations, as in IV.1.8. 2

The closure properties just proved can be dealt with in formal theories for
Set Theory, like GKP , because they only require formulas manipulations. The
remaining properties need instead the existence of elements, and hence they
will be proved not for theories, but for models.
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Theorem IV.3.16 Enumeration Theorem (Kripke [1964], Levy [1965],
Platek [1966]) For any standard model A of GKP , and each n,m ≥ 1, there
is an m+ 1- ary ΣAn relation that enumerates over A the m-ary ΣAn relations.
Similarly for ΠA

n .

Proof. We prove the result for n = 1. The remaining cases follow from it by
induction on n, as in IV.1.9. First we introduce some general tools:

1. a ∆GKP
1 coding and decoding mechanism

We want to show how to code and decode finite sequences of sets. The
idea is to use the ∆GKP

0 notions of ordered pair:

(x, y) = z ⇔ (∃a ∈ z)(∃b ∈ z)(a = {x} ∧ b = {x, y} ∧ z = {a, b}),

and relative projections:

(z)1 = x ⇔ (∃y ∈ z)(z = (x, y))
(z)2 = y ⇔ (∃x ∈ z)(z = (x, y)).

By course-of-values recursion (since the ordered pair of two sets is two
levels higher than its components) we can define

〈〉 = ∅
〈x1, . . . , xn+1〉 = (〈x1, . . . , xn〉, xn+1).

It is then immediate to obtain, again by course-of-values recursion, a
∆GKP

1 predicate telling whether a set is a coding sequence, and ∆GKP
1

functions giving the length of a coding sequence, and the components of
an n-tuple.

Note that the Axiom of Infinity is not needed in the coding procedure:
we use the natural numbers individually, but we never need to consider
their set. Recall that the expressions x ∈ ω, x ⊆ ω, x = ω are all ∆GKP

0 ,
even without the Axiom of Infinity.

2. a ∆GKP
1 satisfaction predicate for ∆GKP

0 formulas
By using the coding and decoding mechanism, and the possibility of do-
ing course-of-values recursions, we can now proceed as in usual arith-
metizations. In particular, we can define a ∆GKP

1 satisfaction predicate
T (e, x, y), meaning:

the formula coded by e, with inputs coded by x (i.e. when its
free variables v1, v2, . . . are substituted, in an orderly fashion,
by the components of x), is true in the transitive closure of y.
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T is ∆GKP
1 because the definition of truth in a standard structure is a

course-of-values recursion over ∈ (in general, it would only be a course-
of-values recursion over the membership relation of the structure).

Note that what we have here is a ∆GKP
1 satisfaction predicate for ∆GKP

0

formulas, since the effect of interpreting a formula over a (transitive) set
is to bound all quantifiers over the set.

3. a ΣGKP1 universal predicate
The definition of a universal ΣGKP1 predicate for ΣGKP1 m-ary relations
is now immediate:

W(e, x1, . . . , xm) ⇔
(∃a)[a is transitive ∧ x1, . . . , xm ∈ a ∧ T (e, 〈x1, . . . , xm〉, a)].

Note that we only dealt with relations without parameters, but the case
of relations with parameters can be treated similarly: all parameters can
be coded into one, and thus m-ary relations with parameters are just
m + 1-ary relations without parameters, in which one variable has been
substituted with a constant.

Let now A be a standard model of GKP , and consider

WA(e, x1, . . . , xm) ⇔ 〈A,∈〉 |= W(e, x1, . . . , xm),

i.e. interpret W over A. This is obviously a ΣA1 predicate, and we want to show
that it enumerates the m-ary ΣA1 predicates.

If ϕ ∈ ΣA1 , let v1, . . . , vm be its free variables, and x1, . . . , xm be in A.
It is enough to show that if ϕ(x1, . . . , xm) holds in A, it also holds in some
transitive set a ∈ A (this is called Σ1-reflection). Then, if e codes ϕ, A
satisfies W(e, x1, . . . , xm) by definition, as wanted.

Suppose ϕ(x1, . . . , xm) holds in A. Since ϕ is ΣA1 , there is ψ without un-
bounded quantifiers, such that ϕ(x1, . . . , xm) ↔ (∃y)ψ(x1, . . . , xm, y). To say
that, for x1, . . . , xn ∈ A, ϕ(x1, . . . , xm) holds in A, means that there is y ∈ A
such that ψ(x1, . . . , xm, y) is true over A. But since ψ has no unbounded quan-
tifiers, this is true in the transitive closure of {x1, . . . , xm, y} as well, which is a
member of A (by the closure properties of A, which is a model of GKP ). 2

We can rephrase what we proved as follows. Since to interpret a formula of
any complexity over a set turns it into ∆GKP

0 form, by bounding the quantifiers,
the global satisfaction predicate over a set is ∆GKP

1 . The satisfaction predicate
for ΣGKPn+1 formulas over a class is ΣGKPn+1 . Of course, there is no definable notion
of global satisfiability over a class, by Tarski’s Theorem (see p. 166).
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Exercise IV.3.17 The Fixed-Point Theorem for ΣA
1 relations. If A is a stan-

dard model of GKP , WA is the enumeration predicate for ΣA1 m-ary relations, and
R is an m+ 1-ary relation, there is e ∈ A such that

WA(e, x1, . . . , xm) ⇔ R(e, x1, . . . , xm).

(Hint: there is a ∆A
1 analogue of the Smn -Theorem, by standard methods. Moreover

ΣA1 relations are closed under substitution of ∆A
1 functions, because

P (~x, f(~x)) ⇔ (∃y)[y = f(~x) ∧ P (~x, y)],

and ΣA1 is closed under conjunctions and existential quantifications.)

Theorem IV.3.18 Hierarchy Theorem (Kripke [1964], Levy [1965],
Platek [1966]) For any standard model A of GKP , the Set-Theoretical Hi-
erarchy over it does not collapse. More precisely, for any n ≥ 1 the following
hold:

1. ΣAn −ΠA
n 6= ∅, and hence ∆A

n ⊂ ΣAn

2. ΠA
n − ΣAn 6= ∅, and hence ∆A

n ⊂ ΠA
n

3. ΣAn ∪ΠA
n ⊂ ∆A

n+1.

Proof. By diagonalization and IV.3.16, as in IV.1.13. 2

HF and the Arithmetical Hierarchy

We have noted that the Axiom of Foundation allows a representation of the
transitive closure of a set as a well-founded tree, describing the set-theoretical
build-up of the set from the empty set. We now analyze the sets whose associ-
ated tree is finite.

Definition IV.3.19 HF is the set of hereditarily finite sets, i.e. the
smallest class A of sets such that:

1. ∅ ∈ A

2. if x1, . . . , xn ∈ A then {x1, . . . , xn} ∈ A.

Note the difference between being finite, i.e. having only finitely many el-
ements (like {ω}, that consists of only one element), and being hereditarily
finite, i.e. having only finitely many elements, each of which is hereditarily fi-
nite (a definition by course-of-value recursion). In other words, a set is in HF
if and only if its transitive closure is finite.

Proposition IV.3.20 HF is the smallest transitive model of GKP .
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Proof. We first verify that HF is a transitive model of GKP :

1. transitivity
The tree representation of an element of x is a subtree of the representa-
tion of x, and it is finite if this is.

2. extensionality and foundation
Automatic from transitivity.

3. pair
The tree representation of {x, y} consists of a vertex on top of the tree
representations of x and y, and thus it is finite if these are.

4. union
The tree representation of

⋃
x consists of a vertex on top of the tree

representation of the elements of the elements of x, and thus it is finite
if there are only finitely many of these trees, each of them finite.

5. separation
The tree representation of a subset of x is a subtree of the representation
of x, and it is finite if this is.

6. collection
Suppose (∀x ∈ a)(∃y)ϕ(x, y) holds in HF . Since a is finite, it has only
finitely many elements x1, . . . , xn. For each of them, there is a set yi in
HF such that ϕ(xi, yi) holds. By pair and union, which we have already
verified, b = {y1, . . . , yn} is in HF , and thus (∀x ∈ a)(∃y ∈ b)ϕ(x, y)
holds in HF .

We now verify that HF is the smallest transitive model of GKP . Suppose
A is such a model: then it contains ∅, and it is closed under pair and union.
We want to show that HF ⊆ A. This is easily seen by induction, since each
element x ∈ HF is obtained from the emptyset, by finitely many applications
of pairing and union. 2

Note that the natural numbers, represented in set-theoretical terms (as
finite ordinals), are all in HF , by induction:

0 = ∅ and n+ 1 = n ∪ {n}.

Exercises IV.3.21 a) HF = Vω.

b) HF is the smallest model of ZFC with the Axiom of Infinity replaced by its

own negation. (Hint: the power set of a finite set is finite. Choice is trivial, since the

elements of HF are all finite. Since ω is not in HF , the Axiom of Infinity does not
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hold. Its negation, that every set is finite, holds because if x ∈ HF then any function

from x to some natural number is already in HF .)

The reason we are particularly interested in HF is that, for sets of natural
numbers, set-theoretical definability over it coincides (and not only globally,
but level by level) with arithmetical definability. This provides an alternative,
set-theoretical way of seeing Recursion Theory, and it is the starting point for
some interesting generalizations (see p. 421).

Theorem IV.3.22 Set-theoretical definability of the Arithmetical
Hierarchy (Ackermann [1937]) Let A ⊆ ω. Then:

1. A ∈ HF if and only if A is finite

2. A is definable over HF if and only if A is arithmetical. More precisely,
for n ≥ 1:

A ∈ ∆HF
n ⇔ A ∈ ∆0

n

A ∈ ΣHFn ⇔ A ∈ Σ0
n.

Similarly for relations, of any number of variables.

Proof. The first assertion is easy to see: an hereditarily finite set is, in par-
ticular, finite; and a finite set of natural numbers is hereditarily finite, because
so are the natural numbers (as set-theoretical objects).

The proof of the second assertion is more cumbersome, and it amounts to
show that we can translate, by preserving the logical complexity, arithmetical
assertions into set-theoretical ones, and conversely:

1. translation from Arithmetic to Set Theory
We already know how to interpret natural numbers in set-theoretical
terms. Then number quantifiers can be easily turned into set quantifiers:

(∃x)ϕ(x) ⇔ (∃x)(x ∈ ω ∧ ϕ(x))
(∀x)ϕ(x) ⇔ (∀x)(x ∈ ω → ϕ(x)).

The expression x ∈ ω is ∆GKP
0 , hence ∆HF

0 , and thus it does not increase
the complexity of the matrix. It only remains to translate recursive matri-
ces, i.e. graphs of recursive functions, into ∆GKP

1 predicates. We refer to
the characterization of recursive functions given in I.1.8. Sum, product,
and composition have already been dealt with in IV.3.14, while identities
and equality are trivially ∆GKP

1 . For µ-recursion, let

f(~x) = µyR(~x, y).
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Then
f(~x) = y ⇔ R(~x, y) ∧ (∀z < y)¬R(~x, z).

If R is ∆GKP
1 then so is the graph of f , by the closure properties of ∆GKP

1 ,
and the fact that bounded number quantifiers translate into bounded
set quantifiers (because the order relation on ordinals is induced by the
membership relation).

Note that the whole argument does not require the existence of ω. If
ω were present (i.e. if we worked with a model of GKP plus infinity),
the translations of arithmetical formulas would simply become all ∆1,
because the number quantifiers would then be translated into bounded
set quantifiers (see p. 420 for more on this point).

2. translation from Set Theory to Arithmetic
First of all we have to interpret members of HF as natural numbers, and
this can be done by induction on the construction of HF :

f(∅) = 0
f({x1, . . . , xn}) = 2f(x1) + · · ·+ 2f(xn)

(we suppose all the xi distinct, since a set is determined solely by its ele-
ments). This simply amounts to using canonical indices (II.5.13) hered-
itarily, by inductively decomposing the exponents in the binary decom-
position of a number.

Now set-theoretical quantifiers can be turned into number quantifiers:

(∃x)ϕ(x) ⇔ (∃n)ϕ(f−1(n))
(∀x)ϕ(x) ⇔ (∀n)ϕ(f−1(n)).

It remains to be proved that the translations of ∆HF
0 formulas are recur-

sive. By the parallel closure properties of ∆GKP
0 formulas and recursive

relations, this reduces to show how to deal with membership and con-
stants. For the former, note that

x ∈ y ⇔ f(x) ∈ Df(y),

which is a recursive relation. To deal with constants, note that among the
values of f there are some that naturally correspond to the set-theoretical
integers:

g(0) = 0
g(n+ 1) = g(n) + 2g(n)
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(because 0 = ∅, and n + 1 = n ∪ {n}). Now g can be thought of as
a function both from HF to ω, and from ω to ω. In the latter case,
it is a recursive function. And g can be used to substitute occurrences
of set-theoretical natural numbers with occurrences of the corresponding
natural numbers coding them as sets. 2

We have proved a correspondence between definability on Arithmetic and
HF , for relations on natural numbers. This suffices for our recursion-theoretical
purposes, but there is more to it. It can actually be shown that, for statements
about natural numbers, PA is equivalent to ZFC with the Axiom of Infinity
replaced by its negation (which is equivalent to V = HF) (Ackermann [1937]).
In other words, the translations provided in the proof above are actually faith-
ful interpretations of the stated theories into one another (where interpreta-
tion means that provable statements are translated into provable statements,
and faithfulness that no translation is provable unless its original version was
already provable). Note that a symmetric role is played by induction and
foundation, which is the reason to consider Peano Arithmetic, and not weaker
systems.

The absence of the Axiom of Infinity is enough for the faithfulness of the
translation of PA into Set Theory. The substitution of the Axiom of Infinity
with its negation is instead crucial to prove the faithfulness of the translation
of Set Theory in PA (since otherwise (∀x)(x ∈ HF), which is equivalent to
the negation of the Axiom of Infinity, is not provable in Set Theory, while its
translation, which amounts to (∀x)(x ∈ ω), is provable in PA).

Absoluteness and the Analytical Hierarchy

Since there is no single privileged standard structure for Set Theory, we will
have to interpret the formulas on the various structures. The problem is that
the same formula could be true in some model of GKP and false in some other,
thus not having an absolute meaning.

As an example, consider the set

x ∈ b⇔ x ∈ a ∧ (∀z)ϕ(x, z),

obtained from a by separation. Suppose ϕ has no quantifier. For any A such
that a ∈ A, there is a set bA obtained by interpreting the definition of b over
A:

x ∈ bA ⇔ x ∈ a ∩A ∧ (∀z ∈ A)ϕ(x, z).

If A is transitive then a ∩A = a, so

x ∈ bA ⇔ x ∈ a ∧ (∀z ∈ A)ϕ(x, z),
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But (∀z ∈ A)ϕ(x, z) could hold even if (∀z)ϕ(x, z) does not. Thus b ⊆ bA, and
‘A believes bA is b’, while this is not necessarily so.

Similarly, by changing the universal quantifier into an existential one, we
could have bA ⊆ b, while for more complicated formulas there is no simple
relationship between the true b and the set bA, that A believes to be b. This
is of course an unpleasant situation, introducing an element of relativity in Set
Theory: on one side we have the ‘real’ sets, on the other their interpretations
over given models, with no apparent connection between them.

The situation is not as disruptive as it might seem at first sight, since a
number of formulas turn out to have an absolute meaning, in the sense of
defining the same set on every model.

Definition IV.3.23 (Gödel [1940]) A formula is absolute for a class of
structures if it has the same truth value in each structure of the given class.

The next result isolates a class of formulas that are absolute, and it is quite
useful in applications. The notion of standard model is used in a crucial way,
thus providing another reason to restrict our attention to such models.

Proposition IV.3.24 ∆T
1 formulas are absolute for the standard models of T .

Proof. Fix a transitive model A of T : we show that the truth value of any
∆T

1 formula interpreted over A is independent of A, and it coincides with the
truth value of the formula in the universe V of sets.

First of all note that, over elements of a transitive set A, membership is
absolute: indeed, if x ∈ A then x ∩ A = x, and thus z ∈ x has the same
meaning over A and over V . This shows that, in particular, bounded quantifiers
preserve absoluteness and thus, by induction on their complexity, ∆T

0 formulas
are absolute for standard models of T .

Suppose now ϕ is ∆T
1 . We want to show that ϕ is true over A if and only

if it is true (over V ). Let ψ1 and ψ2 be ∆T
0 formulas such that, in T ,

ϕ(~x) ↔ (∃y)ψ1(~x, y) ↔ (∀y)ψ2(~x, y).

Suppose ϕ(~x), i.e. (∃y)ψ1(~x, y), is true over A. This means that, for some
y ∈ A, ψ1(~x, y) is true over A. But this is a ∆T

0 formula, which is absolute.
Then ψ1(~x, y), and hence (∃y)ψ1(~x, y) and ϕ(~x), are true.

Suppose now ϕ(~x), i.e. (∀y)ψ2(~x, y), is true. Then ψ2(~x, y) is true for all y,
in particular for all y ∈ A. Thus (∀y)ψ2(~x, y), and hence ϕ(~x), are true over
A. 2

In the Arithmetical Hierarchy quantifiers range over ω. For any model A
of GKP and the Axiom of Infinity, ω ∈ A. Then number quantifiers can be



420 IV. Hierarchies and Weak Reducibilities

interpreted as bounded set-theoretical quantifiers, and arithmetical relations
are absolute, being translated into ∆A

1 formulas (when sum and product are
replaced by their ∆GKP

1 definitions, see IV.3.14.a).
In the Analytical Hierarchy quantifiers range also over P(ω), which is only

a ΠGKP
1 object:

x = P(ω) ⇔ ∀y(y ∈ x↔ y ⊆ ω).

P(ω) is not absolute, and hence not ∆GKP
1 : by absoluteness of y ⊆ ω, its

interpretation over a transitive model A of GKP is P(ω) ∩ A, and thus it
varies with A (see also IV.4.27.c). This means that function quantifiers do not
automatically translate into bounded quantifiers, and analytical relations are
not automatically absolute. But relations in the first two levels are, as we now
see.

Proposition IV.3.25 (Mostowski [1949]) Π1
1 relations are absolute for

standard models of GKP containing ω (i.e. models of ZF−).

Proof. By the First Representation Theorem for Π1
1 sets (IV.2.15), A is Π1

1 if
and only if there is a recursive sequence {Tx}x∈ω of recursive trees, such that

x ∈ A⇔ Tx is well-founded.

But we have already noted that recursive relations (being arithmetical) and
well-foundedness (being ∆GKP

1 ) are absolute. Then so is A. 2

Note that the proof shows that every Π1
1 relation is actually ∆1 over GKP

plus infinity. Similarly for Σ1
1 relations, by taking negations.

Exercise IV.3.26 Π1
1 formulas are not absolute for standard models of ZFC minus

infinity . (Hint: HF is a model for it, but the relations over ω definable over it are

all arithmetical.)

Theorem IV.3.27 (Shoenfield [1961a]) Σ1
2 relations are absolute for stan-

dard models of GKP containing all countable ordinals.

Proof. By the relativized version of the First Representation Theorem for Π1
1

sets, A is Σ1
2 if and only if there is a recursive sequence {Tx,f}x∈ω of trees

uniformly recursive in f , such that

x ∈ A⇔ (∃f)(Tx,f is well-founded).

Since well-foundedness of Tx,f is equivalent to the existence of an order-preserv-
ing map from Tx,f to the countable ordinals (because the trees are countable),

x ∈ A⇔ (∃f)(∃g)(g : Tx,f → ω1 is order-preserving).
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Now we can reproduce the proof of the First Representation Theorem IV.2.15
(by looking at the first places in which the matrix fails), and get uniformly
absolute trees Rx,f,g on ω × ω1 such that

x ∈ A⇔ Rx,f,g is not well-founded

(since A is now defined by existential quantifiers, in place of universal ones).
Thus, if M contains all countable ordinals, A is absolute for M . 2

Note that the proof shows that every Σ1
2 relation is actually of the form

(∃α countable)ϕ, with α ranging over countable ordinals, and ϕ ∆1 over GKP
plus infinity.

Exercise IV.3.28 Σ1
2 formulas are not absolute for standard models of ZFC. (Hint:

the formula translating ‘the set X ⊆ ω codes a countable transitive model of ZFC’

is ∆1
1, by arithmetization. ‘There exists a set X coding a transitive model of ZFC’

is thus a true Σ1
2 formula, which is not true in the least countable transitive model of

ZFC. Note that this reasoning requires the existence of a standard model of ZFC,

and thus it is not formalizable in ZFC. For the weaker result relative to standard

models of ZFC− only, i.e. without the Power Set Axiom, such an assumption is not

necessary.)

Admissible sets ?

We have worked with the theory GKP because we wanted to have structural
results for all levels of the Set-Theoretical Hierarchy. But the full power of
GKP is needed only for the full results, and it is possible to refine GKP ,
and isolate what is needed to get the structural results for the first (or, more
generally, the n-th) level only.

The Kripke-Platek system KP (Kripke [1964], Platek [1966]) has the
same axioms of GKP , with separation and collection limited to ∆0 formulas,
and it can be seen as a kind of constructive Set Theory. This theory is strong
enough to prove (separation for ∆1 formulas, collection for Σ1 formulas, and)
the closure properties of the first level of the Levy’s Hierarchy.

The transitive sets which are models of KP (i.e. the standard models) are
called admissible sets, and can be seen as domains suitable for a theory of Σ1

relations and functions analogous to that of r.e. relations and partial recursive
functions, and hence for a Generalized Recursion Theory on sets. Note that
HF is the smallest admissible set, and thus the usual notion of recursiveness is
a special case of recursion on an admissible set (by IV.3.22). Moreover, Gordon
[1968] has proved that on an admissible set the notion of recursiveness coincides
with that of search computability (see p. 204).
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This should not be taken to mean that the notion of admissibility is either
sufficient or necessary for an abstract analogue of all parts of Recursion The-
ory: Simpson [1974] and Harrington (see Chong [1984]) have shown that there
are admissible sets which do not admit a positive solution to the analogue of
Post’s Problem, while Friedman and Sacks [1977] have extended a good deal
of Recursion Theory, including a positive solution to the analogue of Post’s
Problem, to special nonadmissible sets.

The full power of GKP is not always avoidable, even in the study of the
first level of the Set-Theoretical Hierarchy. A crucial example is the notion of
well-foundedness, which is ∆GKP

1 but not ∆KP
1 , and thus is not absolute for

admissible sets. What fails here, since well-foundedness is ΠKP
1 by definition, is

the possibility of carrying on recursion on well-founded relations (the so called
β-property, Mostowski [1959]), and thus to provide the ΣKP1 form: we have
noted that the justification of recursion on well-founded relations requires some
form of separation. ∆1-separation, provided by admissibility, is not enough,
although Σ1-separation is. In particular, the Collapsing Lemma IV.3.5 is not
provable in KP , although its corollary is (because its proof requires only a
course-of-value recursion on ∈).

For a development of the theory of admissibility see Barwise [1975] and
Fenstad [1980]. The implications of the notion of admissibility for the study of
P(ω) will be dealt with in Volume III.

IV.4 The Constructible Hierarchy

The Analytical Hierarchy is immensely extended and it contains, already at
low levels, all sets of natural numbers naturally occurring in practical consid-
erations. Nevertheless it is still countable, and this has to be true of all the
hierarchies that simply stratify the relations definable in some fixed countable
language, including the universal language of Set Theory. If we want to over-
come this defect, we have to allow for an extension of the notion of definability.
One way to do this is by transfinitely iterating definitions, and we pursue this
path here.

The Constructible Hierarchy

At the turn of the century various mathematicians began to feel uncomfortable
with the development of Set Theory. The center of the dispute was the Power
Set Axiom that, in one of its simplest applications, allowed consideration of the
class of all sets of natural numbers as a completed totality. The discovery of
paradoxes added ground to the objections, and one possible way out was seen
in a strong form of the vicious circle principle, according to which a totality
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cannot contain members that are only definable in terms of it (Poincaré [1906],
Russell [1908]). As a consequence, only predicative definitions, that define
objects without referring to sets already containing them, would be accepted.

Contrary to the form of the vicious circle principle considered on p. 399,
which is consistent with usual mathematical practice, and is actually a con-
sequence of the Axiom of Foundation, this strong form would permit only a
limited development of mathematics. See e.g. Weyl [1918] for what can be
saved of analysis, and Gödel [1944], [1964] for discussion.

The idea of a predicative iterative approach, in which one would start with
easily definable and graspable sets, and would add at each step only those sets
that were definable by using the previously obtained ones, is however worth
pursuing. The decision of when (i.e. at which ordinal) to stop the iteration
process is crucial. If we really were interested only in the predicatively defin-
able sets, then we should allow only for predicatively definable ordinals: this
requires an analysis of the notion of predicativity, and will be considered in
Volume III. Here we take a more generous stand, and allow for any number of
iterations. By so doing we lose the property of predicativity, and we can think
of the constructible hierarchy as consisting of those sets which are predicatively
definable modulo the ordinals. This hierarchy should not be taken as exhausting
the whole universe, but rather as a kind of minimal model (see IV.4.7).

The constructible hierarchy also extends ideas of Hilbert [1926], who tried
to prove the Continuum Hypothesis by considering the generalized recursions
(using higher-type objects) needed to generate all functions of natural num-
bers, and attempted a proof to show that they could be reduced to transfinite
recursions on ordinals up to ω1. Gödel’s improvements on Hilbert’s tentative
are of two kinds: he uses all ordinals, instead of only countable ones, and first-
order definitions, instead of recursions (which correspond only to one-quantifier
definitions).

Definition IV.4.1 (Gödel [1939]) The Constructible Hierarchy is de-
scribed, in terms of ordinals, as follows:

L0 = ∅
Lα+1 = def (Lα)
Lβ =

⋃
α<β Lα (β limit)

L =
⋃
α Lα,

where def (x) is the set of subsets y of x which are definable (with parameters)
over x. If x ∈ L then x is constructible.

There are alternative ways of presenting the successor steps in the construc-
tion of L. First of all, we can allow parameters or not. The reason is that if
a set is definable over Lα with parameters, it is also definable over it without
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parameters, by hereditarily substituting the parameters with their definitions
(in the sense that the definition of a parameter may involve other parameters,
which have to be discharged as well). Note that no circularity is involved, be-
cause the definition of an element of Lα can only use parameters from Lβ with
β < α, and thus the ordinals are decreasing, although an ordinal greater than
α may be needed to carry out the induction.

Another way to define L (Gödel [1940]) relies on an analysis of the operation
def (x), and on the isolation of finitely many (eight) operations that explicitly
produce, by composition over the transitive closure of x, any set definable
over x. This approach effectively reduces the infinitely many formulas of the
language of Set Theory to a finite set of operations, and it allows a finite axiom-
atization of Set Theory, based on the concept of class (the Von Neumann-
Gödel-Bernays system NGB, see Fraenkel, Bar-Hillel, and Levy [1958]).

Finally, it has turned out that the levels Lα of the constructible hierarchy
are well-behaved only for limit ordinals, while in general they are not closed
under very natural functions (like ordered pairing) that, although obviously
constructible, increase levels. For a finer analysis, the constructible hierarchy
has been substituted by Jensen Hierarchy (Jensen [1972]), whose levels Jα
are extensions of Lα, and possess the closure properties that only the limit
levels of L have. The levels of the two hierarchies coincide exactly at those
stages α such that ω · α = α. See Devlin [1984] for a treatment.

Axiom IV.4.2 The Axiom of Constructibility is the assertion V = L that
every set is constructible, i.e. (∀x)(x ∈ L).

Here we develop the study of L only for what concerns our immediate
interest, i.e. the study of subsets of ω. General references for constructible sets
are Gödel [1940], Mostowski [1969], and Devlin [1984].

The levels of the Constructible Hierarchy

The first few levels of the L have already been considered: since, for finite sets,
def (x) = P(x), for α ≤ ω we have Lα = Vα. In particular, Lω = HF .

Some of the properties of these first levels generalize to every level.

Proposition IV.4.3 (Gödel [1939]) Lα is transitive, and it has finite car-
dinality if α < ω, and the same cardinality as α otherwise.

Proof. Lα is transitive, by induction on α:

• α = 0
Obvious.
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• α = β + 1
Let x ∈ y ∈ Lα. By definition, y ⊆ Lβ , and thus x ∈ Lβ . By induction
hypothesis Lβ is transitive, and thus x ⊆ Lβ . Then x ∈ Lβ+1 because x
is definable over Lβ , by the formula ϕ(z) ⇔ z ∈ x (in which x appears
as a parameter).

• α limit
The union of transitive sets is transitive.

Ln is finite, by induction on n ∈ ω, because the power set of a finite set is
finite. Suppose then α ≥ ω: we show by induction on α that Lα has the same
cardinality as α.

• α = ω
Lω is countable because all the Ln are finite.

• α = β + 1
The cardinality of Lβ+1 is equal to the cardinality of the set of formulas
with parameters in Lβ , and hence to the cardinality of Lβ (because the
number of possible formulas is countable, and β ≥ ω). By induction
hypothesis this is the cardinality of β, and hence of β + 1 = α.

• α limit
Lα is the union of α many sets, each of cardinality at most the cardinality
of α. Thus it has cardinality at most equal to that of α (by well-known
properties of cardinals, following from the Axiom of Choice). 2

Proposition IV.4.4 Hierarchy Theorem (Gödel [1939])

1. α ≤ β ⇒ Lα ⊆ Lβ

2. α < β ⇒ Lα ⊂ Lβ.

Proof. Note that Lγ ∈ Lγ+1, being definable by x = x over Lγ . To show that
Lα ⊆ Lβ if α ≤ β, we may suppose α < β (since the case α = β is trivial).
And, if α < β, it is enough to show that Lα ∈ Lβ , because Lβ is transitive
(and thus its elements are contained in it).

We thus prove, by induction on β, that Lα ∈ Lβ , for any α < β:

• β = 0
Obvious.

• β = γ + 1
If α < β then either α = γ, and thus Lα = Lγ ∈ Lγ+1 = Lβ , or α < γ,
and thus, by induction hypothesis, Lα ∈ Lγ ∈ Lγ+1: by transitivity,
Lα ⊆ Lγ+1.
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• β limit
If α < β, there exists γ such that α < γ < β. Then Lα ∈ Lγ by induction
hypothesis, and Lγ ⊆ Lβ by definition of Lβ for β limit. Thus Lα ∈ Lβ .

To show that the hierarchy is proper it is enough to show, by induction
on α, that α ∈ Lα+1 − Lα. Suppose that, for every β < α, β ∈ Lβ+1 − Lβ :
then (∀β < α)(β ∈ Lα) (because, by the first part of the proof, if β < α then
Lβ+1 ⊆ Lα), and α ⊆ Lα. Now:

• α 6∈ Lα
Otherwise, by definition of Lα, α ⊆ Lβ for some β < α, and thus β ∈ Lβ ,
contradicting the induction hypothesis.

• α ∈ Lα+1

α ⊆ Lα, and α 6∈ Lα. Moreover, the ordinals in Lα are closed downward
(because Lα is transitive). This means that α is the set of ordinals in
Lα, and thus it is definable over it by the formula ‘x is an ordinal’. Then
α ∈ Lα+1. 2

The structure of L

The next result shows that the definition of Lα is absolute, and thus it has the
same meaning in every model of ZF−.

Proposition IV.4.5 (Takeuti [1960], Karp [1967])

1. Lα is a ∆ZF−

1 function total on the ordinals

2. x ∈ Lα is ∆ZF−

1 , as a relation of x and α

3. x ∈ L is ΣZF
−

1 .

Proof. Lα is defined by recursion on the ordinals, and thus it is enough
to verify that the recursion cases are ∆ZF−

1 . The only nontrivial case is the
successor step. But to say that x ⊆ Lα is definable over Lα means that there
is a formula (this introduces an existential quantifier, which is bounded over
the ∆ZF−

1 set of formulas, which is a set by the Axiom of Infinity1) such that
x is the set defined by it over Lα (and the satisfaction predicate is ∆GKP

1 , as
in IV.3.16).

Then x ∈ Lα is ∆ZF−

1 , and x ∈ L is ΣZF
−

1 because

x ∈ L ⇔ (∃α)(α ordinal ∧ x ∈ Lα). 2

1The Axiom of Infinity could be avoided, thus replacing ZF− by GKP throughout this
section, if the alternative approach to constructibility by Gödel’s functions, quoted after
IV.4.1, were used.
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Note that Lα is absolute for standard models of ZF−, being ∆ZF−

1 , but L
is not, being only ΣZF

−

1 . Given a standard model A of ZF−, if α ∈ A then
Lα ∈ A, by replacement. Thus L in A becomes

⋃
α∈A Lα, which is L itself if

A contains all ordinals. In other words, L is absolute for standard models of
ZF− containing all ordinals (Shepherdson [1951]).

One important tool for later proofs is the following.

Theorem IV.4.6 Reflection Principle for L (Levy [1960], Montague
[1961]) Given a formula ϕ with n free variables, for every ordinal α there exists
β ≥ α such that, whenever x1, . . . , xn ∈ Lβ,

L |= ϕ(x1, . . . , xn) ⇔ Lβ |= ϕ(x1, . . . , xn).

Proof. Let ϕ have no occurrence of ∀ (by possibly replacing all occurrences of
∀ with ¬∃¬), and let ψ0, . . . , ψm be the finitely many subformulas of ϕ. Define
a sequence of ordinals by starting with β0 = α, and letting βn+1 be the least
ordinal γ > βn such that, for every sentence (∃vi)ψk(vi) with constants in Lβn

and true in L, ψk(ai) is true in L for some ai ∈ Lγ . Note that βn+1 exists, by
the Axiom of Replacement. Let β be the l.u.b. of {βn}n∈ω.

It is now immediate to check, by induction on the length, that if ψ is any
instance of a subformula of ϕ (in particular ϕ itself) with constants from Lβ ,
then ψ is true in L if and only if it is true in Lβ . The atomic case holds by
absoluteness, propositional connectives are trivially handled, and the case of
(existential) quantification holds by construction. 2

Note that the Reflection Principle has nothing much to do with L, and it
works in general for any class which is the union of an increasing hierarchy of
sets defined on all ordinals, such that the limit levels are defined as the union
of the previous ones. In particular it works for V , and it shows that in ZF we
can find a model (with a Vα, and hence a set, as universe) for any finite set
of theorems of ZF , and thus prove the consistency of any finite part of ZF .
By Gödel’s Second Theorem (p. 169), ZF is not finitely axiomatizable (Mc-
Naughton [1954], Montague [1961]). In other words, collection and separation
are not reducible, like foundation was, to a finite set of statements. As we have
quoted, there exists a finitely axiomatizable set of axioms NGB for Set Theory,
based on the notion of class (see Fraenkel, Bar-Hillel, and Levy [1958]).

The next result characterizes L in set-theoretical terms. We consider the
full theory ZF , instead of just ZF−, not only because the stated result is
stronger, but because we need to consider the Power Set Axiom in the next
subsection.

Theorem IV.4.7 (Gödel [1939]) L is the smallest standard model of ZF
containing all the ordinals.
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Proof. We have already noted that every model of ZF− containing all the
ordinals must contain L, by absoluteness of the definition of Lα.

Since L contains all the ordinals, because α ∈ Lα+1 (by the proof of IV.4.4,
it remains to prove that L is a model of ZF . The argument is in four parts,
exploiting different properties of L in the verifications of the axioms.

1. extensionality and foundation
They are automatically satisfied, because L is transitive.

2. infinity
Since ω is an absolute object, it is enough to show that it is in L. But
ω ∈ Lω+1.

3. separation
Suppose a ∈ L, and ϕ is a formula with parameters in L. We want to
show that the set x defined by

z ∈ x ⇔ L |= z ∈ a ∧ ϕ(z)

is in L. There exists α such that Lα contains both a and the parameters
of ϕ, and hence the set xα

z ∈ xα ⇔ Lα |= z ∈ a ∧ ϕ(z)

is in L, being in Lα+1. But there is no reason to believe that x = xα, since
ϕ may have quantifiers, that mean different things when interpreted over
L and over Lα. To straighten this out, we apply the Reflection Principle
IV.4.6: let β ≥ α be such that, whenever z ∈ Lβ ,

Lβ |= z ∈ a ∧ ϕ(z) ⇔ L |= z ∈ a ∧ ϕ(z).

Thus, if
z ∈ xβ ⇔ Lβ |= z ∈ a ∧ ϕ(z),

we have xβ ∩ Lβ = x ∩ Lβ . But, since a ∈ Lα ⊆ Lβ , a is a subset of Lβ
by transitivity, and then so is x. Thus xβ ∩ Lβ = x, and x ∈ Lβ+1.

4. large sets existence
The remaining axioms are all of the same type: given certain sets, they
produce sets bigger than them (in contrast to the Separation Axiom, that
isolates subsets of given sets). They are treated in the same way, and the
proofs that they hold in L all follow from a single fact: that each subset
of L is contained in some Lα. This is easily seen to be true: if a ⊆ L
then (∀x ∈ a)(∃α)(x ∈ Lα), and by collection (or replacement) there is α
such that (∀x ∈ a)(x ∈ Lα), so that a ⊆ Lα.
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• pair
The set b is the pair {x, y} if

(∀z ∈ b)(z = x ∨ z = y),

which is an absolute definition. Given x, y ∈ L, we must then show
that {x, y} ∈ L.
{x, y} exists by the Pairing Axiom in V , and it is contained in L.
Then it is contained in Lα, for some α. Since it satisfies the definition
above over Lα, it is in Lα+1.

• union
Similar.

• power set
The set b is the power set P(a) if

(∀z)(z ∈ b↔ z ⊆ a),

which is not an absolute definition. Thus b is the power set of a in L
if it satisfies this definition on L, i.e. (by absoluteness of inclusion)

(∀z ∈ L)(z ∈ b↔ z ⊆ a),

which defines P(a) ∩ L over V . Given a ∈ L, we must then show
that P(a) ∩ L is in L.
P(a) ∩ L exists by the Power Set Axiom in V , and it is contained
in L. Then it is contained in Lα, for some α. Since it satisfies the
definition above over Lα, it is in Lα+1.

• collection
If a ∈ L, and

L |= (∀x ∈ a)(∃y)ϕ(x, y),

we need to find b ∈ L such that

L |= (∀x ∈ a)(∃y ∈ b)ϕ(x, y).

The hypothesis means that

(∀x ∈ a ∩ L)(∃y ∈ L)(L |= ϕ(x, y)).

By collection in V , there is c ⊆ L such that

(∀x ∈ a ∩ L)(∃y ∈ c)(L |= ϕ(x, y)).
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Then c ⊆ Lα for some α, and hence

(∀x ∈ a ∩ L)(∃y ∈ Lα)(L |= ϕ(x, y)).

Since Lα ∈ L, it is enough to let b = Lα to have

(∀x ∈ a ∩ L)(∃y ∈ b)(L |= ϕ(x, y)),

and hence
L |= (∀x ∈ a)(∃y ∈ b)ϕ(x, y). 2

Corollary IV.4.8 L is a model of V = L.

Proof. We have to prove
L |= (∀x)(x ∈ L).

Since L is absolute for models of ZF− containing all ordinals, and L is such a
model, this amounts to showing that

(∀x ∈ L)(x ∈ L),

which is trivially true. 2.

The corollary is not only interesting for its own sake, but also in applica-
tions: to prove that some fact holds in L, it is enough to show that it is provable
in ZF plus V = L.

Corollary IV.4.9 (Kreisel [1956], Shoenfield [1961a]) If ϕ is a Σ1
3 sen-

tence of Second-Order Arithmetic provable in ZF plus V = L, then ϕ is already
provable in ZF alone.

Proof. Let ϕ ↔ (∃A)ψ(A), with ψ ∈ Π1
2. If ϕ is provable in ZF plus V = L

then it is true in L, i.e. there is A ∈ L such that ψ(A) holds in L. By absolute-
ness of Π1

2 formulas for L (IV.3.27) ψ(A) must then be true, and thus ϕ holds.
But the whole reasoning took place in ZF , since only ZF is needed to prove
IV.4.12 and IV.3.27. Thus ϕ has been proved in ZF alone. 2

The result is best possible since, by IV.4.22, (∀A)(A ∈ L) is a Π1
3 statement

true in L (because L satisfies V = L), but not provable in ZFC (because its
negation is consistent with ZFC).

The usefulness of the corollary is quite evident: V = L does not prove any
new Σ1

3 sentence of Second-Order Arithmetic, and thus it can be used freely
when trying to prove such a sentence in ZF alone. The same of course holds for
any of the consequences of V = L, like the Axiom of Choice and the Continuum
Hypothesis, proved below. Actually, in the latter cases the result is not the
best possible, and it can be improved to hold for bigger classes of sentences
(see Platek [1969]).
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Theorem IV.4.10 (Gödel [1939], Karp [1967])

1. There exists a ∆ZF−

1 well-ordering <α of Lα.

2. There exists a ΣZF
−

1 well-ordering <L of L.

Proof. We define a ∆ZF−

1 well-ordering <α of Lα, by recursion on the ordinals.

1. α = 0
Since L0 = ∅, <0 = ∅.

2. α = β + 1
By induction hypothesis we have <β that well-orders Lβ . Let

x <α y ⇔ (x ∈ Lβ ∧ y ∈ Lβ ∧ x <β y) ∨
(x ∈ Lβ ∧ y ∈ Lβ+1 − Lβ) ∨
(x ∈ Lβ+1 − Lβ ∧ y ∈ Lβ+1 − Lβ ∧
the first formula defining x over Lβ precedes
the first formula defining y over Lβ).

3. α limit

x <α y ⇔ (∃β < α)(x <β y).

By definition, if α < β then <α is an initial segment of <β . Since the
definition is by recursion on the ordinals, it is enough to verify that the recursion
is ∆ZF−

1 . Since Lα is ∆ZF−

1 , the only point to check is the case of α = β + 1
and x, y ∈ Lβ+1 − Lβ .

The formulas without parameters of the set-theoretical language are count-
ably many, and there is a natural (lexicographical) ∆ZF−

1 well-ordering of them,
of length ω. By arithmetization everything can be coded in HF = Lω, which
exists by the Axiom of Infinity.

For what concerns parameters, they are in Lβ and, by induction hypothesis,
<β well-orders Lβ . We can then say that ϕ with parameters a1, . . . , an (ordered
by <β) precedes ψ with parameters b1, . . . , bm (ordered by <β) if and only if:

• n < m

• n = m and ϕ precedes ψ (as formulas)

• n = m, ϕ = ψ and, for the first i such that ai 6= bi, ai <β bi.
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Again the conditions in this definition are ∆ZF−

1 , and thus the whole well-
ordering is ∆ZF−

1 . Then

x <L y ⇔ (∃α)(x ∈ Lα ∧ y ∈ Lα ∧ x <α y)

is ΣZF
−

1 . Note that, for each α, <α is an initial segment of <L. 2

Exercises IV.4.11 a) If Lα is a model of ZF−, the well-ordering <α of Lα has
length α. (Hint: by replacement, Lα is closed under the rang function of <α

f(y) = sup{f(x) + 1 : x <α y},

and thus sup{f(x) : x ∈ Lα} ≤ α. Conversely, since f is one-one, f−1 is a function
with range Lα, and if the length of <α were β < α, then the range of f−1 would be
in Lα, i.e. Lα ∈ Lα, contradiction.)

b) If V = L then ≤L is ∆ZF−
1 . (Hint: in this case

¬(x <L y) ⇔ x = y ∨ (∃α)(x ∈ Lα ∧ y ∈ Lα ∧ y <α x),

and thus <L is also ΠZF−
1 .)

One of the original reasons to introduce L was to prove the following fact,
whose consequence is that the Axiom of Choice is consistent with ZF (Gödel
[1938]), since it holds in a model of ZF . Note that also V is a model of ZF ,
but there is no obvious way to show that it satisfies the Axiom of Choice, the
difficulty being in well-ordering the power set of a given (well-ordered) set.

Corollary IV.4.12 L is a model of ZFC plus V = L.

Proof. By IV.4.7 and IV.4.8, it only remains to prove that the Axiom of
Choice holds in L. The theorem just proved shows that L is well-orderable, and
thus the Axiom of Choice holds if V = L. But L is a model of ZF plus V = L,
and hence the Axiom of Choice holds in L. 2

The fact that L is a model of ZFC has an important consequence: all
theorems of ZFC are true in L. In particular, it is possible to carry on inside
L the theory of cardinals, which is largely based on the Axiom of Choice.

Of particular interest for us is ωL
1 , the analogue of the first uncountable

cardinal, which is the least ordinal α such that no one-one function f : α→ ω
exists in L. In other words, ‘L believes ωL1 is ω1’. Clearly ωL1 ≤ ω1: if there
is no function with certain properties in V , there is none in L either. The
assertion ωL1 = ω1 is consistent with ZFC, since so is V = L (by IV.4.8). But
also the assertion ωL1 < ω1 is consistent with ZFC (Cohen [1966]), by cardi-
nal collapsing (see Volume III). It also follows from large cardinals hypothesis
(Rowbottom [1971]).
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Constructible sets of natural numbers

We have introduced the Constructible Hierarchy not for its own sake, but to
study subsets of ω. We thus turn now to our real interest, the set P(ω) ∩ L of
constructible sets of natural numbers.

Since P(ω) ∩ L ⊆ L, there is α such that P(ω) ∩ L ⊆ Lα, and thus there is
a stage after which no subset of ω is ever generated. We now improve on this,
by exhibiting such an α (which will turn out to be the best possible).

Theorem IV.4.13 (Gödel [1939]) P(ω) ∩ L ⊆ LωL
1
.

Proof. The theorem reduces to prove, in ZFC, that P(ω)∩L ⊆ Lω1 . Since L
is a model of ZFC, the result also holds in L. To see what this means, recall
that P(ω), the power set of ω, means P(ω) ∩ L in L (see the proof of IV.4.7).
L is absolute for L, because L is a model of ZF− containing all ordinals. And
ωL1 is, by definition, the ω1 of L. Thus P(ω)∩L ⊆ Lω1 means P(ω)∩L ⊆ LωL

1
,

when interpreted inside L, and this is the statement of the theorem.
We thus turn to the proof of P(ω) ∩ L ⊆ Lω1 , which roughly consists of

the following. Let A ⊆ ω be constructible, i.e. A ∈ L. Then A ∈ Lα, for some
α: we want to show that α may be supposed to be countable. To achieve this,
we use the Löwenheim-Skolem Theorem of logic (for the reader not acquainted
with it, we prove in 2 below the special case we need). Its essence is to cut
out, from a model of a sentence, a countable model, leaving unchanged a given
countable subset. Here we know that A ∈ Lα, and thus we only have to find a
sentence ϕ whose models are exactly the sets of the kind Lα (this is done in 1
below). Then Lα is a model of ϕ, and it contains {A}: the Löwenheim-Skolem
Theorem produces a countable model of ϕ containing {A}, which must then
be of the form Lα, with α countable (because, by IV.4.3, Lα is countable if
and only if α is). It only remains to find ϕ, and prove the Löwenheim-Skolem
Theorem.

1. There is a sentence ϕ such that if a set M is a standard model for ϕ, then
M = Lα for some (limit) α.
By absoluteness of Lα, if M is a standard model of ZF− then

⋃
α∈M Lα

is L in M , and it is contained in it. Let αM be the smallest ordinal not
in M : if αM is limit then, by definition of L,

⋃
α∈M Lα = LαM

, and thus
LαM

⊆ M . If V = L also holds in M , i.e. M is equal to L in it, then
LαM

= M .

We can then let ϕ be the conjunction of the following:

• the finitely many axioms needed to prove that the notions of ordinal
and of Lα are absolute for standard models of them
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• the finitely many axioms needed to prove that any model of them is
closed under Lα (as a function of α)

• the finitely many axioms needed to prove that there is no greatest
ordinal

• V = L.

2. Given a sentence ϕ, a setM which is a model for it, and a countable subset
X of M , there is a countable model M ′ of ϕ such that X ⊆ M ′ ⊆ M
(Löwenheim [1915], Skolem [1920]).
The proof is a variation of the proof of the Reflection Principle IV.4.6.
As there, the only important thing is to provide the witnesses for the
existential sentences true inM . Let ϕ have no occurrence of ∀ (by possibly
replacing all occurrences of ∀ with ¬∃¬), and let ψ0, . . . , ψm be the finitely
many subformulas of ϕ. Define a sequence of subsets of M , starting with
M0 = X, and letting Mn+1 be a countable subset of M containing Mn

and such that, for every sentence (∃vi)ψk(vi) with constants in Mn and
true in M , ψk(ai) is true in M for some ai ∈Mn+1. Let M ′ =

⋃
n∈ωMn.

First of all we have to prove, by induction on n, that Mn+1 exists, i.e.
that there is a countable structure as wanted. M0 is countable by the
hypothesis on X. Suppose Mn is countable: then there are only countably
many possible sentences with constants in Mn to consider. Since we only
need to add one witness for each of them, we can choose Mn+1 as a
countable subset of M .
It is now immediate to check, by induction on the length, that if ψ is any
instance of a subformula of ϕ (in particular ϕ itself) with constants from
M ′, then ψ is true in M if and only if it is true in M ′. The atomic case
holds by absoluteness, propositional connectives are trivially handled,
and the case of (existential) quantification holds by construction.

Fact 1 refers to standard models, and this requires a small patch up of the
sketch given at the beginning. Given A ⊆ ω such that A ∈ Lα, we may sup-
pose α ≥ ω limit: then we have a model Lα of ϕ, containing ω ∪ {A}. By the
Löwenheim-Skolem Theorem (fact 2), there is a countable model with the same
properties, but we cannot yet conclude that this is a countable Lα, because it
is not necessarily a standard model (an assumption used in the proof of fact
1 above). But we can apply the (corollary of the) Collapsing Lemma IV.3.5,
and find a standard structure isomorphic to it, and hence satisfying the same
sentences, ϕ in particular. Now we do have a standard structure satisfying
ϕ, still containing A (because ω ∪ {A} is a transitive set, since A ⊆ ω, and
thus it is not changed by the collapsing function). Then this model must be a
countable Lα, and α is countable itself by IV.4.3. 2
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One of the original reasons to introduce L was to prove the following fact,
whose consequence is that the Continuum Hypothesis is consistent with ZFC
(Gödel [1938]), since it holds in a model of ZFC. The reason why the Contin-
uum Hypothesis follows from V = L, while it is independent of ZFC, is that
the former completely specifies the extension of the power set operation (left
undetermined by the latter), by determining which subsets of a given set are
available, namely only those that can be predicatively defined from the ordi-
nals. By providing a sort of minimal interpretation for the power set operation,
V = L limits the number of subsets of a given set to the least possible value.

Corollary IV.4.14 The Continuum Hypothesis holds in L.

Proof. We have proved that P(ω) ∩ L ⊆ Lω1 . If V = L then this means
that the power set of ω has at most the power of Lω1 , which is ω1 by IV.4.3.
By Cantor’s Theorem (II.2.1), the cardinality of the power set of ω must be
uncountable, and hence at least ω1. Thus it is exactly ω1. This shows that the
Continuum Hypothesis follows from ZFC plus V = L (the Axiom of Choice
is needed for cardinal arithmetic, in particular in the proof of IV.4.3), and by
IV.4.12 it then holds in L. 2

We will see in Volume III that all the following possibilities are consistent
with ZFC:

1. P(ω) ⊆ L, which follows from V = L.

2. P(ω) 6⊆ L and P(ω) ∩ L countable, by collapsing ωL1 (this also follows
from large cardinals hypothesis, by Rowbottom [1971]).

3. P(ω) 6⊆ L and P(ω) ∩ L uncountable, by starting with a model of the
Continuum Hypothesis, and building a generic extension of it that pre-
serves cardinals.

By the proof of the corollary, P(ω) ∩ L is not contained in Lα for α < ωL1 ,
because otherwise the power set of ω would be countable in L, contradicting
Cantor’s Theorem in L. Thus {P(ω) ∩ Lα}α<ωL

1
, as a hierarchy for P(ω) ∩ L,

has the smallest possible length. We now show that the hierarchy is not proper.

Proposition IV.4.15 (Putnam [1963]) There exists α < ωL1 such that no
new subset of ω is generated in L at stage α+ 1, i.e.

P(ω) ∩ (Lα+1 − Lα) = ∅.

Proof. Let ψ be the formula

(∃α)[P(ω) ∩ (Lα+1 − Lα) = ∅].
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By IV.4.13,
P(ω) ∩ (LωL

1 +1 − LωL
1

) = ∅

and thus, by absoluteness, ψ is true in some Lβ with β limit (e.g. let β be
ωL1 + ω). By the same argument of the proof of IV.4.13 (using the formula ϕ
whose models are all limit levels of the constructible hierarchy, the Löwenheim-
Skolem Theorem, and the Collapsing Lemma), there is a countable β with the
same properties. Since ψ holds in Lβ , there is an ordinal α < β such that

P(ω) ∩ (Lα+1 − Lα) = ∅,

and α is countable, because so is β.
This is not enough yet, because we actually want α < ωL1 , i.e. constructibly

countable. To get this stronger version we just need to note that the Löwenheim-
Skolem Theorem has been proved in ZFC, and hence it holds in L. Its version
in L sounds as follows:

• Given a sentence ϕ, a set M ∈ L which is a model for it, and a subset
X ∈ L of M which is constructibly countable, there is a constructibly
countable model M ′ ∈ L of ϕ such that X ⊆M ′ ⊆M .

By using the argument of IV.4.13 with this version, which is applicable because
the starting model is Lβ , which is constructible, we obtain a constructibly
countable β as wanted. 2

Since the hierarchy {Lα}α<ωL
1

is obviously proper, by IV.4.4, the meaning
of the last result is that, at the stages at which no new subset of ω is generated
(called gap ordinals), new sets appear, that will later be used to define new
subsets of ω. This shows that the definition of P(ω) ∩ L is intrinsically set-
theoretical. Since V = L is consistent with ZFC, and thus P(ω) ∩ L could be
the true power set of ω, set-theoretical methods are essential in the analysis of
the continuum, i.e. in Classical Recursion Theory as defined on p. 1. This adds
to the remarks made by Sacks in the Foreword.

The study of gap ordinals has been pursued in various directions, some of
which are treated in Volume III. On one side, the possible lengths of gaps
have been investigated: it turns out that there are gaps of any length less than
ωL1 , and the gaps are distributed in a very orderly fashion, according to their
lengths (Marek and Srebrny [1974]). On the other side, a characterization of
gap ordinals has been obtained: α is a gap ordinal if and only if

Lα+1 |= α uncountable,

in the sense that there is no one-one function in Lα+1 from α to ω (Boolos and
Putnam [1968], Jensen [1972]). The condition is obviously sufficient, because
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such a function induces a well-ordering of ω of length α, that cannot be in Lα
since α is not. The converse is a strengthening of IV.4.13, and it is obviously
necessary, if Lα+1 is a model of enough Set Theory: in this case IV.4.13 holds
in it, and thus all constructible subsets of ω which are in Lα+1 must be already
in L

ω
Lα+1
1

, i.e. must be constructed at stages countable in Lα+1. Thus, by
absoluteness,

P(ω) ∩ (Lα+1 − L
ω

Lα+1
1

) = ∅.

And if α is not countable in Lα+1, ωLα+1
1 ≤ α. Note that the gap could be quite

large, depending on how much of Set Theory is modelled by Lα+1, since Lα+1

could prove the existence of various cardinals (inside it) greater than ω
Lα+1
1 .

Exercises IV.4.16 a) The gap ordinals are ωL1 . (Putnam [1963]) (Hint: there is a
gap above any given constructibly countable ordinal.)

b) For any ordinal γ admitting an absolute definition, there are gaps of length γ.

(Putnam [1963]) (Hint: consider α+ γ instead of α+ 1 in the proof above.)

One might think of mimicking the definition of L in an autonomous way,
by relying only on subsets of ω.

Definition IV.4.17 (Kleene [1959b]) The Ramified Analytical Hierar-
chy is described, in terms of ordinals, as follows:

RA0 = the arithmetical sets
RAα+1 = def 2 (RAα)
RAβ =

⋃
α<β RAα (β limit)

RA =
⋃
αRAα,

where def 2 (x) is the set of subsets of ω which are definable in Second-Order
Arithmetic with set quantifiers restricted to x, and parameters in x.

RA will be studied in Volume III. Leeds and Putnam [1974] show that
parameters can be avoided in its definition. By cardinality reasons, RA breaks
down at an ordinal β0 (since if each step adds a new subset, the subsets of ω
run out in at most a continuum of steps). Boolos and Putnam [1968] show
that, when account is taken of the different starting points, the Ramified Ana-
lytical Hierarchy coincides, up to β0 and level by level, with the Constructible
Hierarchy restricted to P(ω). It is thus not surprising that β0 is the first gap
ordinal , i.e. the first point in which sets not in P(ω) become essential for the
definition of new subsets of ω.

Exercises IV.4.18 a) β0 is countable. (Cohen [1963a]) (Hint: by cardinality con-
siderations, there is an ordinal α such that RAα+1 = RAα. As in IV.4.15, and by
absoluteness of RAα, there is a countable one.)
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b) RA ⊂ ∆1
2. (Putnam [1964]) (Hint: there is a ∆1

2 predicate enumerating the

members of RA. Thus the members of RA are uniformly ∆1
2. By diagonalizing

the enumeration predicate, there is a ∆1
2 set not in RA. To get the enumeration

predicate, by part a) we may restrict attention to countable ordinals, and hence

to well-orderings of ω. The methods of IV.2.22 and IV.4.5 show that A ∈ RAx is

uniformly ∆1
1, whenever x varies over the elements of a well-ordering of ω, used as

parameter. Since A ∈ RA if and only if there is a well-ordering of ω such that

A ∈ RAx for some x in it, we have the Σ1
2 form, because being a well-ordering is a

Π1
1 condition. Similarly, A ∈ RA if and only if, for every well-ordering of ω which is

sufficiently long, i.e. it has elements y and z such that z is the successor of y in it,

and RAy = RAz, then A ∈ RAx for some x. This provides the Π1
2 form, because

being a well-ordering is now an hypothesis, and thus it becomes Σ1
1.)

Σ1
2 sets

We have studied the set P(ω) ∩ L as a totality, but we do not know yet which
sets are in it. Of course, since V = L is consistent with ZFC, it might be that
all sets (of natural numbers) are constructible. But even if this were the case,
this would not be provable in ZFC, because Cohen [1963] has showed that it
is consistent with ZFC that P(ω) 6⊆ L (see Volume III).

It is thus a nontrivial problem to ask which subsets of ω are provably in L,
in the sense of being provable in ZFC that they are constructible.

Theorem IV.4.19 (Mostowski [1949], Shoenfield [1961a]) Σ1
2∪Π1

2 ⊆ L.

Proof. Since ω ∈ L, and L satisfies separation, for any formula ϕ there is a
set a ∈ L such that

x ∈ a ⇔ L |= x ∈ ω ∧ ϕ(x).

This of course does not mean that every definable subset of ω (in the real world,
i.e. in V ) is in L, because ϕ does not need to be absolute, and thus the set it
defines in V is not necessarily a. But this certainly holds for the formulas whose
meanings are the same over L and in the real world. By IV.3.27, this is the
case of Σ1

2 formulas, because L is a standard model of GKP containing all the
ordinals. Thus Σ1

2 sets are all in L, and the same holds for their complements
in ω, i.e. the Π1

2 sets. 2.

This result is the best possible: Jensen and Solovay [1970] have shown that
it is consistent with ZFC that P(ω) ∩ L is properly contained in ∆1

3. This
also follows from large cardinals assumptions (Solovay [1967]). On the other
hand, Harrington [1974] has shown that for any n such that 3 ≤ n ≤ ω, it is
consistent with ZFC that P(ω) ∩ L = ∆1

n. See Volume III for all this.
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Recall that the Arithmetical and Analytical Hierarchies classify sets of nat-
ural numbers according to the complexity of their definitions over the structure
of Arithmetic. The difference between the two hierarchies is in the range of
quantifiers, over ω in the former case, and over P(ω) in the latter. Our origi-
nal motivation for the introduction of the Levy’s Hierarchy was to pursue this
trend, and allow for more general quantifiers, over sets in a given model. Our
first example was HF , and definability over it coincided, for subsets of ω, with
arithmetical definability (IV.3.22).

We turn now to definability over L. Of course, every set in L is definable over
it, using itself as parameter, but this is not what we mean: in the Analytical
Hierarchy we did quantify over sets, but did not allow them as parameters (no
attention is needed over HF , because the proof of IV.3.22 shows that elements
of HF and natural numbers are, in a sense, the same thing). What we really
look for is thus definability without parameters over L.

Theorem IV.4.20 Definability of Σ1
2 sets (Takeuti and Kino [1962])

Let A ⊆ ω. Then

A ∈ Σ1
2 ⇔ A ∈ ΣL1 without parameters.

Similarly for relations, of any number of variables.

Proof. Let A ∈ Σ1
2. By the proof of IV.3.27, A is of the form (∃α countable)ϕ,

with α ranging over countable ordinals, and ϕ ∆1 over GKP plus Infinity.
Since L is a model of GKP , and it contains all the countable ordinals, A is ΣL1
without parameters.

For the converse, suppose A ⊆ ω is ΣL1 without parameters, i.e.

x ∈ A ⇔ L |= (∃y)ψ(x, y),

with ψ ∈ ∆L
1. By definition of satisfaction,

x ∈ A ⇔ (∃y ∈ L)(L |= ψ(x, y)).

By definition of L, and absoluteness of ∆L
1 formulas,

x ∈ A ⇔ (∃α)(∃y ∈ Lα)(Lα |= ψ(x, y)),

and hence
x ∈ A ⇔ (∃α)(Lα |= (∃y)ψ(x, y)).

Using the Löwenheim-Skolem Theorem and the Collapsing Lemma as in the
proof of IV.4.13, and with ϕ as there,

x ∈ A ⇔ (∃a)[a countable transitive ∧ a |= ϕ ∧ (∃y)ψ(x, y)].



440 IV. Hierarchies and Weak Reducibilities

Suppose such an a exists: being countable, 〈a,∈〉 is isomorphic to a well-
founded structure 〈ω, ε〉, and the Collapsing Lemma applied to the latter re-
produces the original a (because the transitive collapse is unique, and a is
transitive). In particular, if f is the collapsing function, x = f(f−1(x)), and
(∃y)ψ(x, y) holds on a if and only if (∃y)ψ(z, y), with f(z) = x, holds on 〈ω, ε〉.
Thus

x ∈ A ⇔ (∃ε)[〈ω, ε〉 well-founded ∧
〈ω, ε〉 |= ϕ ∧ (∃y)(∃z)(f(z) = x ∧ ψ(z, y))],

where f is the collapsing function of 〈ω, ε〉.
It only remains to compute the complexity of the last expression for A:

• ε is a binary relation on ω, that can be coded by its characteristic function:
the first existential quantifier is thus a function quantifier.

• Well-foundedness is Π1
1, see e.g. IV.2.15.

• The graph of the collapsing function, when the values are restricted to ω,
is ∆1

1, because it can be defined by recursion with clauses arithmetical in
ε, as follows. First of all, f(z) = 0 if and only if z is the (unique) element
of ω which does not have predecessors w.r.t. ε. And f(z) = n+ 1 if and
only if, for some y, f(y) = n, and z is the successor of y w.r.t. ε (i.e. the
set y ∪ {y}, when membership in interpreted as ε).

• The satisfaction relation is ∆1
1, by arithmetization.

The whole expression is thus Σ1
2. 2

Corollary IV.4.21 Let A ⊆ ω. Then

A ∈ Σ1
2 ⇔ A ∈ ΣLω1

1 without parameters.

Similarly for relations, of any number of variables.

Proof. The first part of the proof goes through because  Lω1 is a model of
GKP , and it contains all the countable ordinals. The second part of the proof
can be repeated as above, without appeal to the Löwenheim-Skolem Theorem,
since every Lα with α < ω1 is countable. 2

We have proved the result for relations on ω, but little work is needed to
extend it to relations on ω and P(ω): we just have to show how to take care of
set variables, and for this it is enough to prove that the graph of the collapsing
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function f , when the values are restricted to P(ω), is still ∆1
1. Recall that, by

definition of f (see IV.3.5),

f(z) = {f(y) : y ∈ ω ∧ y ε z}.

Thus
f(z) = A ⇔ (∀x)[x ∈ A↔ (∃y)(x = f(y) ∧ y ε z)].

The use of f on the right-hand-side is restricted to number values, and thus it
is ∆1

1 by the proof of IV.4.20. Thus the whole expression is ∆1
1, because only

number quantifiers are used.

Corollary IV.4.22 (Gödel [1940], Mostowski, Addison [1959a]) The
relations A ∈ L and A ≤L B, for A and B subsets of ω, are Σ1

2.

Proof. We know from IV.4.5, IV.4.10, and IV.4.7 that x ∈ L and x ≤L y are
ΣL1. When restricted to P(ω) they become relations of set variables, and thus
they are Σ1

2. 2

The complexity of P(ω)∩L computed above is best possible, since if A ∈ L
is Π1

2 then P(ω) ⊆ L, i.e. every subset of ω is constructible: indeed, if A ∈ L is
Π1

2 then (∃A)(A 6∈ L) is a Σ1
2 formula false in L, and by absoluteness it is also

false in V , which means that P(ω) ⊆ L.
By IV.4.11.b, if V = L then ≤L is actually ∆ZF−

1 , and thus the well-ordering
≤L is actually ∆1

2 on P(ω). In particular, A ≤∆1
2
B if A ≤L B. Thus it is

consistent with ZFC that the ∆1
2-degrees are well -ordered , and no result con-

tradicting this can be proved in ZFC. The study of the structure of ∆1
2-degrees

can thus be pursued along two different paths: one is to prove consistency re-
sults, the other to introduce new axioms and study the structure under them.
We will follow both paths, in Volume III. Of course similar considerations hold
for the ∆1

n-degrees, for any n ≥ 2.

HC and the Analytical Hierarchy

We have seen in IV.3.22 that the Arithmetical Hierarchy can be viewed as a
set-theoretical hierarchy over the hereditarily finite sets. We now provide a
similar interpretation of the Analytical Hierarchy.

Definition IV.4.23 HC is the set of hereditarily countable sets, i.e. the
smallest class A of sets such that:

1. ∅ ∈ A

2. if (∀n ∈ ω)(xn ∈ A) then {xn : n ∈ ω} ∈ A.
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A number of properties of HF can be extended to HC, by similar proofs.
E.g., a set is hereditarily countable if and only if its transitive closure is count-
able.

Proposition IV.4.24 HC is a transitive model of GKP containing all count-
able ordinals.

Proof. The axioms of GKP can be checked in a way similar to IV.3.22. More-
over, note that an ordinal is transitively closed, and thus it is in HC if and only
if it is countable. 2

Since a countable subset of HC is a countable set with hereditarily countable
members, it belongs to HC. In particular, since ω ∈ HC, P(ω) ⊆ HC.

Note that the smallest transitive model of GKP containing all countable or-
dinals is Lω1 , and thus Lω1 ⊆ HC (directly, if x ∈ Lω1 then, for some countable
α, x is in Lα, which is transitive: then the transitive closure of x is contained
in Lα, which is countable). However, since it is consistent with ZFC that some
subset of ω is not constructible, we cannot prove that Lω1 = HC.

Exercises IV.4.25 a) If V = L then HC = Lω1 . (Hint: by ∈-induction. Suppose
that (∀y ∈ x)(y ∈ Lω1), and x is countable. Then x ⊆ Lω1 , and x ⊆ Lα for some
countable α. As in IV.4.13, by starting from Lα ∪ {x}, if V = L then x ∈ Lω1 .)

b) HC is a model of ZFC− plus V = HC. (Hint: choice follows from the following

facts: a subset of HC is well-orderable in V by the Axiom of Choice; a wellordering of

an hereditarily countable set is still such; well- foundedness is absolute for standard

models of GKP . V = HC holds because if x ∈ HC then any function from x into ω

is already in HC.)

The main reason for us to consider HC is the following analogue of IV.3.22,
which provides an alternative set-theoretical way of seeing the Analytical Hi-
erarchy. One should note that each level of the hierarchy on HC corresponds
to the next level of the Analytical Hierarchy. This is not accidental, and it has
already been observed in the discussion on p. 396.

Theorem IV.4.26 Set-theoretical definability of the Analytical
Hierarchy. Let A ⊆ ω. Then A is definable over HC without parameters
if and only if A is analytical. More precisely, for any n:

A ∈ ∆1
n+2 ⇔ A ∈ ∆HC

n+1 without parameters

A ∈ Σ1
n+2 ⇔ A ∈ ΣHCn+1 without parameters

Similarly for relations, of any number of variables.
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Proof. For n = 0 the proof of IV.4.21 goes through without changes, using
absoluteness of ∆HC

1 formulas. Moreover, as noted after the proof of IV.4.21,
the result holds for relations not only over ω, but also over P(ω). The cases
for n > 0 then follow by adding quantifiers, because P(ω) ⊆ HC. 2

To generalize the result for Σ1
2 to any level we have used in a crucial way

the fact that P(ω) ⊆ HC. The analogue could not be proved for L, and this
was the reason we had to content ourselves with the absolute result for Σ1

2,
in IV.4.20. Of course, the full result can be obtained also for L if we assume
V = L (Takeuti and Kino [1962]), by the same proof (or by IV.4.25.a).

As it was already the case for IV.3.22, embedded in the proof of IV.4.26
are translations of Second-Order Arithmetic and Set Theory on HC into one
another. The translation of Second-Order Arithmetic to Set Theory is stan-
dard, while the other consists of seeing hereditarily countable sets as countable
trees (and then coding them as subsets of ω), and by interpreting equality as
tree isomorphism. Peano Arithmetic was equivalent to ZFC with the Axiom
of Infinity replaced by V = HF : we now have that Second-Order Arithmetic
is equivalent to ZFC with the Power Set Axiom replaced by V = HC (Kreisel
[1968], Zbierski [1971]).

It should be noted that by Second-Order Arithmetic we mean here the
second-order version of PA plus the Axiom of Comprehension for analytical
formulas (asserting the existence of the analytical sets), and an Axiom of Choice
which asserts that if (∀x)(∃A)ϕ(x,A) then there is a subset A of ω × ω such
that, if Ax is the section of A w.r.t. x, then (∀x)ϕ(x,Ax). This obviously
corresponds to collection for sets, and it is needed (Gandy [1967a]) to model
the Axiom of Collection.

Second-Order Arithmetic, as well as subsystems of it obtained by variously
restricting the Axioms of Comprehension and Choice, will be studied in Volume
III.

Exercises IV.4.27 a) Levy Absoluteness Lemma. A ΣZF1 formula with param-
eters in HC true in V is already true in HC. (Levy [1965]) (Hint: by Löwenheim-
Skolem, Collapsing Lemma, and absoluteness, as in IV.4.13.)

b) P(ω)∩L ⊆ Lω1 follows from Levy’s Absoluteness Lemma and ∆ZF
1 -definability

of Lα (Karp [1967]). This provides a slightly different and easier proof of IV.4.13.
(Hint: if A ⊆ ω and A ∈ L the ΣZF1 formula (∃α)(A ∈ Lα) with parameter A ∈ HC
is true in V . By Levy Absoluteness it is true for some countable ordinal.)

c) P(ω) is not ∆ZF
1 . (Hint: otherwise the formula asserting its existence would

be true in HC.)



444 IV. Hierarchies and Weak Reducibilities

Recursion Theory on the ordinals ?

The whole idea of constructibility rests on the fact that L is definable by recur-
sion on the ordinals. Since usually the ordinals are defined within Set Theory,
so is L. While investigating the theory of ordinals, Takeuti [1957] discovered
that it could be developed independently of Set Theory. It thus became clear
that if one could also develop independently a theory of recursion on the ordi-
nals, this would allow a different approach to L. Takeuti [1960] carried out the
task, by defining the notion of recursive function on the ordinals by schemata,
in a way similar to recursiveness on the integers. He then discovered that
Gödel’s result IV.4.13 could be recast in recursion-theoretical terms by say-
ing that ω1 (and, more generally, any uncountable ordinal) was stable, in the
sense of being closed under the recursive functions on all the ordinals. With
this, Recursion Theory was generalized both to the class of all ordinals, and to
cardinals.

Independently, and motivated by needs related to the theory of infinitary
languages, Machover [1961] developed an equivalent approach to recursion on
cardinals, using systems of equations. The circle was closed by Takeuti and
Kino [1962], when it was realized that recursion on the ordinals was actually
equivalent to ΣL1 definability.

After discovering that cardinals were appropriate domains for Recursion
Theory, it was natural to wonder whether the strong closure properties of
cardinals were somehow needed. Kripke [1964] and Platek [1966] answered
the question by reversing the attack. They relativized the previous approaches
to any ordinal α, by defining the α-recursive functions (e.g. by schemata, using
a search operator on ordinals less than α). Then they defined admissible
ordinals as the α’s closed under the α-recursive functions, and showed that
for them all approaches are equivalent. In particular, for an admissible ordinal
α, α-recursiveness means ΣLα

1 definability, and Lα is the smallest standard
model of KP of ordinal α. This relates effective Set Theory to Recursion
Theory on the ordinals, and provides finer versions of various results of this
section. The first two admissible ordinals are ω and ωck1 (see p. 385).

While admissible sets turn out to be nice domains only for elementary
Recursion Theory (see p. 421), many deeper parts of Recursion Theory carry
over to any admissible ordinal (see Chong [1984] for a detailed treatment).
In particular, Post’s Problem always admits a positive solution (Sacks and
Simpson [1972]).

Admissible ordinals will provide, in Volume III, a uniform way of describing
a number of classes of subsets of ω, and will also be useful from a methodological
point of view, for a better understanding of which properties of ω are used in
proofs of single results.
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Relativizations ?

As for the Arithmetical and Analytical Hierarchies, the work done for the
Constructible Hierarchy can also be relativized to a given set A. There are two
natural ways of doing this, corresponding to adding A as a constant or as a
predicate.

Definition IV.4.28 (Hajnal [1956], Levy [1960a])

1. The class L[A] is defined like L, by starting with A ∪ Tc(A) in place of
∅.

2. The class L(A) is defined like L by allowing, at successor stages, also
parameters over A.

From a set-theoretical point of view, the two ways are not equivalent. The
first produces the smallest standard model of ZF containing A and all the or-
dinals, and it does not necessarily satisfy the Axiom of Choice, without further
assumptions on A. The second produces the smallest standard model M of
ZFC containing M ∩A and all the ordinals. From our point of view, however,
they are equivalent, since we only consider relativizations to sets A ⊆ ω.

Definition IV.4.29 A is constructible from B (A ≤L B) if it is in L[B].
A is constructibly equivalent to B (A ≡L B) if A ≤L B and B ≤L A.

Exercises IV.4.30 a) If A is constructible, then A ≤L B for any B.

b) If A ≤L B and B is constructible, so is A.

Note that ≤L is reflexive and transitive, and thus ≡L is an equivalence
relation.

Definition IV.4.31 The equivalence classes of sets w.r.t. constructibility
equivalence are called L-degrees, and (DL, ≤) is the structure of L-degrees,
with the partial ordering ≤ induced on them by ≤L.

Of course, not much can be said about the structure of L-degrees in ZFC
alone: the assertion that there is exactly one L-degree (containing all subsets of
ω) is consistent with ZFC, since so is V = L, and thus no result contradicting
it can be proved in ZFC. The study of the structure of L-degrees can thus
be pursued along two different paths: one is to prove consistency results, the
other to introduce new axioms, and study the structure under them. We will
follow both paths, in Volume III.

æ
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Chapter V

Turing Degrees

The first four chapters of this book introduced the basic notions and methods
of Recursion Theory. It is now time to put all this machinery to good use, and
begin a systematic study of the continuum from a recursion-theoretical point of
view. While a great deal of Recursion Theory, as seen in previous and following
chapters, has a more limited scope and analyzes increasingly bigger, but always
countable, subsets of P(ω), this and the next chapters attempt a global attack,
by trying to characterize the structure of P(ω) in terms of degrees. Here we
study Turing degrees, by developing a paradigm that will later be followed for
the study of many other notions of degrees.

The main results we will obtain are of two kinds:

Algebraic. We will look for results that describe the algebraic structure of de-
grees, as a partially ordered set. We will ask natural questions about this
structure, concerning: linearity, density, embeddability of partial order-
ings, ideals, nontrivial automorphisms, and so on. Despite the fact that
(contrary to the case of m-degrees) there is no complete characterization
yet, in Section 7 we will be able to derive a number of interesting global
results.

Computational. The first natural question here is the decidability of theory
of degrees, i.e. the existence of an effective method that would tell, of
any given sentence in the language of degrees, whether it is true or not.
We will be able to show in Section 7 that such a method does not exist,
and that actually it is as difficult to decide first-order sentences about the
order of degrees as it is to decide analytical sentences of arithmetic. In
precise words, the theory of degrees is recursively isomorphic to Second-
Order Arithmetic. Knowing that the theory is undecidable, we may look
for partial decidability results: we will discuss the fact that it is possible

447
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to decide the theory of two-quantifier sentences, but not that of three
quantifiers.

The division in sections is methodological and it reflects the different, in-
creasingly more powerful tools used in the proofs. We start in Section 2 with
the finite extension method, which is just a version of Baire Category, the
relationship being analyzed in Section 3. We discuss the fact that some results,
like the existence of minimal degrees, cannot be proved by finite extensions.
We then introduce more powerful tools, namely the coinfinite extension
method in Section 4, and the tree method in Section 5. The work culmi-
nates in Section 7, where the global structure of T -degrees is investigated, and
the quoted undecidability results are proved.

V.1 The Language of Degree Theory

We have defined the structure of Turing degrees in II.3.3, and here we begin
a close look at it. To improve readability, as well as to follow common use
notations, we adopt (in this chapter) a number of conventions:

1. degree will always mean T -degree

2. sets will be used as representatives for the degrees, and this is possible
because a function and its graph are T -equivalent, and thus each degree
contains a set

3. a set will be identified with its characteristic function

4. partial recursive functions with oracle A will sometimes be denoted by
{e}A, in place of ϕAe

5. we will use lowercase Greek letters for strings, i.e. for partial functions
with finite domains (see V.2.1)

6. degrees will be denoted by lowercase boldface letters

7. a < b will mean a ≤ b ∧ a 6= b

8. a|b will mean a 6≤ b ∧ b 6≤ a, i.e. that a and b are incomparable.

The join operator

Since (D, ≤) is a partially ordered set, it makes sense to talk about the l.u.b.
and the g.l.b. of a pair of degrees.

Definition V.1.1 Given a and b, then:
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1. a ∪ b (also called the join of a and b) is their least upper bound

2. a ∩ b is their greatest lower bound.

We now show that the l.u.b. always exists, and it is induced by the disjoint
sum of two sets. The g.l.b. of two degrees may instead exist or not (V.2.16 and
V.4.7).

Recall that the disjoint sum of two sets is defined as

A⊕B ⇔ {2x : x ∈ A} ∪ {2x+ 1 : x ∈ B}.

Notice that A⊕B is obviously invariant under T -equivalence, and thus it makes
sense to consider it as an operator on T -degrees.

Proposition V.1.2 Given a and b, a ∪ b is the degree of A ⊕ B, for any
A ∈ a and B ∈ b.

Proof. Clearly A,B ≤T A⊕B, since

x ∈ A⇔ 2x ∈ A⊕B and x ∈ B ⇔ 2x+ 1 ∈ A⊕B.

And if A,B ≤T C, let A ' ϕCa and B ' ϕCb . Then A⊕ B ' ϕ(x), where ϕ is
the function partial recursive in C such that

ϕ(z) '
{
ϕCa (x) if z = 2x
ϕCb (x) if z = 2x+ 1.

Thus A⊕B is the l.u.b. of A and B w.r.t. ≤T . 2

Notice that the join operator is definable in (D, ≤), as

a ∪ b = c ⇔ a ≤ c ∧ b ≤ c ∧ (∀d)(a ≤ d ∧ b ≤ d → c ≤ d).

We can thus freely add ∪ to the structure (D, ≤) simply recalling, when
needed, that one universal quantifier is needed to express it.

We can also introduce a more general notion of join operation, as follows:

Definition V.1.3 Given a countable family {An}n∈I , with I ⊆ ω, then

⊕n∈IAn = {〈n, x〉 : x ∈ An ∧ n ∈ I }.

This notion is going to be useful, but we should be aware of the fact that
it is not invariant under T -equivalence.

Exercises V.1.4 (Kleene and Post [1954]) a) If I = {a, b} then (⊕n∈IAn) is recur-
sively equivalent to Aa ⊕Ab.

b) If I is finite then the degree of (⊕n∈IAn) is uniquely determined by the degrees
of the An’s, but this fails if I is infinite. (Hint: let A be any set, and x ∈ An ⇔ n ∈ A.
Then the An’s are all recursive, but (⊕n∈ωAn) has the degree of A.)

c) If An ≤T Bn uniformly in n ∈ I, then (⊕n∈IAn) ≤T (⊕n∈IBn). (Hint: the

hypothesis means that there is a recursive function f such that A ' ϕBn
f(n) if n ∈ I.)
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The jump operator

The fact that K is a complete r.e. set, and thus it embodies one existential num-
ber quantifier, is now generalized with the introduction of a degree operation
that corresponds to number quantification.

Definition V.1.5 The jump of a set A is the relativization of K to A, defined
as

x ∈ A′ ⇔ x ∈ WA
x ⇔ {x}A(x)↓ .

By relativization of the properties of K (recall the general comments on
p. 177), we get the following properties of the jump operator:

1. A is r.e. in B if and only if A ≤1 B
′

From the fact that A is r.e. if and only if A ≤1 K (p. 320).

2. A ≤1 A
′

This is just a particular case of 1.

3. A′ is not recursive in A
From the fact that K is not recursive (II.2.3).

The next result exhibits a connection between Turing and one-one reducibil-
ities, through the jump operator.

Proposition V.1.6 A ≤T B if and only if A′ ≤1 B
′.

Proof. If A ≤T B, from A′ r.e. in A we have A′ r.e. in B: by fact 1 above,
then A′ ≤1 B

′.
To show A ≤T B we just have to prove that both A and A are r.e. in B or,

by fact 1 above, that A ≤1 B
′ and A ≤1 B

′. Both follow from A′ ≤1 B
′ by

transitivity, the former because A ≤1 A
′, the latter because A ≤1 A

′ (since A
is r.e. in A). 2

In particular this shows that the jump operator is invariant under
T -equivalence, and thus it induces an operator on degrees.

Definition V.1.7 (Kleene and Post [1954]) The jump a′ of a is the degree
of A′, for any A ∈ a, and (D, ≤ , ′) is the structure of Turing degrees, with
the partial ordering ≤ and the jump operator ′.

We will usually simply write D when we refer to the structure of degrees
without jump operator, and D′ when we include the jump operator. There is a
need to keep the two distinct, since it is not known whether the jump operator
is definable in D.
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Recall that we defined 0 as the degree of the recursive sets, and 0′ as the
degree ofK. This is consistent with the present notation, since K is by definition
the jump of the emptyset, and ∅ ∈ 0.

The jump operator can be iterated, both on sets and on degrees.

Definition V.1.8 For any set A, the n-th jump A(n) of A is defined induc-
tively as follows:

A(0) = A A(n+1) = (A(n))′.

The n-th jump a(n) of a degree a is the degree of A(n), for any set A ∈ a.

Of course a(n) can also be directly defined by induction, as follows:

a(0) = a a(n+1) = (a(n))′.

We will use ∅(n) as our usual representative for 0(n).

Exercises V.1.9 a) ∅(n+1) is Σ0
n+1-complete. (Hint: by iteration of the fact that

∅′ = K is Σ0
1-complete.)

b) A set A is arithmetical if and only if it is T -reducible to ∅(n) for some n, i.e.

if its degree is bounded by some 0n.

There is also a transfinite operation of jump, that can be defined using the
infinite join of the finite iterations.

Definition V.1.10 (Kleene and Post [1954]) For any set A, the ω-jump
A(ω) of A is defined as

A(ω) = ⊕n∈ωA(n).

For any degree a, the ω-jump a(ω) of a is the degree of A(ω), for any set
A ∈ a.

Exercises V.1.11 a) If A ≤T B then A(ω) ≤1 B
(ω). In particular, the ω-jump is

well-defined on degrees. (Hint: if A ≤T B then A ≤1 B
′.)

b) The converse fails. (Hint: A and A′ have the same ω-jump.)

First properties of degrees

We now state some simple but basic facts about D and D′.

Proposition V.1.12 (Kleene and Post [1954]) As a partially ordered struc-
ture D is an uppersemilattice of cardinality 2ℵ0 with a least but no maximal
element. Moreover, each element has 2ℵ0 successors and at most countably
many predecessors.
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Proof. We have already noted that the join operator provides with a least
upper bound operator, and thus D is an uppersemilattice. The least element
is the degree 0 of the recursive sets. There can be no maximal element, since
the jump operator is a strictly increasing operator.

Given a set A, if B ≤T A then A ' ϕAe for some e ∈ ω, and thus there can
be at most countably many sets T -reducible to A: this means that a degree
has at most countably many predecessors, and it contains at most countably
many sets. In particular, there are at least 2ℵ0 degrees.

There cannot be more than 2ℵ0 degrees, because we can define a one-one
map from the degrees into P(ω), by choosing a set from each degree.

On the other hand, the map B 7→ A⊕B is a one-one map from P(ω) into
{X : A ≤T X}: this means that there are at least 2ℵ0 sets to which A is
T -reducible, and hence there are at least 2ℵ0 successors of any degree. Then
there are exactly 2ℵ0 ones. 2

Note that 0, being the least degree, is definable in D as

c = 0 ⇔ (∀x)(c ≤ x).

Thus we can freely add 0 to the structure D simply recalling, when needed,
that one universal quantifier is needed to express it.

Definition V.1.13 The cone above a is the set

D(≥a) = {b : b ≥ a}.

The properties just proved for D are obviously true for D(≥ a) as well,
and we may wonder whether the structure D is homogeneous, in the sense of
being isomorphic (or at least elementarily equivalent, i.e. satisfying the same
first-order properties) to all of its cones. If it were so, this would justify the
principle of relativization (p. II.3). As it happens, this actually fails (V.7.13),
and thus relativization of a result has to be verified in each case.

A connection between the join and jump operators is given by the following
result.

Proposition V.1.14 (Kleene and Post [1954]) For any pair of degrees a
and b,

a ≤ b ⇒ a′ ≤ b′ and a′ ∪ b′ ≤ (a ∪ b)′.

Proof. We know that if A ≤T B then A′ ≤1 B
′, and hence A′ ≤T B′: this

proves the first part.
Since a∪b is the l.u.b. of a and b, we have a ≤ a∪b and hence a′ ≤ (a∪b)′.

Similarly b′ ≤ (a ∪ b)′. Since a′ ∪ b′ is the l.u.b. of a′ and b′, it follows that



V.1 The Language of Degree Theory 453

a′ ∪ b′ ≤ (a ∪ b)′. 2

We will see (V.2.27) that the result is best possible, since every possibility
compatible with the properties above can be realized.

The Axiom of Determinacy ?

We have argued above that the cardinality of D is 2ℵ0 , by providing a one-
one map from D to P(ω), but this required the Axiom of Choice (we chose
a set from each degree). Yates [1970] has proved that the use of this axiom
is not avoidable, since it is consistent with ZF (plus the Axiom of Dependent
Choices) that there is no one-one map from D into P(ω). We will see the proof
in Volume III, but now we introduce a new axiom that implies the same result.

Suppose I and II are two players, that alternately play integers:

I a0 a2 · · ·
II a1 a3 · · ·

Putting together their moves, we get a function f(n) = an. To decide who is
going to win the play, we choose ahead of time a set A of total functions, and
we say that I wins if, at the end of the game, the function f is in A, and II
wins otherwise. Thus any set A defines a game G(A).

One of the two players might not only win, but even have a winning
strategy, i.e. a way to decide his or her moves so that, independently of how
the other player moves, he or she will win. E.g., if A is the set of functions
with value 0 for odd arguments a winning strategy for player II simply consists
of playing 0 when it is his turn. Of course only one of the two players can have
a winning strategy, but it is conceivable that there are games for which none
has one.

Definition V.1.15 (Gale and Stewart [1953], Mycielski and Steinhaus
[1962]) A winning strategy for player I in the game G(A) is a function
wI : Seq → ω such that I wins the game if he consistently plays following the
strategy. In other words, any function f such that f(2n) = wI(f̂(2n− 1)) is in
A, independently of the values of f for odd arguments. A winning strategy for
player II is defined similarly.

The game G(A) is determined if one of the two players has a winning
strategy in it, and the Axiom of Determinacy is the assertion AD that
every game G(A) is determined.

The interest of the Axiom of Determinacy for Degree Theory lies in the
next result.
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Theorem V.1.16 (Martin [1968]) If AD holds, then every set of degrees
either contains a cone or is disjoint from a cone.

Proof. Given a set A of degrees, let A∗ consist of the sets whose degrees are
in A. Suppose there is a winning strategy for I in G(A∗). The strategy, being a
function from (sequence) numbers to numbers, has a certain degree a: we show
that every degree b ≥ a must be in A. Choose any function g in b, and let
player II play according to g (i.e. the n-th move of II is g(n)). Let also player
I play according to the winning strategy. Since the moves of I are determined
by a function of degree a, and those of II by a function of degree b, and a ≤ b,
the final outcome will be a function of degree b. But since I was following a
winning strategy he wins the game, and thus the outcome must be in A∗: this
means that its degree, i.e. b, must be in A.

Similarly, if player II has a winning strategy then all degrees above the one
in which the strategy lies must be in A, since II wins the game. 2

This results has a number of interesting consequences for degrees. An as-
tonishing one is the following.

Theorem V.1.17 (Martin) If AD holds, every map from degrees to sets is
constant on a cone.

Proof. Let F : D → P(ω) be given. F (x) is a set of numbers, for each degree
x. Let An = {x : n ∈ F (x)}: this is a set of degrees, and thus there is a degree
an which is the base of a cone contained either in An or in An. This means
that n is in F (x) either for all x’s above an or for none, and thus the behavior
of F (x) on n is fixed on the cone above an. Consider a degree a above all the
an’s: it exists, because there are only countably many of them (e.g. take the
infinite join of sets An ∈ an). Then F must be constant on the cone with a as
a base, since this time its behavior is fixed for any n. 2

Corollary V.1.18 If AD holds, there is no one-one map from D into P(ω).

This contradicts the Axiom of Choice, which allows to choose a set from
each degree, thus producing a one-one map from D into P(ω). In particular,
the Axiom of Determinacy is inconsistent with the Axiom of Choice (Gale and
Stewart [1953]).

It should be noted that the proof of the theorem above used a weak form of
the Axiom of Choice, by actually picking up representatives in countably many
degrees. This weak form is actually a consequence of AD, and can thus be
freely used. To see why, note that we know that (∀n)(∃A)(A ∈ an). Consider
the game in which I constantly plays n while II plays the characteristic function
of a set A, and such that II wins if A ∈ an. Player I does not have a winning
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strategy, since there is an A ∈ an) that can be played by II. Then, by AD,
II has a winning strategy, which produces a function choosing, for every initial
move n of I, a set in an.

We might read the corollary as saying that if AD holds there are more
degrees than sets, but we probably should not, when Choice is not present,
compare cardinalities by using one-one maps. If we use instead onto maps,
these peculiarities disappear.

Exercise V.1.19 Without using the Axiom of Choice, there are onto maps between

D and P(ω). (Hint: in one direction, send a set to its degree. In the other direction,

build a tree of sets with pairwise incomparable degrees, see V.2.11, then send the

degree of each branch to the branch itself, and all other degrees to a fixed set. This

suffices, because P(ω) is isomorphic to a tree.)

Another interesting consequence of V.1.16 is the following.

Proposition V.1.20 (Martin) If AD holds, there is a countably additive
measure on D.

Proof. Recall that a countable additive measure is any function µ defined on
subsets of D such that

1. µ(∅) = 0 and µ(D) = 1

2. if X ⊆ Y then µ(X) ≤ µ(Y )

3. µ({a}) = 0

4. if {Xn}n∈ω is a collection of pairwise disjoint sets of degrees, then

µ(
⋃
n∈ω

Xn) =
∑
n∈ω

µ(Xn).

It is then enough to define

µ(A) =
{

1 if A contains a cone
0 otherwise.

The only condition that requires some arguing is the last one. There are two
cases:

• some Xn0 contains a cone
Then so does

⋃
n∈ωXn, and µ(

⋃
n∈ωXn) = 1. Moreover no Xn with

n 6= n0 contains a cone, because the intersection of two cones is not
empty, while the Xn are disjoint. Then

∑
n∈ω µ(Xn) = µ(Xn0) = 1.
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• no Xn contains a cone
Then

∑
n∈ω µ(Xn) = 0. Moreover Xn contains a cone for each n, by

V.1.16, and then so does their intersection, as in V.1.17. But⋂
n∈ω

Xn =
⋃
n∈ω

Xn,

and thus
⋃
n∈ωXn does not contain a cone: hence µ(

⋃
n∈ωXn) = 0. 2

Since the countable ordinals are represented by well-ordered sets of natural
numbers, it immediately follows that if AD holds then ℵ1 is a measurable car-
dinal (Solovay), by giving a set A of countable ordinals the same measure as
the set of degrees containing well-orderings with ordinal in A.

One might wonder why we should accept an axiom like AD . The fact is
that, as we will prove in following chapters, various special cases of it can be
proved in ZFC, and thus some versions of the results proved above simply
hold. More precisely, Martin [1975] has showed in ZFC that every Borel game
is determined : thus every Borel set of degrees either contains a cone or it is
disjoint from a cone, and every Borel map from D to sets is constant on a cone.
We will investigate the effect of restricted versions of AD on Recursion Theory
in Volume III.

V.2 The Finite Extension Method

Degrees are represented by sets, and thus existential properties of degrees can
be proved by building appropriate sets. Since building sets by successive ap-
proximations will be our main concern in this chapter, we set up an efficient
notation to deal with the problem. Recall that a set is identified with its
characteristic function, which is just a sequence of 0’s and 1’s.

Definition V.2.1 A string is a partial function σ : ω → {0, 1} with finite
domain. If the domain of σ is an initial segment of ω, we call σ an initial
segment, and let |σ| be its length. Given two strings σ and σ′, then:

1. σ′ is an extension of σ if it extends it as a partial function, i.e.

σ(x)↓ ⇒ σ′(x)↓ ∧ σ(x) ' σ′(x).

2. σ and σ′ are incompatible if they differ on some argument on which
they are both defined.
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Initial segments will be identified, when needed, with sequences of 0’s and
1’s, or with their sequence numbers. Then σ ∗ τ will be the juxtaposition of
the two sequences σ and τ , and ln(σ) the length of σ.

Strings are finite objects, and thus they can be coded by natural numbers.
In particular, there is a canonical ordering of strings, to which we will implicitly
refer when talking of ‘smallest string satisfying a given property’.

Recall that, by compactness and monotonicity (II.3.13), convergent compu-
tations with oracle A can be approximated by convergent computations having
as oracle some finite approximation of A, which can then be coded by a string.
In other words, using the notations for this chapter,

{e}A(x) ' y ⇔ (∃σ ⊆ A)({e}σ(x) ' y).

It is exactly because of these continuity properties that we will be able to prove
results about degrees.

Incomparable degrees

Looking at the partially ordered structure D, the first problem that comes to
mind is whether the order is really partial. The next result shows that this is
the case, and it introduces our first method of proof.

Theorem V.2.2 (Kleene and Post [1954]) There are two incomparable
degrees.

Proof. We want to build sets A and B such that A 6≤T B and B 6≤T A. The
proof consists of two steps: first we break down these two global conditions
into infinitely many local conditions, and then satisfy each of them by a finite
action.

Note that A ≤T B means that, for some e, A ' {e}B . Similarly for B ≤T A.
We can thus rewrite the global conditions as the sequence:

R2e : A 6' {e}B
R2e+1 : B 6' {e}A.

The construction of A and B is by finite initial segments. We will let
A =

⋃
s∈ω σs and B =

⋃
s∈ω τs. At each stage of the construction we will take

care of one requirement, once and for all. We begin by setting σ0 = τ0 = ∅. At
stage s+ 1, suppose σs and τs are given.

• If s = 2e then we satisfy R2e

Let x be the first element such that σs(x) does not converge: this means
that we have not yet decided whether x has to be in A or not. We will
decide this now, and we will use x to witness that A 6' {e}B . In other
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words, we will arrange that A(x) 6' {e}B(x): the idea is obviously to
diagonalize, i.e. to make A on x different from {e}B on x. But since we
have not yet defined B, we do not even know whether {e}B(x) converges.
What we do know, by compactness, is that if it will converge in the end
so will {e}τ (x), for some τ ⊆ B. Since τs ⊆ B by construction, if such a
τ will exist then it will be compatible with τs (since B will extend both).
We may also suppose, by monotonicity, that τ will actually extend τs.
At this point we may turn things around, and see whether there is any
string τ ⊇ τs such that {e}τ (x) converges.

If such a string does not exist, we know that {e}B(x) will be undefined,
and since A(x) will certainly be defined (being a total function), it does
not matter what we do. E.g., let σs+1 be the smallest initial segment
extending σs and defined on x. Since nothing has to be done on B, let
τs+1 = τs.

If however such a τ exists, then it might be the case that {e}B(x) will
converge, and we want to dispose of this case too. What we can do,
since we are also building B, is to insure that B will extend τ : then
{e}B(x) ' {e}τ (x) by monotonicity. To insure this, we only have to let
τs+1 = τ . But now we have to be careful with A: we know that {e}B(x)
converges, and thus we want A(x) different from it. Then we let σs+1 be
the smallest initial segment extending σs, and such that

σs+1(x) = 1− {e}B(x).

• If s = 2e+ 1 then we satisfy R2e+1

The construction is the same in this case, simply with the roles of A and
B interchanged.

Notice that there is no reason to define the strings as initial segments, ex-
cept for being sure that a set is obtained as their union. If we did not do this,
then we could just say that A is any set extending

⋃
s∈ω σs, and similarly for B.

Also, the only reason to specify that we choose particular x’s and particular
σ’s, when many possibilities are open, is simply to have the construction as
effective as possible: this is going to be useful in the corollary below, where an
evaluation on the complexity of the construction is needed. 2

We can distinguish between global results, that hold for the whole struc-
ture D, and local results, that hold instead in the degrees D(≤ a) below a
given degree a. Not all results can be localized below a given nonrecursive de-
gree, and those that do may require more sophisticated proofs. But the simple
analysis of a proof will usually provide an upper bound to the noneffective parts
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in it, and hence a local version of the global result (although not necessarily
the sharpest one).

Corollary V.2.3 There are incomparable degrees below 0′.

Proof. We only have to show that the sets A and B built above are recursive in
K. This follows from the fact that the only nonrecursive step in the construction
is to decide questions of the form: ‘is there a string σ′ extending a given string
σ and such that {e}σ′(x) converges, for a given x?’ This is easily seen to be
recursively enumerable: it is enough to dovetail the computations of {e}σ′(x)
for all strings σ′ extending σ (note that this last condition can be effectively
checked, because strings are finite functions). Since K is m-complete, each of
these questions can thus be answered recursively in K. 2

Exercises V.2.4 a) The existence of incomparable degrees follows from 2ℵ0 6= ℵ1,
by cardinality considerations. (Myhill [1961]) (Hint: each degree has only countably
many predecessors, and thus a linear ordering of degrees must have cardinality at
most ℵ1. But there are 2ℵ0 degrees.)

b) The existence of incomparable degrees can be proved by set-theoretical consider-
ations. (Kreisel) (Hint: the existence of incomparable degrees is absolute for standard
models of ZF− by IV.3.25, being a Σ1

1 statement. Thus it is enough to show that it
holds in a model of ZF−. By forcing, there is such a model in which the Continuum
Hypothesis fails and thus, by part a), in which there are incomparable degrees.)

c) The Continuum Hypothesis is equivalent to the assertion that there is a cofinal

chain of degrees of order type ℵ1, where cofinal means that each degree is bounded

by some element of the chain. (Hint: the downward closure of such a chain still has

cardinality ℵ1, because each degree has at most countably many predecessors.)

Embeddability results

Having shown that D is not linear, one immediately wonders about its possible
complexity as a partial order. This can be measured by the quantity of partial
orderings that can be embedded in the structure. We show in this subsection
that, in this sense, D is quite complicated.

We could proceed by brute force and build, given any countable partial
ordering, a set of degrees isomorphic to it. The constructions of these sets
would not differ very much, and most of the work would be to reproduce to the
given partial orderings. We will instead isolate the recursion theoretical ideas
in just one result, which will produce a kind of universal countable partial
ordering, in which all the others are embedded. The idea consists in building
degrees which are very independent, one from the others, in the sense that
none is recoverable from the remaining ones: the universal partial ordering will
then be given by all their possible combinations. The notion of independence
is captured by the following definition.
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Definition V.2.5 (Kleene and Post [1954]) A set {An}n∈I is recursively
independent if, for each n ∈ I,

An 6≤T ⊕{Am : m ∈ I ∧m 6= n}.

Exercises V.2.6 a) The set {A} is recursively independent if and only if A is not
recursive.

b) {A,B} is recursively independent if and only if A and B are incomparable.

c) If {An}n∈I is recursively independent then the An are mutually incomparable,

but not conversely . (Hint: if {A,B,C} is recursively independent, then A⊕B, B⊕C,

and A⊕C are mutually incomparable but not independent, since e.g. A⊕B is reducible

to (A⊕ C)⊕ (B ⊕ C).)

Proposition V.2.7 (Kleene and Post [1954]) There exists a countable,
recursively independent set.

Proof. The proof differs only in the details from that of V.2.2. We have to
build a countable sequence {An}n∈ω of sets, and we just build a giant set A
that puts them all together. We will then let

x ∈ An ⇔ 〈n, x〉 ∈ A,

so that A can be thought of as the infinite join of the An’s, and each An can
be thought of as the n-th column of A. The requirements are:

R〈e,n〉 : An 6' {e}⊕m 6=nAm .

We will build A by finite initial segments σs. We start with σ0 = ∅. At stage
s + 1, let σs be given. If s = 〈e, n〉 + 1, then we attack R〈e,n〉. We choose
a number 〈n, x〉 such that σs is not yet defined on it, so that in particular
membership of x in An has not yet been decided. Note that in the end ⊕m6=nAm
will be equal to A except for the n-th column, which will not contain any
elements. Then we look for a string σ such that:

• σ is 0 on the elements of the n-th column, i.e. those of the form 〈n, z〉

• σ extends σs when this is defined, on elements which are not on the n-th
column

• {e}σ(〈n, x〉)↓ .

If such a string does not exist then {e}⊕m 6=nAm cannot converge on 〈n, x〉,
and we let σs+1 be any initial segment extending σs and defined on 〈n, x〉.

Otherwise, we take one such string σ, and define σs+1 as any initial segment
which extends σs, extends σ on elements not on the n-th column, and

σs+1(〈n, x〉) = 1− {e}σ(〈n, x〉). 2
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As we forecasted, the result is enough to prove all the embeddability results
we need.

Exercise V.2.8 There is a recursive partial ordering in which all the countable par-
tial ordering are embeddable. (Mostowski [1938]) (Hint: take the pairs of rationals,
ordered as

(x, y) < (x′, y′) ⇔ x < x′ ∧ y < y′.

This a planar version of the fact that every countable linear ordering is embeddable

in the rationals. A direct construction is also possible, by having at any finite stage a

finite approximation, and extending it by adding a new element in each possible way

consistent with the partial ordering requirement.)

Theorem V.2.9 (Sacks [1963]) Any countable partial ordering is embeddable
in the degrees (below 0′).

Proof. By the exercise, it is enough to show that any recursive countable
partial ordering � is embeddable in the degrees. We use the recursively inde-
pendent set {An}n∈ω, and associate to each element a in the domain of � the
set ⊕n�aAn:

〈n, x〉 ∈ Ba ⇔ n � a ∧ x ∈ An.

It remains to show that
a � b⇔ Ba ≤T Bb,

so that the structure of the degrees of the Ba’s is isomorphic to �:

• if a � b then Ba ≤T Bb
Note that, since � is transitive, Ba ⊆ Bb in this case, and thus

〈n, x〉 ∈ Ba ⇔ n � a ∧ 〈n, x〉 ∈ Bb.

Thus Ba ≤T Bb, because � is recursive.

• if Ba ≤T Bb then a � b
Suppose a 6� b: then each element n � b is different from a. It follows
that Bb ≤T (⊕n 6=aAn):

〈n, x〉 ∈ Bb ⇔ n � b ∧ 〈n, x〉 ∈ (⊕n 6=aAn).

But Aa ≤T Ba, since a � a, and thus it cannot beBa ≤T Bb otherwise, by
transitivity, Aa ≤T (⊕n 6=aAn), contradicting the recursive independence
of the An’s.
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If we let An be the set constructed in V.2.9, then ⊕n∈ωAn is recursive in
K, and hence so are all the Ba’s. Thus � is actually embeddable in the degrees
below 0′. 2

A sentence in the language of D is a one-quantifier sentence if it is logi-
cally equivalent to a sentence in prenex normal form with a prefix consisting of
quantifiers of the same type, and a matrix consisting of a Boolean combination
of atomic formulas of the form x ≤ y.

Corollary V.2.10 (Lerman [1972]) The one-quantifier sentences of D and
D(≤0′) admit a decision procedure.

Proof. It is enough to decide the existential sentences. But such a sentence
simply asserts the existence of finitely many elements x1, . . . , xn in a certain
order relationship. Since any countable (and hence any finite) partial ordering
is embeddable in D, the sentence is true in D if and only if it is consistent with
the fact that ≤ is a partial ordering. 2

Exercises V.2.11 Independent sets of degrees. Since the infinite join is not a
degree-theoretical operation, a set of degrees A is called independent if no element in
it is bounded by the l.u.b. of some finite subset of A.

a) There is a countable independent set of degrees. (Kleene and Post [1954]) (Hint:
see V.2.7.)

b) There is an independent set of degrees of cardinality 2ℵ0 . (Sacks [1961]) (Hint:

build a tree of sets, each branch of which is not recursive in any finite join of different

branches.)

Sacks [1961] has proved that every partial ordering with one of the following
properties is embeddable in D:

1. cardinality 2ℵ0 and finite predecessor property

2. cardinality ℵ1 and countable predecessor property

3. cardinality 2ℵ0 , countable predecessor property and ℵ1 successor property .

In particular, the last two conditions are equivalent and best possible, if the
Continuum Hypothesis is assumed. The best absolute result would clearly be
to prove the embeddability of any partial ordering with

4. cardinality 2ℵ0 and countable predecessor property

but it is unknown whether this holds.
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The splitting method

We have completely decided the one-quantifier theory of D. We thus start to
deal with two-quantifier sentences, that will be discussed in general on p. 490.
A typical problem is to get a degree incomparable with a given one. Here the
game is more subtle than the one in V.2.2: there we could build both sets,
while here one of them is given to us and we have no control over it. The
technique used in the solution to the problem is going to be extremely useful,
and will be exploited in many different situations. The idea is natural, and it
is a refinement of the one already used: since we control only one of the two
sides, but we still need two possibilities to be able to diagonalize, we look for
both of them on the side we control.

Definition V.2.12 Two strings σ1 and σ2 are an e-splitting if, for some x,
{e}σ1(x) and {e}σ2(x) both converge, and are different. In this case we say
that σ1 and σ2 e-split on x.

Theorem V.2.13 (Kleene and Post [1954]) Given any nonrecursive degree
b, there is a degree a incomparable with it.

Proof. Let B be nonrecursive: we want A such that

R2e : A 6' {e}B
R2e+1 : B 6' {e}A.

The two types of requirements look the same, but are very different: B is given
ahead of time, while A is constructed. Thus they require different actions.

As usual, we will let A =
⋃
s∈ω σs. We start with σ0 = ∅. At stage s + 1,

let σs be given.

• If s = 2e then we satisfy R2e

This is done by the method of the last subsection: we choose x on which
σs is not yet defined, and we extend σs to a σs+1 such that

σs+1(x) =
{

1− {e}B(x) if {e}B(x)↓
0 otherwise.

Note that we simply ask whether {e}B(x) converges, instead of asking,
as before, whether we may make it converge (because B is given).

• If s = 2e+ 1 then we satisfy R2e+1

We now see if there are e-splitting extensions of σs, i.e. if we have two
possible choices for {e}A, on some element x. If this the case, choose
τ1 and τ2 extending σs and e-splitting on some x. Then {e}τ1(x) and



464 V. Turing Degrees

{e}τ2(x) are both convergent, and one of them must be different from
B(x). Let σs+1 be τi, where

B(x) 6' {e}τi(x).

If such strings do not exist, let σs+1 = σs.

We still have to argue that R2e+1 is really satisfied, also in the case that
e-splitting extensions of σs do not exist. Here is where the nonrecursiveness of
B comes into the game: we claim that, in this case, {e}A is either not total or
recursive, and thus it must be different from B, which is total and nonrecursive.

Suppose {e}A is total: by compactness, given any x there must be a string
τ ⊆ A such that {e}τ (x) gives the right value. We can obviously suppose, by
monotonicity, that τ extends σs. But since there are no e-splitting extending
σs it must be the case that, as long as {e}τ (x) converges, the value is unique.
This then suggests a recursive method to compute {e}A: given x, dovetail the
possible computations {e}τ (x), for all strings τ extending σs. The first con-
verging one gives the right value. 2

From a topological point of view, the difference between the previous proof
and the pure extension method of the last subsection is that the splitting method
requires something more than simple continuity , since we use the fact that when
a functional is constant on an open set (i.e. there is no splitting above a given
string), then its value is recursive.

Notice also that a simple analysis of the proof does not give the result for
degrees below 0′, since if 0 < b < 0′ we only get a ≤ b′ ≤ 0′′. The result still
holds below 0′, but a different proof is needed. The theory of degrees below 0′

thus requires a separate study, which we will undertake in Chapter XI.

Exercises V.2.14 a) Given a countable set of nonrecursive degrees, there is a degree
incomparable with every element of the set . (Shoenfield [1960]) (Hint: the require-
ments to satisfy are still countably many.)

b) Every maximal antichain of degrees is uncountable. (Hint: use part a) and
Zorn’s Lemma.)

c) Every maximal independent set of degrees is uncountable. (Hint: every count-

able independent set of degrees can be extended.)

The next definition introduces two notions of minimality, one for pairs and
one for single degrees, which are going to be useful in the future.

Definition V.2.15

1. Two degrees a and b form a minimal pair if they are nonrecursive and
their g.l.b. is 0, i.e.

(∀c)(c ≤ a ∧ c ≤ b ⇒ c =0).
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2. A degree a is minimal if it is nonrecursive and there is no degree between
0 and a, i.e.

(∀c)(c ≤ a ⇒ c = 0 ∨ c = a).

Clearly two distinct minimal degrees form a minimal pair, but a minimal
pair might consist of nonminimal degrees. The existence of minimal degrees
is proved in Section 5, and it requires a different method of proof. With the
present tools we can however prove the existence of minimal pairs.

Proposition V.2.16 There exists a minimal pair of degrees. Actually, each
nonrecursive degree is part of a minimal pair.

Proof. Let B be nonrecursive: we want A such that

R2e : A 6' {e}
R2〈e,i〉+1 : {e}A ' {i}B ' C ⇒ C recursive.

The first kind of requirement ensures that A is not recursive, while the second
ensures that any set recursive in both A and B is recursive. They are satisfied
as usual, the first by diagonalization, the second by the splitting method.

The idea to satisfy R2〈e,i〉+1 is the following. First one tries to make the
requirement vacuously true, by having convergent computations such that

{e}A(x) 6' {i}B(x).

This can be done, at a given stage n, by looking for e-splitting extensions of
σs. If they do exist, we choose the one that produces a disagreement with {i}B
on the x for which the two strings e-split. If they do not exist, we can argue
that then {e}A is recursive if total, as in V.2.13. Note that in this case the
hypothesis that B is nonrecursive plays no role in the proof, and it is needed
only to satisfy the definition of minimal pair. 2

Corollary V.2.17 There exists a pair of degrees with greatest lower bound.

Exercises V.2.18 a) Two nonrecursive sets A and B form a minimal pair if, for
each a,

{a}A ' {a}B ' C ⇒ C recursive.

(Posner) This slightly simplifies the presentation of requirements. (Hint: choose an
element z in one of the two sets but not in the other, say z ∈ A−B. Consider

{a}X '
{
{e}X if z ∈ X
{i}X otherwise.

Then {a}A ' {e}A and {a}B ' {i}B .)
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b) There is a set of 2ℵ0 degrees, such that each pair from it is a minimal pair .

This will be greatly improved in V.5.12, which however requires a more difficult proof.

(Hint: build a tree of sets such that any two branches are a minimal pair.)

The proof of the next result is quite clever, and it manages to diagonalize
against uncountable sets of degrees by a counting trick. It is an example of the
method used by Sacks [1961] to obtain the results on uncountable embeddings
quoted on p. 462.

Definition V.2.19 A set of degrees is:

1. a chain if it is linearly ordered

2. an antichain if its members are mutually incomparable nonzero degrees.

The condition of nonrecursiveness for members of an antichain is imposed
only to avoid the trivial case {0}.

Proposition V.2.20 (Sacks [1961])

1. Every countable chain of degrees is extendable, and thus every maximal
chain has cardinality ℵ1.

2. Every antichain of cardinality less than 2ℵ0 is extendable, and thus every
maximal antichain has cardinality 2ℵ0 .

Proof. The first part is easy: given any countable set {An}n∈ω, the set
(⊕n∈ωAn)′ has degree strictly above all the degrees of the An’s. Since ev-
ery degree has at most countably many predecessors, the maximal length of a
chain is ℵ1.

For the second part, let A be a set of degrees of cardinality 2ℵ0 , and such
that any pair in it is a minimal pair (it exists, by the last exercise above). Let
B be any set of nonrecursive degrees of cardinality less than 2ℵ0 . Note that

• the downward closure of B has cardinality less than 2ℵ0 , since each mem-
ber of B has at most countably many predecessors

• for each member of B there is at most one member of A above it, since
any degree below two distinct members of A must be recursive, and hence
not in B.

Then less than 2ℵ0 members of A, and hence not all of them, are comparable
with some member of B. 2

We have noticed in V.2.14 that maximal antichains and maximal indepen-
dent sets of degrees are uncountable. We have just strengthened the first result,
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by showing that maximal antichains actually have cardinality 2ℵ0 . A similar
strengthening of the second result is impossible, since the assertion that max-
imal independent sets of degrees have cardinality 2ℵ0 is independent of ZFC
(Sacks [1961], Groszek and Slaman [1983]).

Forcing the jump

After a first study of some elementary properties of D, we now we turn our
attention to D′. To control the behavior of the jump operator a new idea is
needed, which will be variously mixed with different methods. We first present
it by itself, in the proof of the next result.

Proposition V.2.21 (Spector [1956]) The jump operator is not one-one.

Proof. It is enough to get a > 0 such that a′ = 0′. To get A nonrecursive
we diagonalize, while to have A′ ≤T K we want to decide, for each e, whether
{e}A(e)↓. The requirements are then:

R2e : A 6' {e}
R2e+1 : decide whether {e}A(e)↓ .

Note that we do not consider the condition K ≤T A′, which is automatically
satisfied because ∅ ≤T A, and hence K = ∅′ ≤T A′.

As usual we build A by finite initial segments, starting with σ0 = ∅. At
stage s+ 1, let σs be given.

• If s = 2e then we satisfy R2e

Let x be the first element on which σs is undefined, and let σs+1 be the
smallest initial segment extending σs and such that

σs+1(x) =
{

1− {e}(x) if {e}(x)↓
0 otherwise.

• If s = 2e+ 1 then we satisfy R2e+1

See if there is an initial segment σ extending σs such that {e}σ(e) ↓. If
so, let σ be the smallest one, and σs+1 = σ. Otherwise, let σs+1 = σs.

By construction A is not recursive. Moreover,

e ∈ A′ ⇔ {e}A(e)↓⇔ {e}σ2e+2(e)↓

and, since the construction is recursive in K, A′ ≤T K. 2

Corollary V.2.22 The jump operator is never one-one on its range.
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Proof. By relativization, given any C we get A such that A 6≤T C and
(A ⊕ C)′ ≤T C ′. But then A ⊕ C is a set with degree different from C,
and jump C ′. 2

Despite the absolute simplicity of the proof just given, the ideas involved in
it are quite deep. The argument used is a forerunner and miniaturized version
of the forcing method, introduced by Cohen [1963] to prove the independence
of the Continuum Hypothesis, and which will play a major role in the next vol-
umes. Its main idea is to approximate truth by finite information, although here
we only consider one-quantifier sentences (through the jump operator which,
as we know, corresponds to one quantifier). Note that it is always the case
that, whenever a computation with oracle A converges, then it does because of
a finite amount of information about A. But there is no reason to believe that
the same holds for divergent computations as well, as the following example
shows:

{e}A(x) '
{

0 if (∃x)(x ∈ A)
undefined otherwise.

What the proof given above accomplishes is to build a set A such that not
only the convergence, but also the divergence of any computations using A as
an oracle can be determined by a finite amount of information on A. Such sets
are called 1-generic, and will be studied in Chapter XI. They are particularly
useful in the examination of D(≤0′).

Exercises V.2.23 a) Even without diagonalization, A is automatically nonrecursive.
(Posner and Epstein [1978]) (Hint: let σe determine whether {e}A(e) converges for
all A ⊇ σe, or diverges for all A ⊇ σe. Let A =

⋃
e∈ω σe: if A is recursive, for some e,

{e}σ(x) ' σ(x) ⇔ σ 6⊆ A.

Now some extension of σe defined on e is contained in A, and hence makes {e}
converge on e, and some is not, and makes {e} diverge on e, contradicting the choice
of σe.)

b) There is a recursively independent set of degrees with jump 0′. (Hint: combine

V.2.7 with the proof above.)

A natural question about the jump operator concerns its range, and it is
answered by the next result.

Theorem V.2.24 Jump Inversion Theorem (Friedberg [1957b]) The
range of the jump operator is the cone D(≥0′).

Proof. We have already noted that a′ ≥ 0′, for any a. To get the converse,
let C be a set such that K ≤T C: we want to get A such that A′ ≡T C. This
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splits into two separate conditions: A′ ≤T C, which will be satisfied as above,
and C ≤T A′, which will be achieved by coding C into A. The two strategies
will be pursued alternately.

As usual we build A by finite initial segments, starting with σ0 = ∅. At
stage s+ 1, let σs be given.

• If s = 2e then we see if there is an initial segment σ ⊇ σs such that
{e}σ(e)↓. If so, we let σs+1 = σ for the smallest such, and otherwise we
let σs+1 = σs.

• If s = 2e+ 1, we code the e-th element of C into A:

σs+1 = σs ∗ 〈C(e)〉.

The construction is recursive in C: the first step is recursive in K, which is
recursive in C by hypothesis, and the second uses C directly. Thus, since

e ∈ A′ ⇔ {e}σ2e+1(e)↓,

we have A′ ≤T C.
The construction is also recursive in K and A: the second step simply

determines the value of A for the next undefined element, which is |σ2e+1|.
Then

e ∈ C ⇔ σ2e+2(|σ2e+1|) = 1

and C ≤T A ⊕ K. But A ⊕ K ≤T A′ (because A ≤T A′ and K ≤T A′), and
hence C ≤T A′. 2

Notice that the least possible jump of a degree a is a′ = a ∪ 0′, since
a ∪ 0′ ≤ a′ always holds. Not every degree realizes the least possible jump,
e.g. any degree c ≥ 0′ does not (since then c ∪ 0′ = c), but the proof above
actually shows that every degree c ≥ 0′ is the jump of a degree realizing the
least possible jump.

Exercise V.2.25 For any c ≥ 0′ there are infinitely many degrees with jump c.

(Hint: relativize V.2.23.b, and apply the Jump Inversion Theorem.)

The jump operator by itself is not very problematic: using the previous
exercise, it can be shown that the first-order theory with equality of (D, ′)
is decidable (Jockusch and Soare [1970]). But adding the jump to D is a
different story, and even the one-quantifier sentences of D′ are not known to
be decidable.

Our last immediate goal is to determine the possible behavior of the jump
operator. To provide some necessary counterexamples, we first prove a result.
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Proposition V.2.26 (Spector [1956]) For any c ≥ 0′ there exist two de-
grees a and b such that a ∪ b = a′ = b′ = c.

Proof. We modify the proof of the Jump Inversion Theorem. Let C such that
K ≤T C be given: we want two sets A and B such that A′ ≡T B′ ≡T C, and
A ⊕ B ≡T C. The last condition involves the only new idea in the proof, and
consists of building A and B by initial segments of the same length, and to let
the two sides have the same value only when coding elements of C, so that C
will be recoverable from the two sets together.

We let A =
⋃
s∈ω σs and B =

⋃
s∈ω τs, and we start with σ0 = τ0 = ∅. At

stage s+ 1, let σs and τs be given and of the same length.

• If s = 3e then we see if there is an initial segment σ ⊇ σs such that
{e}σ(e) ↓, and let σs+1 be the smallest such string if one exists, and σs
otherwise. Moreover, we also extend τs on the new elements x on which
σs+1 has been defined, if any, by letting

τs+1(x) = 1− σs+1(x),

so that σs+1 and τs+1 differ on these elements.

• If s = 3e + 1 we do the same, interchanging the roles of A and B (and
hence of the σ’s and τ ’s).

• If s = 3e+ 2 then we code C(e), by letting

σs+1 = σs ∗ 〈C(e)〉 τs+1 = τs ∗ 〈C(e)〉.

Note that this is the only step where the two sides receive the same value.

As before, we have

A⊕K ≡T B ⊕K ≡T B′ ≡T A′ ≡T C.

To recover C(e), we only have to look at the e-th place in which A and B agree,
and this is recursive in A⊕B. So

C ≤T A⊕B ≤T A′ ⊕B′ ≤T C,

and hence the sets A⊕B and C are T -equivalent. 2

Recall that V.1.14 provided some necessary conditions for the behavior of
the jump operator. We can show now that they are best possible.
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Proposition V.2.27 (Spector [1956], Shoenfield [1959]) Every possibility
compatible with any of the properties

a ≤ b ⇒ a′ ≤ b′ and a′ ∪ b′ ≤ (a ∪ b)′

is realized.

Proof. The following are the possible cases:

1. jumps of comparable degrees
Let a ≤ b. Then we can have:

• a′ = b′ by the proof of V.2.21.
• a′ < b′, if a = 0 and b = 0′.

2. jumps of incomparable degrees
Let a|b. Then we can have:

• a′ = b′ by V.2.26, since two degrees with jump c are strictly below
it, and if they join to it then they must be incomparable (otherwise
their join would be one of them).

• a′ < b′, by having a degree b incomparable with a = 0′ and with
jump greater than 0′′. Note that a degree realizing the least possible
jump cannot be above 0′, and thus we only need to avoid b < 0′.
This is automatic if b′ > 0′′, and thus it is enough to apply the
Jump Inversion Theorem, and get b such that b′ = 0′′′.

• a′|b′, by taking two degrees whose jumps are incomparable, which
exist by the Jump Inversion Theorem (since incomparable degrees
above 0′ exist, e.g. by relativization of V.2.2).

3. distributivity of jump over join

• a′ ∪ b′ = (a ∪ b)′ = 0′′ if a = 0 and b = 0′.
• a′ ∪ b′ < (a ∪ b)′ for the degrees in V.2.26. 2

V.3 Baire Category ?

In Section II.1 we looked at the class P of partial functions, from a topological
point of view. Here we do the same for the class of total functions, and we
will distinguish the class of functions (ωω, the Baire space) from the class of
characteristic functions or sets (P(ω), the Cantor space). There are various
ways of introducing a topology on these sets, but the induced topology will be
unique, and thus particularly stable. As a reference on topology the reader can
consult Kelley [1955].
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Topologies on total functions

Natural topologies on ωω and P(ω) are the following:

1. the topology induced by the topology of P
The open sets are the intersection of open sets of P with ωω or P(ω).
Thus a basic open set is determined by a finite initial segment, see p. 186.

2. the product topology of the discrete topology on ω or {0, 1}
Here every subset of ω is open, and a basic open set on ωω is a product

A0 ×A1 × · · · ×An × ω × ω × · · ·

where the Ai’s are nonempty open sets. Thus the basic open sets are
unions of sets determined by finite initial segments, namely the finite
initial segments σ of length n+ 1 such that σ(i) ∈ Ai.

3. the topology induced by the following metric:

d(f, g) =
{

0 if f = g
1

[µx(f(x) 6=g(x)]+1 otherwise.

Thus the distance between two functions is determined by the smallest
argument on which they differ, and the factor ‘+1’ takes care of the
possibility that they differ on 0. The basic open sets are the balls relative
to the metric, and again they are determined by finite initial segments.

4. the topology induced by the order topology on the reals
Here we use the canonical homeomorphism between ωω and the irrationals
between 0 and 1, which can be produced in two different ways. One is to
give the direct map

f 7−→ 1
f(0) + 1

f(1)+ ···
·

For the other, first note that there is a one-one map from ωω to P(ω),
given by

f 7−→ 1 . . . 10︸ ︷︷ ︸
f(0) + 1

0 . . . 01︸ ︷︷ ︸
f(1) + 1

1 . . . 10︸ ︷︷ ︸
f(2) + 1

0 . . .

Then consider the reals between 0 and 1, in binary representation. Each
such real may be written as

∑
i∈I 2−(i+1), for some I ⊆ ω. The bi-

nary irrationals are those reals between 0 and 1 that cannot be so rep-
resented with a finite I. The composition of these two maps gives a
homeomorphism between ωω and the binary irrationals. These and the
irrationals are homeomorphic, because binary rationals and rationals are
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both countable and dense in [0, 1], so there is a one-one order preserving
correspondence between them, which may be extended in a unique way to
a homeomorphism of [0, 1] with itself. The restriction of it to the binary
irrationals is a homeomorphism with the irrationals.

Since all these topologies are equivalent, we can use them interchangeably,
but we will mostly continue to use the topology induced by the topology of P,
whose basic open sets are determined by finite strings.

Proposition V.3.1 ωω is separated, but neither compact nor connected. P(ω)
is separated and compact, but not connected.

Proof. For separation, given two different functions f and g, let x be the
smallest point on which they differ. Then the two open sets determined by
f̂(x+ 1) and ĝ(x+ 1) are disjoint, and separate f and g. This also proves that
the two spaces are not connected.

P(ω) is compact by König’s Lemma (see V.5.23), but ωω obviously is not
since, e.g., the open sets determined by the finite initial segments 〈n〉 form a
disjoint covering, from which no finite one can be extracted. 2

Corollary V.3.2 ωω, P(ω), and [0, 1] are pairwisely nonhomeomorphic.

Proof. The first two are not homeomorphic because one is compact but the
other is not. And they are not homeomorphic to [0, 1], because they are not
connected, but the reals are. 2

Exercises V.3.3 a) A set A ⊆ ωω is compact if and only it is closed and bounded ,
i.e. there is a function f such that, for any g ∈ A, (∀n)(g(n) ≤ f(n)). (Hint: use
König’s Lemma for finitely generated trees.)

b) A set A ⊆ ωω is clopen if and only if, for some well-founded tree, A is the
union of the open sets determined by the branches of the tree.

c) A set A ⊆ P(ω) is clopen if and only if, for some tt-condition σ, A is the class
of sets satisfying σ.

d) Both ωω and P(ω) are dimensionless, in the sense that any finite power of

them is homeomorphic to the original space, but [0, 1] is not . (Hint: by taking one

internal point away we disconnect [0, 1] but not [0, 1]× [0, 1].)

Comeager sets

The reason we introduce the topological approach to total functions is given by
the next notions, which will have an immediate bearing on the methodology of
Degree Theory.

Definition V.3.4 (Baire [1899]) A set A in the Baire or Cantor spaces is:
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1. dense if its closure, i.e. the smallest closed set containing it, is the whole
space (alternately, if its complement does not contain any open sets)

2. comeager if it contains the intersection of a countable family of open
dense sets

3. meager if its complement is comeager.

Exercises V.3.5 a) The intersection of a countable family of comeager sets is still
comeager .

b) The superset of a comeager set is comeager .

c) The comeager sets form a filter in the lattice of subsets of the Baire or Cantor

spaces under inclusion, and the meager sets form an ideal .

Proposition V.3.6 Given a set A in the Baire or Cantor spaces, then

1. A is dense if and only if

(∀σ)(∃f ⊇ σ)(f ∈ A)

2. A contains an open dense set if and only if

(∀σ)(∃τ ⊇ σ)(∀f ⊇ τ)(f ∈ A).

Proof. In the first part, the right-hand side says that no basic open set is
contained in A. This is clearly equivalent to density, which means that no
open set is contained in A.

For the second part, let A ⊇ B, and B be open dense. We just proved that,
given σ, there is g ⊇ σ in B. Since B is open, there is a basic open set containing
g, and contained in B. Let σ1 be the string determining it: then g ⊇ σ1, and
any function extending σ1 is in B. If τ is the smallest string containing both σ
and σ1, which exists because they are comparable (being both contained in g),
then any function g ⊇ τ must be in B, because g ⊇ σ1. The condition is thus
satisfied for B, and hence for A.

Conversely, suppose

(∀σ)(∃τσ ⊇ σ)(∀f ⊇ τσ)(f ∈ A).

Then the open dense set ⋃
σ

{f : f ⊇ τσ}

is contained in A. 2

We now prove the basic result of this subsection, by the same finite extension
method used to prove the results on degrees in the last section.
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Theorem V.3.7 Baire Category Theorem (Baire [1899]) A comeager
set is not empty.

Proof. If A is comeager there is a sequence {An}n∈ω of open dense sets such
that A ⊇

⋂
n∈ω An. It is enough to prove that (

⋂
n∈ω An) 6= ∅.

We build a function f ∈
⋂
n∈ω An, by initial segments. Let σ0 = ∅. At

stage n + 1, let σn be given: we ensure that f ∈ An. Since An is open dense,
there is a string σ ⊇ σn such that all functions extending it are in An: it is
then enough to let σn+1 be any initial segment extending σ. Since in the end
f =

⋃
n∈ω σn, we will have f ⊇ σn+1 and hence f ∈ An. 2

Corollary V.3.8 A comeager set is not meager.

Proof. Note that the intersection of two comeager sets is comeager. If a
comeager set A were meager, A∩A would be comeager and hence not empty,
contradiction. 2

Note that it is essential that we are considering only countably many dense
open sets: the intersection of 2ℵ0 open dense sets is not necessarily nonempty
({f} is open dense, being the union of the open sets determined by the strings
not contained in f , but

⋂
f∈ωω {f} is obviously empty). If the Continuum Hy-

pothesis is assumed, this settles the question. But if the Continuum Hypothesis
fails then there are uncountable cardinals below 2ℵ0 , and we may ask whether
the intersection of less than 2ℵ0 open dense sets is nonempty . The positive
answer is known as Martin’s Axiom, and it is independent of ZFC (Martin
and Solovay [1970]). For some of its interesting set-theoretical consequences
see, e.g., Jech [1978] and Levy [1979].

Exercises V.3.9 a) A comeager set is dense. (Hint: it is enough to show that it
intersects any nonempty basic open set. The proof is as above, only starting with σ0

determining the given basic open set.)
b) A comeager set has cardinality 2ℵ0 . (Hint: build a binary tree, each time

extending a given string in two incomparable ways, and then continuing separately
on each of them.)

c) A countable set is meager . (Hint: it is enough to show that any singleton {f}
is meager. Since comeager sets are closed under supersets, it is enough to find a

comeager set not containing f , so that {f} is comeager. For every σ there is τσ ⊇ σ

such that every g ⊇ τσ is different from f . Let A be the union of the basic open

sets determined by τσ. By definition A is open dense, hence comeager, and does not

contain f .)

Exercise V.3.10 Banach-Mazur games. Given A, consider the following game.

The two players play strings, and each must play a proper extension of the last move.
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Player I wins if and only if the union of the moves is in A. Then A is comeager if and

only if player I has a winning strategy, and A is meager if and only if player II has

a winning strategy . (Oxtoby [1957]) (Hint: suppose I has a winning strategy, and let

A0 be the basic open set determined by the first string played by I, according to the

strategy. For any possible response τ of II consider the response στ of I, according

to the strategy, and let A1 be the open set obtained as the union of the basic open

sets determined by the στ , and so on. The An’s are open dense and A ⊇
⋂
n∈ω An,

because I uses a winning strategy.)

The intuition about comeager and meager sets is that they are, respectively,
very large and very small. The next result accords with this intuition, and tells
that almost all sections of a large (small) set in a product space must be large
(small).

Theorem V.3.11 Kuratowski-Ulam Theorem. Given A ⊆ ωω × ωω or
A ⊆ P(ω)× P(ω), let

f ∈ Ag ⇔ (f, g) ∈ A

be the section of A at g. Then:

1. if A is comeager, the set {g : Ag comeager} of its comeager sections is
comeager

2. if A is meager, the set {g : Ag meager} of its meager sections is comeager.

Proof. The second part follows from the first, by taking complements. Let
then A be comeager: A contains

⋂
n∈ω An, where the An’s are open dense

in the product space. The comeager sets are closed upward under inclusion,
and thus it is enough to find a comeager set of functions g for which Ag is
comeager. Since Ag ⊇

⋂
n∈ω(An)g, we look for g’s such that (An)g is open

dense. By definition of product topology (An)g is open for any g, and we
would want

(∀σ)(∃τ ⊇ σ)(∀f ⊇ τ)[f ∈ (An)g],

and hence
(∀σ)(∃τ ⊇ σ)(∀f ⊇ τ)[(f, g) ∈ An].

If this holds for every n, then Ag is comeager. Let us consider the set of g’s for
which this holds:

g ∈ B ⇔ (∀n)(∀σ)(∃τ ⊇ σ)(∀f ⊇ τ)[(f, g) ∈ An].

We see whether B is comeager. If

g ∈ B(n,σ) ⇔ (∃τ ⊇ σ)(∀f ⊇ τ)[(f, g) ∈ An],
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then B =
⋂
n,σ B(n,σ), but the B(n,σ) are not necessarily open, because we use

all of g in their definition. Thus B is not necessarily comeager, but a small
variation of it will do. Let

g ∈ C(n,σ) ⇔ (∃y)(∃τ ⊇ σ)(∀f ⊇ τ)(∀h ⊇ ĝ(y))[(f, h) ∈ An].

Now C(n,σ) is open (because union of basic open sets) and dense (because so is
An). If

C =
⋂
n,σ

C(n,σ)

then C is comeager and, as above, Ag is comeager whenever g ∈ C. 2

Exercises V.3.12 A has the Baire property if there is an open set U such that

(A−U)∪ (U −A) is meager, i.e. A differs from an open set by a meager set. If A has

the Baire property, then the converse implications in the Kuratowski-Ulam Theorem

hold . (Hint: suppose A is not meager, but {g : Ag meager} is comeager. Since Ag
differs from the open set Ug by a meager set, Ug must be meager for a comeager set

of g’s. But U is not empty, and it contains a basic open set: hence there is also a

comeager set of g’s such that Ug contains an open set, and thus is not meager. The

intersection of these two comeager sets is not empty by the Baire Category Theorem,

contradiction.)

Baire Category and Degree Theory

Going back to the proofs of the results in Section 2, we notice that they all
shared the following characteristic features. We had a set of requirements Rn
to satisfy, which may be identified with the class of sets satisfying them. The
general pattern of the proofs was to show that, for each n,

(∀σ)(∃τ)(∀A ⊇ τ)(A ∈ Rn).

Thus we were actually showing that, for each n, there is an open dense set
An contained in Rn (by V.3.6). The Baire Category Theorem could then be
applied to claim that the intersection of requirements is not empty, and hence
that there is a set satisfying all the requirements, without further constructions.
More precisely:

Proposition V.3.13 The Finite Extension Method (Myhill [1961],
Sacks [1963]) Given a countable collection of requirements Rn such that

(∀σ)(∃τ ⊇ σ)(∀A ⊇ τ)(A ∈ Rn),

the set
⋂
n∈ω Rn is comeager (and hence nonempty).
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The categorical approach is useful for a methodological analysis of the finite
extension method. Precisely, from it we obtain that:

1. requirements can be taken care of separately, by showing that each of them
is dense

2. we can freely combine constructions known to be performable separately,
as long as the global list of requirements remains countable
For example, suppose we want to prove that, given a countable sequence
{A0, A1, . . .} of nonrecursive sets, there is a set B incomparable with all
of them. Then we only have to prove that, for a given e and a given
nonrecursive set C,

• (∀σ)(∃τ)(∀A ⊇ τ)(A 6' {e}C)

• (∀σ)(∃τ)(∀A ⊇ τ)(C 6' {e}A).

We know that we can do this, by the work done in Section 2. It thus
follows that, for a fixed nonrecursive set C, the set

{A : A 6≤T C ∧ C 6≤T A}

is comeager, and hence so is

{A : (∀n)(A 6≤T An ∧An 6≤T A)},

being a countable intersection of comeager sets. In particular, the set is
not empty by Baire Category Theorem. Note that we could even avoid the
consideration of the condition A 6≤T C, because there are only countably
many sets recursive in C: the set {A : A 6≤T C} is thus automatically
comeager.

3. we cannot use the finite extension method to produce sets belonging to a
meager class
This follows from the fact that the finite extension method produces
sets in a comeager class, and the intersection of two comeager classes is
nonempty, by the Baire Category Theorem. In particular, if we can use
the finite extension method to build a set satisfying certain requirements,
then we cannot use the same method to build a set not satisfying the same
requirements.

4. a game-theoretical approach to Degree Theory is possible, via Banach-
Mazur games
This follows from V.3.10, and has been developed by Yates [1976]. See
also p. 495.
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We can reformulate a number of results proved before in terms of category
notions, with the convention that a set of degrees A is comeager or meager
if such is the class of sets whose degree is in A. This makes sense because a
degree contains only countably many sets, and thus it is a meager class.

Proposition V.3.14 The following sets of degrees are comeager:

1. {a : a is incomparable with a fixed nonrecursive degree}

2. {a : a is the l.u.b. of two incomparable degrees}

3. {a : a is the l.u.b. of a minimal pair}

4. {a : a realizes the least possible jump}.

The following sets of degrees are meager:

5. {a : a is comparable with a fixed nonrecursive degree}

6. {a : a is a minimal degree}.

Proof. The proof of V.2.2 builds two sets A and B with incomparable degree:
this can be seen as the construction of a single set A ⊕ B which is the least
upper bound of two incomparable sets, and proves 2. Part 6 follows from this,
since a minimal degree cannot be the l.u.b. of two incomparable degrees.

Similarly, the other parts follow from V.2.13, V.2.16 and V.2.24. 2

Note that this shows, in particular, that degrees comparable with a given
nonrecursive degree, as well as minimal degrees, cannot be built by the finite
extension method .

The work done so far also allows to decide whether any quantifier-free ques-
tion about jumps, l.u.b.’s and g.l.b.’s of degrees holds for a comeager set of
degrees or not.

Proposition V.3.15 (Stillwell [1972]) The theory of degrees

(D, ≤ , ∪ , ∩ , ′,0),

with subformulas containing a term t1∩ t2 thought of as prefixed by ‘t1∩ t2
exists’, and with the quantifiers ∀ and ∃ interpreted, respectively, as meaning
‘for a comeager set of degrees’ and ‘¬∀¬’, is decidable.

Proof. For simplicity, we will say ‘almost always’ to mean ‘for a comeager set
of n-tuples of degrees’.
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Note that terms are obtained from variables and 0 by using ∩, ∪, and ′.
By induction, we show that for every term t there are degrees ai occurring in
t such that, for some m,

t = a1 ∪ · · · ∪ an ∪ 0(m)

is almost always true. This reduces every term to a normal form.

1. (a1 ∪ · · · ∪ am ∪ 0(p)) ∪ (b1 ∪ · · · ∪ bm ∪ 0(q)) =
a1 ∪ · · · ∪ am ∪ b1 ∪ · · · ∪ bm ∪ 0(max(p,q)).

This always holds.

2. (a1∪· · ·∪am∪0(p))∩(b1∪· · ·∪bm∪0(q)) = c1∪· · ·∪cs∪0(min(p,q))

almost always, where

{c1,. . . ,cs} = {a1,. . . ,am} ∩ {b1,. . . ,bn}.

First note that it is always possible to rearrange terms, and possibly
introduce a new 0(min(p,q)) (which has no influence on ∪) in such a way
to have, for some d and e,

a1 ∪ · · · ∪ am ∪ 0(p) = (c1 ∪ · · · ∪ cs ∪ 0(min(p,q))) ∪ d

b1 ∪ · · · ∪ bn ∪ 0(q) = (c1 ∪ · · · ∪ cs ∪ 0(min(p,q))) ∪ e.

It is then enough to show that almost always, given a and d, is

(a ∪ d) ∩ (a ∪ e) = a.

And this is just the relativization to a of the fact that almost every degree
d is part of a minimal pair (V.2.16).

3. (a1 ∪ · · · ∪ am ∪ 0(p))′ = a1 ∪ · · · ∪ am ∪ 0(p+1) almost always.
First, almost always a′ = a∪0′ and, by relativization to b, almost always
(a ∪ b)′ = a ∪ b′. Then, by induction, almost always a ∪ 0(p) = a(p).
Finally, almost always

a1 ∪ · · · ∪ am ∪ 0(p) = (a1 ∪ · · · ∪ am)(p),

and hence

(a1 ∪ · · · ∪ am ∪ 0(p))′ = (a1 ∪ · · · ∪ am)(p+1)

= a1 ∪ · · · ∪ am ∪ 0(p+1).

The decision procedure now follows easily, since every formula with free vari-
ables is 0,1-valued, being satisfied either by a comeager set of degrees or by a
meager one. Precisely:
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1. t1 ≤ t2, with t1 and t2 terms
After putting the two terms in normal form, t1 ≤ t2 holds if and only
if all the variables of t1 appear in t2, and the exponent of 0 in t1 is not
bigger than the exponent of 0 in t2.

2. ¬ψ
The complement of a meager set is comeager, and the complement of a
comeager set is meager.

3. ψ ∧ ϕ
The intersection of two comeager sets is comeager, and the intersection
of any set with a meager set is meager.

4. ∀xψ(x)
This follows from the Kuratowski-Ulam Theorem, by the interpretation
of the universal quantifier. 2

We should not expect too much from this decision procedure, since prac-
tically every interesting question we may ask will involve real quantifiers as
well. E.g., it is true that almost every degree has no minimal predecessor (see
V.3.17), but we cannot express this sentence in the above language, since the
notion of minimal degree requires a true universal quantifier.

Meager sets of degrees

The results quoted above were simply old facts rephrased in categorical terms.
We now prove a theorem whose very statement genuinely requires the notions
introduced in this section. The plan of the proof can be read independently,
but its implementation relies on methods and notations that will be introduced
in Section 5.

Theorem V.3.16 (Martin [1967]) If A is a downward closed, meager class
of degrees then the upward closure of A− {0} is still meager.

Proof. We want to build A by finite extensions, in such a way to have

(∀C ≤T A)(C 6∈ A − {0}).

This condition can be broken down in the requirements

Re : {e}A total ⇒ {e}A 6∈ A − {0}.

Let σ0 = ∅. At stage e+ 1, let σe be given: we attack Re.
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1. If there is σ ⊇ σe such that

(∃x)(∀τ ⊇ σ)({e}τ (x)↑)

then we let σe+1 = σ. This ensures that if A ⊇ σe+1 then {e}A is not
total.

2. If there is a σ ⊇ σe with no e-splitting extensions, again let σe+1 = σ.
This ensures that if A ⊇ σe+1 then {e}A is recursive.

3. Suppose now that:

• (∀σ ⊇ σe)(∀x)(∃τ ⊇ σ)({e}τ (x)↓)
• for all σ ⊇ σe there are e-splitting extensions of σ.

It will be useful in the following to picture {e}σ as a finite string, with
the property that

σ ⊆ σ′ ⇒ {e}σ ⊆ {e}σ
′
.

The proof goes roughly as follows. We build an order-preserving recursive
map Φ from strings to strings such that

(∀τ ⊇ Φ({e}σe))(∃σ ⊇ σe)[τ = Φ({e}σ)].

This gives a homeomorphism between the set {Φ({e}σ) : σ ⊇ σe} and the
whole space of strings. Since A is meager, there is an open set contained
in A, hence there is σ ⊇ σe such that

(∀A ⊇ σ)(Φ({e}A) 6∈ A).

But Φ is recursive, and so Φ({e}A) ≤T {e}A. Moreover, A is closed
downward, hence

(∀A ⊇ σ)({e}A 6∈ A),

and Re is satisfied.

To finish the proof, it remains to build Φ. We first build an admissible
triple (i.e. a uniform tree, see V.6.2) with the following properties: if T0(n) is
the set of strings extending σe, of length g(n+ 1), and agreeing with fL on the
interval [g(n), g(n+1)), and T1(n) is defined similarly using fR, then whenever
σ0 ∈ T0(n) and σ1 ∈ T1(n), σ0 and σ1 e-split. The construction is the same
as in V.6.5, only we have to consider every string extending σe and of length
g(n), when we build the n+ 1 level (instead of only the strings of length g(n)
which are on the tree, as we did in V.6.5).
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We now define Φ as follows. If Φ(µ)(m) converges for all m < n and n < |µ|,
then:

Φ(µ)(n) '


0 if µ ⊇ {e}σ for some σ ∈ T0(n)
1 if µ ⊇ {e}σ for some σ ∈ T1(n)
1 if µ|{e}σ for every σ ∈ T0(n) ∪ T1(n)
undefined otherwise,

where µ|{e}σ means that the two strings are incompatible. By definition Φ(µ)
is an initial segment, and Φ is order-preserving and single-valued (if σ ∈ T0(n)
and σ′ ∈ T1(n) then {e}σ and {e}σ′ are incompatible). The third condition in
the definition ensures that Φ(µ)(n) is defined whenever µ is long enough. More
precisely, if Φ(µ)(n) converges for all m < n, then so does Φ(µ)(n), whenever

|µ| ≥ sup{|{e}σ| : σ ∈ T0(n) ∪ T1(n)}.

Hence, in general, Φ(µ)(n) converges if

|µ| ≥ sup{|{e}σ| : σ ∈
⋃
m≤n

(T0(m) ∪ T1(m))}.

This also shows that, if we choose our admissible triple in such a way to have
|{e}σ| ≥ g(n) when σ ∈ T0(n) ∪ T1(n) (which is possible because, for each
A ⊇ σe, {e}A is total and so supσ |{e}σ| = ∞). Then Φ({e}σ)(n) ↓ for all
σ ∈ T0(n) ∪ T1(n), and

Φ({e}σ)(n) =
{

0 if σ ∈ T0(n)
1 if σ ∈ T1(n).

Fix now σ ⊇ σe in some T0(n) ∪ T1(n). We show that Φ gives the homeo-
morphism we wanted between {Φ({e}µ) : µ ⊇ σ} and the whole space. Given
τ ⊇ Φ({e}σ), let µ be the string of length g(|τ |) such that

µ ∈ Tτ(m)(m) for |σ| ≤ m < |τ |.

Then Φ({e}µ)(m) = τ(m) by the considerations above, and |Φ({e}µ)| = |τ |.
This proves the claim. 2

The theorem may be seen as a further step in the determination of the
classes A of degrees for which we can always find a degree incomparable with
every element of {A} − 0. We showed in V.2.20 that this is possible if A has
cardinality less than 2ℵ0 , and the theorem just proved gives a solution also for
some classes of cardinality 2ℵ0 .

Corollary V.3.17 The class of degrees without minimal predecessors is comea-
ger, and hence nonempty. In particular, the structure D is not atomic.
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Proof. The class of minimal degrees plus 0 is meager, and obviously closed
downward. Thus the upward closure of the class of minimal degrees, i.e. the
class of degrees with minimal predecessors, is still meager. 2

The existence of degrees without minimal predecessors can also be proved
by initial segments results, see V.6.16.c.

Measure Theory and Degree Theory ?

In place of using Baire Category we might have used measure theory, by
considering Lebesgue measure on P(ω) or, equivalently, the product measure
of the measure on {0, 1} given by µ({0}) = µ({1}) = 1

2 . There is a well-known
analogy, according to which meager and comeager sets correspond, respectively,
to sets with measure 0 and 1 (although a comeager set can have measure 0). The
measure-theoretical approach does not seem to have the same natural bearing
on Degree Theory that Baire Category does, and this is reflected in the fact that
proofs of results tend to be more complicated. Usually, however, the picture
obtained by the two points of view is consistent, i.e. a set of degrees looks large
in one case if it does in the other (Sacks [1963], Martin [1967], Stillwell [1972]).
A notable exception is provided by the analogue of the theorem just proved:
Paris [1977] has shown that the upward closure of a measure 0 downward closed
set of nonzero degrees is not necessarily of measure 0 (see also Kurtz [1983] for
a natural example, namely the set of 1-generic degrees), although the upward
closure of the minimal degrees still has measure 0 .

V.4 The Coinfinite Extension Method

We have proved in the last section that construction principles more powerful
than the finite extension method V.3.13 are needed, if we wish to prove results
like the existence of minimal degrees. We introduce one of them here, by
approximating a set not by finite, but by coinfinite extensions.

Definition V.4.1 A coinfinite condition is a partial function θ : ω → ω
with coinfinite recursive domain. A coinfinite condition is recursive if it is
recursive as a partial function.

The notions of extension and compatibility for coinfinite conditions are the
usual ones for partial functions.

Recursive coinfinite conditions are the next logical step after finite strings
(which are just particular recursive coinfinite conditions, with finite domain).
It thus makes sense to see whether we can build, by using them, sets which we
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cannot build by the finite extension method V.3.13. For example, we will see in
Section 6 that we can build a minimal degree by recursive coinfinite extensions.

Nonrecursive coinfinite conditions are also useful because they allow coding
a given set in a set we are building, in just one step. In this section we will deal
with applications of this kind. This is also one direct way to prove relativized
results above given nonrecursive degrees, which cannot be proved by the finite
extension method V.3.13 (by V.3.14).

Exact pairs and ideals

By building a minimal pair we have proved that some pairs of degrees have
g.l.b. We will now prove that there are pairs without g.l.b., by generalizing the
notion of minimal pair.

Definition V.4.2 (Kleene and Post [1954]) Two degrees a and b form an
exact pair for a set of degrees C if

1. both a and b are above all degrees in C, i.e.

(∀c ∈ C)(c ≤ a ∧ c ≤ b)

2. any degree below both a and b is also below some degree in C, i.e.

x ≤ a ∧ x ≤ b → (∃c ∈ C)(x ≤ c).

Theorem V.4.3 Spector Theorem (Kleene and Post [1954], Lacombe
[1954], Spector [1956]) Every countable set of degrees in which every pair of
elements is bounded has an exact pair.

Proof. Given {Bn}n∈ω we want to build two sets A and B such that

1. (∀n)(Bn ≤T A,B)

2. C ≤T A,B ⇒ C ≤T Bn, for some n.

Actually, since any pair of Bm’s, and hence any finite set of them, is bounded
by some Bn, we can replace the second condition with the weaker one:

3. C ≤T A,B ⇒ C ≤T (⊕m≤nBm), for some n.

The second condition looks like the requirement for minimal pairs, except that
here we require a set recursive in both A and B to be not outright recursive,
but only recursive in some element of the given set. We thus extend the proof
of V.2.16 in the natural way. First we get one upper bound for free, simply by
letting B = ⊕n∈ωBn. We then build A by coinfinite approximations θs.
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To ensure that the first condition is satisfied, we require

Ce : Be ≤T A.

This is easily obtained, by coding Be into the e-th column Ae of A, with at
most finitely many exceptions. Using coinfinite conditions will make this step
trivial, and it will be possible to satisfy Ce in just one step. Since Ae and Be
will differ only finitely they will have the same degree, and then A = ⊕n∈ωAn
will also be an upper bound for {Bn}n∈ω.

The finite modifications are needed to ensure the third condition, with the
relative requirements

Re : {e}A ' {e}B ' C ⇒ C ≤T (⊕m≤nBm), for some n

(note that we use V.2.18.a to simplify the presentation of the requirements).
They will be satisfied as in the minimal pair construction.

We start with θ0 = ∅. At each step e + 1, given θe (see Figure 1), we
simultaneously attack Re and Ce. As in V.2.16, we see if there are e-splitting
strings σ0 and σ1 which are compatible with θe. Note that we still use finite
strings, because they are always enough to determine convergent computations,
although now we cannot look for extensions of θe, which is infinite, and thus
we only look for strings compatible with it. If they exist, choose the one σi
that produces a disagreement with {e}B on the element for which σ0 and σ1

split. We then define

θe+1(x) '

 θe(x) if θe(x)↓
σi(x) if σi(x)↓
Be(z) if x = 〈e, z〉, otherwise.

If no e-splitting compatible with θe exists, we let

θe+1(x) '
{
θe(x) if θe(x)↓
Be(z) if x = 〈e, z〉, otherwise.

Let A =
⋃
e∈ω θe. By construction, θe+1 extends θe infinitely on the e-th

column, and finitely elsewhere. Thus, by induction, we always code Be in the
e-th column of A, except for finitely many points. Hence, for almost every z,

z ∈ Be ⇔ 〈e, z〉 ∈ A.

Thus Be ≤T A holds, and the coding requirement Ce is satisfied.
It remains to see that Re has been satisfied by the action taken at step e+1.

This is vacuously true if there were e-splitting extensions as required, because
we then defined θe+1, and hence A, in such a way to have {e}A 6' {e}B . And if
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θs

σi

Be -

�� ��

Figure V.1: Step e+ 1 for Spector’s Theorem

they did not exist, then any string σ compatible with θe and making {e}σ(x)
converge must produce the right value. This gives a procedure recursive in θe to
compute the function {e}A, if total. But θe is defined only finitely outside the
first e-columns, and the m-th column, for m < e, codes Bm except on finitely
many points. Thus θe is recursive in ⊕m≤eBm, and hence Re is satisfied. 2

Note that the exact pair for {Bn}n∈ω given by the proof is actually recursive
in (⊕n∈ωBn)′. More precisely, step e+1 is r.e. in the join of the columns coded
in θe, and hence the exact pair is recursive in ⊕e∈ω(⊕m≤eBm)′.

In particular, even if (⊕n∈ωBn) ≤T K, i.e. if the set is uniformly recursive
in 0′, then the exact pair just obtained is only below 0′′. We will prove some
partial versions of the theorem for degrees below 0′ in Chapter XI but, for
cardinality reasons (basically, there are many ideals but few possible exact
pairs, see V.4.6), the full analogue of Spector’s Theorem fails below 0′.

Note also that the only instance of the theorem that is provable by the
finite extension method V.3.13 is the existence of exact pairs for {0}, when the
theorem reduces to the existence of minimal pairs, because if the set contains
a nonzero degree then the theorem produces degrees comparable with it, and
hence a member of a meager class.

If C is downward closed then an exact pair a and b for C obviously deter-
mines it, since then

c ∈ C ⇔ c ≤ a ∧ c ≤ b.



488 V. Turing Degrees

There are thus two conditions that have some bearing for exact pairs, and we
collect them in the next definition.

Definition V.4.4 A set of degrees is:

1. an initial segment if is closed downward

2. an ideal if it is closed downward and under joins

3. a principal ideal if it is an ideal determined by a degree a, i.e. it is of
the form D(≤a) = {c : c ≤ a}.

Corollary V.4.5 Every countable ideal is the intersection of two principal ide-
als.

Proof. An ideal is closed under joins and thus, if countable, it has an exact
pair. Being closed downward, it is determined by it. 2

Exercise V.4.6 There are ideals of degrees below 0′, without exact pairs below 0′.

(Hint: let {An}n∈ω be a recursively independent set recursive in K, see V.2.9. Then

the ideals generated by {An}n∈X , for any X, are distinct for distinct X’s, by recursive

independence. Thus there are 2ℵ0 ideals, but only countably many degrees recursive

in K, and thus only countably many possible exact pairs.)

Greatest lower bounds and least upper bounds

The notion of exact pair is useful for studying l.u.b.’s of sets of degrees, as well
as g.l.b.’s of pairs.

Theorem V.4.7 (Kleene and Post [1954], Spector [1956]) There are two
degrees below 0′ without g.l.b.

Proof. Consider an infinite ascending sequence of degrees: by Spector’s The-
orem it has an exact pair. The degrees forming such a pair cannot have g.l.b.,
since any lower bound admits an element of the chain above it (by definition
of exact pair), and thus is not the greatest lower bound (because the sequence
is increasing).

An infinite ascending sequence certainly exists (e.g. iterate the jump oper-
ator, starting from any degree). But if we wish to get the exact pair below 0′,
we have to choose a chain {Bn}n∈ω such that (⊕n∈ωBn)′ ≤T K, because this
is the bound we obtained from the proof of Spector’s Theorem. For this it is
enough to build (see V.2.7 and V.2.21) a recursively independent set {An}n∈ω
such that (⊕n∈ωAn)′ ≤T K: then the sets Bn = ⊕m≤nAm form a strictly
ascending sequence, by recursive independence of the An’s, and

(⊕n∈ωBn)′ ≤T (⊕n∈ωAn)′ ≤T K. 2



V.4 The Coinfinite Extension Method 489

Corollary V.4.8 D and D(≤ 0′) are not lattices.

Note that the finite extension method V.3.13 produced a minimal pair,
hence a pair with g.l.b., and thus it cannot produce a pair without g.l.b. How-
ever, it is possible to prove by the finite extension method that D is not a lattice,
as shown in the exercises.

Exercises V.4.9 a) Any pair without g.l.b. is the exact pair of an infinite ascending
chain. Thus the proof given above is in a sense the only possible one. (Hint: given a
pair of degrees, consider an enumeration of the countable set of degrees below both
of them and, for each n, consider the join of the first n degrees in the list.)

b) A set bounding a pair without g.l.b. can be built by the finite extension method .
(Jockusch [1981]) (Hint: build simultaneously an infinite ascending chain and an exact
pair for it. More precisely, build a recursively independent set {Bn}n∈ω, so that the
sets B0 ⊕ · · · ⊕Bn form an ascending sequence. Build also another set C, which will
provide finite modifications of the Bn’s, as follows:

An(x) =

{
C(x) if x ≤ n
Bn(x) otherwise.

Then the degree of An and Bn is the same. Let

A = ⊕n∈ωAn and B = ⊕n∈ωBn,

and make sure that A and B are an exact pair for the chain {Bn}n∈ω.)

c) The set of degrees a such that D(≤ a) is not a lattice is comeager . (Jockusch

[1981])

We now turn to l.u.b.’s of sets of degrees.

Proposition V.4.10 Compactness for l.u.b.’s (Spector [1956])

1. A chain of degrees has l.u.b. if and only if it is eventually constant.

2. A set of degrees has l.u.b. if and only if it there is a finite subset of it
whose join provides an upper bound for the whole set.

Proof. Given a chain, consider an exact pair for the ideal generated by it.
The l.u.b. of the chain is the g.l.b. of the exact pair, and if the chain is not
eventually constant it cannot exist, as in V.4.7. Given a set A, it is enough to
reduce it to a chain that has l.u.b. if and only if A has it. First note that we
may suppose A countable, otherwise it cannot have upper bounds. Let then
{a0,a1, . . .} be an enumeration of A, and consider the chain

b0 = a0

bn+1 = bn ∪ an+1.
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Now the chain {b0 ≤ b1 ≤ · · ·} has l.u.b. if and only if it is eventually constant,
and thus A has l.u.b. if and only if it has an upper bound which is the l.u.b.
of a finite subset of it. 2

In particular, no infinite ascending sequence of degrees has l.u.b.

Exercise V.4.11 The existence of a set of degrees without l.u.b. can be proved by the

finite extension method V.3.13. (Kleene and Post [1954]) (Hint: since any countable

partial ordering can be embedded in the degrees below 0′, by V.2.9, there is a set

of degrees below 0′ isomorphic to the rationals. If a subset of it has l.u.b. then this

must be below 0′, and hence only countably many subsets can have l.u.b. But there

are 2ℵ0 such subsets, since they correspond to the reals, as Dedekind sections.)

Extensions of embeddings

We have shown in V.2.10 how the truth of one-quantifier questions reduces to
embedding problems. Similarly, Shore [1978] and Lerman [1983] have noticed
that the truth of two-quantifier questions reduces to problems of extension of
embeddings. The idea is that the truth of (∀~x)(∃~y)ϕ(~x, ~y) can be decided if one
knows whether

(∀~x)[D(~x) → (∃~y)ϕ(~x, ~y)],

for each of the finitely many D’s describing a possible order relationship among
the x’s (i.e. a conjunction of atomic statements xi ≤ xj or negations of them).
Moreover, ϕ can be reduced (by writing it into disjunctive normal form) to a
finite disjunction of descriptions of possible order relationships among the x’s
and y’s.

The general form of the problem we want to study is thus the following:
given an embedding of a partial ordering P in D, and an extension R of P , can
we extend the embedding of P to an embedding of R? We cannot expect to
be able to do this in general, since there are three restrictions we have already
encountered:

1. D has cardinality 2ℵ0 and countable predecessor property.
Thus appropriate bounds on the cardinality of R are needed.

2. D is an uppersemilattice.
Thus there is no hope to embed in D any partial ordering which does not
respect the uppersemilattice structure of D. If P is already embedded
then we do not have to worry about it, but we certainly have to ask this
of R. For example, given a1, a2 and a3 such that a3 < a1 ∪ a2, we
cannot introduce a new degree b which is above a1 and a2 but not above
a3.
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3. There are minimal pairs.
Thus we cannot expect to extend any given partial ordering by inserting
new elements below given ones. For example, if a1 and a2 are a minimal
pair, we cannot introduce a new degree b strictly between them and 0.

We are thus led to the following definition.

Definition V.4.12 The partial ordering (R,vR) is a consistent extension
of the uppersemilattice (P,vP ,tP ) if :

1. R respects the uppersemilattice structure of P , i.e.

a1, a2 ∈ P ∧ b ∈ R ∧ a1, a2 vR b ⇒ a1 tP a2 vR b

2. R is an end-extension of P , i.e.

b ∈ R− P ∧ a ∈ P ⇒ b 6vR a.

The possible extensions of embeddings will always refer to consistent exten-
sions.

Theorem V.4.13 (Kleene and Post [1954]) Any embedding of a finite par-
tial ordering P in D can be extended to an embedding of any finite consistent
extension R of P .

Proof. Since R is finite, it is possible to find a sequence of finitely many
successive consistent extensions that add one element at a time, starting from
P and ending with R. Thus we only need to know how to treat one-element
extensions.

This amounts to proving that, given two finite sets {Bn}n∈F and {Cm}m∈G
such that no Cm is recursive in ⊕n∈FBn, we can build A such that

1. for each n ∈ F , Bn ≤T A

2. for each m ∈ G, Cm 6≤T A.

This can easily be done, by the same methods of the proof of Spector’s Theorem.
Since there are only finitely many sets to code, the first conditions can be
satisfied ahead of time, simply by setting

θ0(x) ' Be(z) if e ∈ F ∧ x = 〈e, z〉.

To satisfy the second condition let θs be given, and suppose we want to satisfy

Cm 6' {e}A
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for some m ∈ G and e. We look for two strings which are compatible with θs
and e-split. If they exist, then we choose the one σ that gives a value different
from Cm on the element on which they split, and by letting θs+1 = θs ∪ σ
we satisfy the requirement. If they do not exist then {e}A, if total, will be
recursive in θs as usual, and thus recursive in ⊕n∈FBn because, by induction,
θs is a finite modification of it. But since Cm is not recursive in ⊕n∈FBn, it
cannot be equal to {e}A. 2.

In the opposite direction, it is possible to show that the condition on R of
being a consistent extension of P is necessary, not only for some P (as we have
already argued), but also for any P . One part is trivial (since D an uppersemi-
lattice), but it holds also for the other one, since any finite uppersemilattice
with least element P is isomorphic to an initial segment of D (see p. 529), and
thus some embedding of P cannot be extended by inserting new elements be-
low given ones. This completely characterizes the possible finite extensions of
embeddings of finite uppersemilattices into D, and it allows to give a decision
procedure for the two-quantifier sentences of D (Shore [1978], Lerman [1983]).
Schmerl has instead that the three-quantifier theory of D is undecidable (see
Lerman [1983]).

Note that only notational changes are needed in the proof given above (cod-
ing one set at a time), to obtain one-element consistent extensions of countable
embeddings (the requirements on the Bn’s and Cm’s being now that no Cm
is recursive in any finite join of the Bn’s). But not every consistent countable
extension can be obtained by a sequence of one-element consistent extensions
(e.g. when an infinite descending chain is added above a given element), and
some more work (sketched in the exercise) is needed for the general case.

Exercise V.4.14 Any embedding of a countable partial ordering P in D can be ex-
tended to an embedding of any countable consistent extension R of P . (Kleene and
Post [1954], Sacks [1961]) (Hint: this extends V.2.9. Given {Cn}n∈ω, build sets
{An}n∈ω recursively independent over the Cm’s, and not introducing any new rela-
tionships among them, i.e. such that

An 6≤T (⊕m∈ωCm)⊕ (⊕m6=nAm)
Cn ≤T (⊕m∈FCm)⊕ (⊕m∈ωAm) ⇒ Cn ≤T (⊕m∈FCm),

for any finite set F . The second condition is ensured by the e-splitting method. If
now P = {cn}n∈ω and R− P = {bn}n∈ω, and the degrees of the Cn’s are isomorphic
to the ordering of the cn’s, we let

Bn = (⊕cmvbnCm)⊕ (⊕bmvbnAm).

Note that the second condition above, together with the fact that R respects the
uppersemilattice structure of P , proves the crucial part, namely that

ck 6v bn ⇒ Ck 6≤T Bn.
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Indeed, suppose Ck ≤T Bn. Since no new relationship among the C’s is introduced,

Ck ≤T (⊕cmvbnCm). Since R extends P , ck v (
⊔
{cm : cm v bn}). Since R respects

joins in P , (
⊔
{cm : cm v bn}) v bn. So ck v bn.)

Sacks [1961] shows that any embedding of a partial ordering P with cardi-
nality less than 2ℵ0 in D can be extended to an embedding of any consistent
extension R of P such that R−P is countable. He then uses this result to get
the uncountable embeddings quoted on p. 462.

V.5 The Tree Method

Our knowledge of the structure D is beginning to shape up, but we have not
answered yet an important question, regarding the density of the structure. We
will now prove that not only is D not dense, it even has minimal elements. To
get this result we cannot use the finite extension method V.3.13, as we know,
because the minimal degrees are a meager class. It would be possible to use
recursive coinfinite extensions (see V.6.9), but first we prove the existence of
minimal degrees in a simpler way, using a more powerful method.

The idea of the finite extension method was to build an increasing sequence
of strings σn, and then take their union

⋃
n∈ω σn. We may think of this as

building a decreasing sequence of open sets Tn = {X : X ⊇ σn}, and then
taking their intersection

⋂
n∈ω Tn. This naturally leads us to consider more

general sets Tn.

Definition V.5.1 (Shoenfield [1966]) A tree is a function T from initial
segments to initial segments (which we will identify with sequences of 0’s and
1’s), with the following properties:

1. T (σ)↓ ∧ τ ⊆ σ ⇒ T (τ)↓ ∧ T (τ) ⊆ T (σ)

2. if one of T (σ ∗ 0), T (σ ∗ 1) is defined, both are defined and incompatible.

T (σ ∗ 0)

T (σ ∗ 1)

T (σ)@
@

@

�
�

�
�

�

r
r
r r
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This way of looking at trees in not different from the one of IV.2.14: it only
has a different emphasis. What really matters in a tree T is always its range
(which is still a tree in the sense of IV.2.14), but to think of it in terms of a
function is a useful tool: we can simply talk of T (σ ∗ 0) or T (σ ∗ 1), instead
of ‘the two smallest incompatible extensions of T (σ) on the tree’. Similarly, to
state that both or neither of T (σ∗0), T (σ∗1) are defined is no loss of generality,
since if e.g. we are only interested in the branch extending T (σ ∗ 0), we may
define T (σ∗1) as well, and then let the tree grow afterwards only above T (σ∗0).

A total tree, i.e. a tree which is total as a function from strings to strings,
is nothing more than a closed perfect subset of {0, 1}ω, in the terminology of
Cantor [1883] (according to which a set A ⊆ {0, 1}ω is perfect if there is no
f ∈ A and an open set O such that O∩A = {f}, i.e. it has no isolated points).
Intuitively, a total tree is just a set of branches or functions, none of which is
isolated .

We say that

1. A is on T , or A is a branch of T , if T (σ) ⊆ A for infinitely many σ’s

2. σ is on T if it is in the range of T

3. T ∗ is a subtree of T (T ∗ ⊆ T ) if every σ on T ∗ is also in T

4. T ∗ is the full subtree of T above σ if it consists of every string on T
extending σ.

The concept of subtree is for trees what the concept of extension is for
strings. The finite extension method consists of building a decreasing sequence
{Tn}n∈ω of trees, where T0 is the identity tree (consisting of all strings, also
called the full binary tree), and Tn+1 is a full subtree of Tn. The method of
trees is more general because it allows Tn+1 to be any subtree of Tn.

The simplest application of the tree method will be with recursive trees,
i.e. trees that are recursive as (total) functions from strings to strings (appro-
priately coded as numbers). We are really interested in the range of a tree, but
the terminology is consistent: if a tree is recursive as a function, then so is its
range as a set (to know if σ ∈ T we generate the tree up to a level in which
all branches have length at least equal to the length of σ, and see if σ is on T
at that level). In later applications we will also deal with partial recursive
trees, which need not be total: in this case the range will be r.e.

The method of trees used above can be recast in the same categorical frame-
work of Section 3, by using a different topology than the one generated by basic
open sets determined by finite strings. More precisely, consider any set C of
recursive trees, with the following properties:

• the identity tree is in C
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• if T ∈ C and σ ∈ T , then the full subtree of T above σ is in C.

Then C is the base of a topology on P(ω) finer than the original one dealt with
in Section 3. We can then say that:

1. A ⊆ C is C-dense if for any T ∈ C there is S ⊆ T such that S ∈ A

2. A ⊆ P(ω) is C-comeager if it contains the intersection of countably
many C-dense sets.

A good deal of the theory of Baire Category can be developed in this generalized
framework (Yates [1976]), in particular the Baire Category Theorem holds.
Basic examples of C are given by the set of full trees (in which case we obtain
the same notions as in Section 3), the set of recursive coinfinite conditions, and
the set of recursive trees.

Hyperimmune-free degrees

Dealing with the next notion will provide a useful warm up with the tree
method, before the real applications come. Moreover, the notion will be useful
in extending results from T -degrees to other types of degrees (see VI.6.18).

Definition V.5.2 (Martin and Miller [1968]) A degree a ≥ 0 is hyper-
immune-free if for every A ∈ a and f ≤T A, f is majorized by a recursive
function, i.e. there is a recursive function g such that (∀x)(f(x) ≤ g(x)).

The name ‘hyperimmune-free’ is justified below. The definition has been
given in a form which makes it easier to deal with it in applications.

Exercises V.5.3 Hyperimmune degrees. (Martin and Miller [1968]) A degree is
hyperimmune if it contains a hyperimmune set, see III.3.7.

a) A degree is hyperimmune-free if and only if it is not hyperimmune. (Hint: one
direction follows from III.3.8. The other from the fact that if {an}n∈ω enumerates A
in increasing order, and f ≤T A is not majorized by any recursive function, then the
set B defined as A ⊕ {af(n) : n ∈ ω} is in the same degree as A, because f ≤T A,
and is hyperimmune. Otherwise, there would be a recursive function majorizing the
elements of B in increasing order, and thus a recursive function majorizing f too,
because f(n) ≤ af(n).)

b) The hyperimmune degrees are closed upwards, and the hyperimmune-free de-
grees are closed downward . (Hint: the second assertion holds by definition, the first
follows from it by part a).)

c) The set of hyperimmune-free degrees is meager . (Hint: we have to build a
hyperimmune set by the finite extension method V.3.13, which is immediate by def-
inition: given any string σ and an infinite disjoint strong array, there is a string
extending σ such that all sets extending it intersect one element of the strong array.)
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d) Every nonzero degree comparable with 0′ is hyperimmune. (Hint: since 0′ con-

tains a hyperimmune degree, by part b) so do all degrees above it. To show that every

nonzero degree below it does too, modify III.3.13 by using the limit lemma IV.1.17.

Precisely, given A ≤T K nonrecursive, let A be the limit of g recursive. If f(x) is the

smallest stage where g gives the right value of A(y), for all y ≤ x, then f is increasing,

and hence its range B is recursive in A. By part b), it is enough to show that B is

hyperimmune. If it were not then A would be recursive, because to know the real

value of A(x) we just have to compute g at x, at the stage given by the x-th element

of B.)

Since the set of hyperimmune-free degrees is meager, we cannot expect to
build one member of it by the finite extension method V.3.13. By using trees
we can instead easily obtain the result. For later use we isolate the steps needed
in the proof.

Proposition V.5.4 Diagonalization Lemma. Given e and a recursive tree
T , there is a recursive tree Q ⊆ T such that, for every A on Q, A 6' {e}.

Proof. Since T (0) and T (1) are incompatible, at least one of them must
disagree with {e} on some x. If T (i) is such, let Q be the full subtree of T
above it. 2

Proposition V.5.5 Totality Lemma (Martin and Miller [1968]) Given
e and a recursive tree T , there is a recursive tree Q ⊆ T such that one of the
following holds:

1. for every A on Q, {e}A is not total

2. for every A on Q, {e}A is total and

(∀n)(∀σ)(|σ| = n ⇒ {e}Q(σ)(n)↓),

where |σ| is the length of σ.

Proof. See if

(∃σ ∈ T )(∃x)(∀τ ⊇ σ)(τ ∈ T ⇒ {e}τ (x)↑).

If so, choose such a σ: for any string τ extending it, {e}τ is undefined on a
fixed element. It is then enough to let Q be the full subtree of T above σ. Then
case 1 holds.

Otherwise, for any string σ and any x there is an extension τ of σ that
makes {e}τ defined on x. We can then build a tree by successive levels, and
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make {e}A converge on more and more elements. Precisely, let Q be defined
as follows. First we start with

Q(∅) = least τ ∈ T such that {e}τ (0)↓.

Inductively, given Q(σ) on T we know that there is an extension of it on T ,
say T (τ) for some τ , such that {e}T (τ)(|σ|)↓. Then let

Q(σ ∗ i) = T (τ ∗ i),

for i = 0, 1, so that they are two incomparable extensions of Q(σ). 2

Proposition V.5.6 (Martin and Miller [1968]) There are hyperimmune-
free degrees.

Proof. The requirements on A are:

R2e : A 6' {e}
R2e+1 : {e}A total ⇒ for some recursive g, (∀n)({e}A(n) ≤ g(n)).

Define a sequence of recursive trees Tn such that Tn+1 ⊆ Tn, and all branches
of Tn+1 satisfy Rn. Precisely:

T0 = identity tree
T2e+1 = the Q of the Diagonalization Lemma, for T = T2e

T2e+2 = the Q of the Totality Lemma, for T = T2e+1.

Let now A ∈
⋂
n∈ω Tn: it exists because Tn(∅) ⊆ Tn+1(∅), since Tn ⊆ Tn+1,

and thus we just have to consider A =
⋃
n∈ω Tn(∅).

A is not recursive because it is on T2e+1, and hence it is different from {e}.
Suppose now {e}A is total. Since A is on T2e+2, it must be that the second
case holds in the Totality Lemma, hence

{e}A(n) ≤ max
|σ|=n

{e}T2e+2(σ)(n),

since {e}A(n) is already defined at the n-th level of the tree, for each possible
branch A. Thus {e}A is majorized by a recursive function. 2

Exercises V.5.7 (Martin and Miller [1968]) a) There is a hyperimmune-free degree
below 0′′. (Hint: in the construction above, only two-quantifier questions were asked,
and thus the degree is less than or equal to 0′′. To show it is strictly below it, note
that 0′′ is hyperimmune, because comparable with 0′.)

b) There is an infinite ascending sequence of hyperimmune-free degrees. (Hint:
by relativization, there is a hyperimmune-free degree above any hyperimmune-free
degree.)
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c) There are 2ℵ0 hyperimmune-free degrees. (Hint: build a tree of sets, all of

whose branches are of hyperimmune-free degree. This can be achieved by building a

tree of trees, i.e. a function T from pairs of strings to strings, such that for each σ

the function Tσ(τ) = T (σ, τ) is a tree. The desired tree will be given by the function

Tσ(∅). Start by T∅ being the identity tree. At any stage, instead of just building one

subtree of the given tree, build two, above two incomparable strings. Precisely, given

Tσ, apply the Diagonalization or the Totality Lemma, depending on whether |σ| is 2e

or 2e + 1, to the full subtree of Tσ above Tσ(0) to get Tσ∗0, and above Tσ(1) to get

Tσ∗1.)

Jockusch [1969b] shows that a hyperimmune degree contains a bi-immune
set (while the converse does not necessarily hold), and strengthens V.5.6 by
producing a degree without bi-immune sets. See Jockusch [1972] and Simpson
[1977] for more on this topic.

The results of this subsection show that a characterization of the degrees
containing hyperimmune sets cannot be simple. With regard to other immunity
properties introduced in Chapter II, we quote the following results:

1. a immune ⇔ a > 0
(Dekker and Myhill [1958], see II.6.13)

2. a′ ≥ 0′′ ⇒ a cohesive ⇒ a hyperhyperimmune ⇒ a′ > 0′

(Jockusch [1969a], [1973a])

3. If a ≤ 0′, then a hyperhyperimmune ⇔ a cohesive ⇔ a′ = 0′′

(Cooper [1972]).

Minimal degrees

We turn now to a most important application of the tree method. We want to
build a minimal degree, i.e. a nonrecursive set A such that

C ≤T A⇒ C recursive or C ≡T A.

The proof we give is a simplification, due to Shoenfield [1966], of the original
construction of Spector, which is given in Section 6.

When we constructed a minimal pair, we used the e-splitting method: if
there was no e-splitting then we got a recursive set, while in the opposite case
we fixed one side, and diagonalized against it on the other, thus taking full
advantage of the fact of being able to work with two sets. Here we will have to
get by with just one set, and this will complicate our life a bit, but the ideas
will always be the same. The needed change is to use e-splittings in a global
way.
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Definition V.5.8 T is an e-splitting tree if, for every σ, T (σ∗0) and T (σ∗1)
e-split.

The interest of the notion comes from the following lemma.

Proposition V.5.9 (Spector [1956]) Given e, a recursive tree T , and A on
T , if {e}A is total then:

1. if there is no e-splitting on T , {e}A is recursive

2. if T is e-splitting, A ≤T {e}A.

Proof. Since {e}A is total, given x we know that {e}A(x) converges, and
thus there must be σ ⊆ A such that {e}σ(x) converges, and gives the right
value. Since A is on T , by monotonicity we may suppose σ ∈ T . If there is no
e-splitting on T , to compute {e}A(x) is then enough to look for any string τ
on T such that {e}τ (x) converges, since its value must be equal to {e}σ(x)
(otherwise σ and τ would e-split on x), and hence to {e}A(x).

Suppose now that T is instead e-splitting. We show how to generate in-
creasingly long segments of A recursively in {e}A. Given T (σ) ⊆ A, since A is
on T either T (σ ∗ 0) or T (σ ∗ 1) will be included in A, and we have to decide
which one. Being T e-splitting, there is an x such that

{e}T (σ∗0)(x) 6' {e}T (σ∗1)(x),

with both sides converging. Only one of them can agree with {e}A(x), and this
determines which of the two strings is contained in A. Precisely, T (σ ∗ i) ⊆ A
if {e}T (σ∗i)(x) ' {e}A(x). 2

Proposition V.5.10 Minimality Lemma (Spector [1956]) Given e and a
recursive tree T , there is a recursive tree Q ⊆ T such that one of the following
holds:

1. for every A on Q, {e}A total ⇒ {e}A recursive

2. for every A on Q, {e}A total ⇒ A ≤T {e}A.

Proof. The result follows from the previous lemma, if we just build Q with
either no e-splitting on it, or as an e-splitting tree.

If there is a string on T with no e-splitting above it, take Q as the full
subtree above it: then Q has no e-splitting.

If any string on T has two e-splitting extensions (i.e. two strings on T which
extend it and e-split), then we can build an e-splitting subtree Q of T , by induc-
tion: given Q(σ), let Q(σ∗0) and Q(σ∗1) be two e-splitting extensions of it. 2
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Note that the last lemma is a modification of the minimal pair construction.
If there is a string on T with no e-splitting extensions, we just take the full
subtree above it, and have {e}A recursive for any A on it, as in the minimal
pair construction. If any string on T has e-splitting extensions, take two of
them, say σ0 and σ1. Then, for some x, {e}σ0(x) 6' {e}σ1(x), with both sides
converging. Certainly {e}A(x), whatever A may be, disagrees with one of them,
say {e}σi . Then A does not agree with σi. If σ0 and σ1 were the only possible
beginnings of A, then A would have to agree with the other string. And we can
force this to happen, by just discharging every other possibility, i.e. by making
σ0 and σ1 the first level of our subtree. And we can continue this, thereby
building an e-splitting tree such that any set A on it is then recursive in {e}A.

Theorem V.5.11 (Spector [1956]) There exists a minimal degree.

Proof. We only have to satisfy the requirements

R2e : A 6' {e}
R2e+1 : C ' {e}A ⇒ C recursive or A ≤T C.

We build a sequence of recursive trees, as follows:

T0 = identity tree
T2e+1 = the Q of the Diagonalization Lemma, for T = T2e

T2e+2 = the Q of the Minimality Lemma, for T = T2e+1.

Then A =
⋃
n∈ω Tn(∅) satisfies the requirements. 2

Having obtained minimal degrees by the tree method, and knowing that
we cannot obtain them by the finite extension method V.3.13, it is natural
to investigate the situation more thoroughly. More precisely, we would like to
know how much of the machinery just introduced is really needed, in particular
which methods are sufficient, and which are necessary. To the first question we
will answer in V.6.9, where it will be shown that recursive coinfinite extensions
are sufficient , giving a sort of best possible answer. The second question is
less precise, but we can argue that total e-splitting trees are not necessary ,
because they can be combined with totality requirements and automatically
produce hyperimmune-free minimal degrees (see the exercises below). Now
hyperimmune-free degrees cannot be comparable with 0′, but in Chapter XI
we will show that there are minimal degrees below 0′, which must then be built
by partial trees. There it will be possible to prove that, for minimal degrees
below 0′, partial e-splitting trees are not only sufficient, but also necessary
(Chong [1979]).
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Exercises V.5.12 a) There exists a minimal degree below 0′′. (Spector [1956]) (Hint:
in the proof above, only two-quantifier questions were asked, and thus the degree is
less than or equal to 0′′. To show it is strictly below it, note that 0′′ is obviously not
minimal.)

b) There are 2ℵ0 minimal degrees. (Lacombe) (Hint: build a tree of minimal
degrees, as in V.5.7.c.)

c) The diagonalization steps in the construction of minimal degrees are not needed .

(Posner and Epstein [1978]) (Hint: similar to V.2.23, this time using trees Te which

are either e-splitting or without e-splittings, and A on all of them. Another way is

given by part b), because we can build a tree of sets satisfying all the minimality

conditions, and only countably many of these sets can be recursive.)

Exercises V.5.13 Hyperimmune-free degrees. a) There is a minimal, hyper-
immune-free degree. (Martin and Miller [1968]) (Hint: combine the proofs of V.5.11
and V.5.6.)

b) There is a hyperimmune-free degree that is not minimal . (Martin and Miller
[1968]) (Hint: by V.5.7.b.)

That there is a minimal degree which is not hyperimmune-free will follow from

the existence of minimal degrees below 0′, see Chapter XI.

Exercises V.5.14 Jumps of minimal degrees. a) Not every minimal degree re-
alizes the least possible jump. (Sasso [1974]) (Hint: build a set A of minimal degree
such that A′ 6≤T A⊕K. The requirements are treated by the following lemma: given
e and a recursive tree T , there is a recursive tree Q ⊆ T such that, for any A on Q,
A′ 6' {e}A⊕K. The idea is that the question: ‘does A always go left at even levels of
T?’ can be phrased as a question about A′, since it involves only one quantifier over
A. Let a be such that

{a}σ(x) ' 0 ⇔ σ branches right at some even level of T .

By definition of jump, a ∈ A′ ⇔ {a}A(a) ↓. See if, for some τ ∈ T , {e}τ⊕K(a) ' 0.
If so, to diagonalize we want a ∈ A′, i.e. for every A we require {a}A(a)↓, and hence
A must branch right at some even level of T . Take Q as the full subtree of T above
τ ∗ 11, since τ ∗ 11 branches right twice, and one of τ ∗ 1 and τ ∗ 11 is at an even level.
Otherwise, let Q be the subtree of T that branches left at every even level. Note that
we use only even levels, because we still need to get a tree, and this is taken care of
at odd levels.)

b) Every degree above 0′′ is the double jump of a minimal degree. (Cooper [1973])
(Hint: note that if we also use the Totality Lemma in the construction of a set
of minimal degree we can decide, recursively in the construction and hence in ∅′′,
whether {e}A is total or not, depending on which case applies in the lemma. Any
question about the second jump of A or, equivalently, with two quantifiers over A,
can be rephrased as a question about the totality of a given function recursive in A,
and thus A′′ ≤T A⊕ ∅′′. We can now build a tree of T ≤T ∅′′, all of whose branches
A have this property. If ∅′′ ≤T C let A be the branch of T determined by C, i.e.
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A =
⋃
σ⊆C T (σ). Then

A ≤T C ⊕ T ≤T C ⊕ ∅′′ ≤T C,

and hence A⊕ ∅′′ ≤T C. Conversely,

C ≤T A⊕ T ≤T A⊕ ∅′′,

and thus C ≡T A⊕ ∅′′ ≡T A′′.)
Jockusch and Posner [1978] show that, for any minimal degree a, a′ = (a ∪ 0′)′,

see Chapter XI. Cooper [1973] proves that actually every degree above 0′ is the jump

of a minimal degree, but this is much more difficult to prove, see Epstein [1975] or

Posner [1981] for a proof by recursive approximations, and Lerman [1983] for one by

approximations recursive in ∅′.

Exercises V.5.15 Autoreducible sets. A set A is autoreducible if, for each x,
the question ‘is x in A?’ can be answered recursively in A, without ever asking the
oracle about x. Thus every single element encodes redundant information, retrievable
from the rest of the set. A nonrecursive degree containing only autoreducible sets is
called completely autoreducible.

a) Every m-degree contains autoreducible sets. (Trakhtenbrot [1970]) (Hint: con-
sider A⊕A. Then 2x and 2x+ 1 give the same information.)

b) An introreducible set (II.6.7) is autoreducible. (Jockusch and Paterson [1976])
(Hint: let B be nonautoreducible. We build, by the finite extension method V.3.13,
an infinite subset A of B such that B 6≤T A. To get B 6' {e}A at stage n, given σn
look for an extension σ of it such that σ−1(1) ⊆ B, and there is x such that every
τ ⊇ σ such that τ−1(1) ⊆ B satisfies {e}τ (x) 6' B(x). Such a string must exist, since
B is not autoreducible. Thus let σn+1 = σn.)

c) The set of completely autoreducible degrees is meager . (Trakhtenbrot [1970])
(Hint: build, by the finite extension method, a set A such that, for every e, there is
x such that A(x) 6' {e}A−{x}(x).)

d) There exists a completely autoreducible degree. (Jockusch and Paterson [1976])
(Hint: build a set as in the minimal degree construction, with double e-splittings
taking the place of e-splittings, i.e. using trees T such that, for any σ, there are two
distinct elements on which T (σ ∗ 0) and T (σ ∗ 1) e-split. If T is doubly e-splitting, A
is on T , and {e}A is a characteristic function, then {e}A is autoreducible: to compute
{e}A(x) with oracle {e}A without using this value, first build large enough segments
of A, with oracle {e}A but avoiding the particular value {e}A(x), which is possible
thanks to the double e-splittings. Then compute {e}A(x) with oracle A.)

Obviously, the completely autoreducible degree just built is minimal. The ex-

istence of minimal, not completely autoreducible degrees and of completely autore-

ducible, not minimal degrees will be proved in V.6.10.d and V.6.16.e. Jockusch and

Paterson [1976] show that nonzero r.e. degrees and degrees above 0′ are not com-

pletely autoreducible.
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Minimal upper bounds ?

Exactly as we generalized the notion of minimal pair to that of exact pair, we
can extend the notion of minimal degree to that of minimal upper bound.

Definition V.5.16 A degree a is a minimal upper bound for a set of de-
grees C if

1. it is a strict upper bound to C, i.e. (∀c ∈ C)(c < a)

2. there is no strict upper bound to C below it, i.e.

(∀b)[b ≤ a ∧ (∀c ∈ C)(c < b) ⇒ b = a].

A minimal cover for a degree b is a minimal upper bound for {b}, i.e. a
degree a > b such that there is no degree strictly between a and b.

A strong minimal cover for b is a degree a > b such that anything
strictly below it is bounded by b, i.e.

(∀c)(c ≤ a ⇒ c ≤ b ∨ c = a).

Both notions of minimal cover are plausible generalizations of the notion of
minimal degree above a given set. Relativizations of the results about minimal
degrees produce results about minimal covers, but not about strong minimal
covers. For example, V.5.11 relativized shows that every degree has a mini-
mal cover . On the other hand, not every degree has a strong minimal cover
(Shoenfield [1959]), e.g. 0′ does not (by V.2.26 any degree above 0′ is the join
of two strictly smaller degrees, and thus it cannot be a strong minimal cover of
it, otherwise the two degrees would be below 0′, and so would be their join).
Jockusch [1981] shows that the set of degrees without strong minimal covers is
comeager , and thus the class of degrees with a strong minimal cover is meager.
It is not known whether the minimal degrees are included in it, i.e. if every
minimal degree has a strong minimal cover.

Exercises V.5.17 There is a cone of minimal covers. (Jockusch [1973]) (Hint: ev-

ery minimal degree has a minimal cover, and thus the set of degrees which are not

minimal covers cannot contain a cone. By V.1.16, if AD holds then the set of degrees

which are minimal covers must contain a cone. But this set is arithmetical, and thus

only the Axiom of Determinacy for arithmetical sets is needed, which is provable in

ZFC by Martin [1975].) A direct proof of the result, not using Determinacy, will be

given in Volume II.

Spector’s Theorem showed that any countable ideal has an exact pair. The
proof was an extension of the construction of minimal pairs, plus a coding
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method that allowed us to push the set constructed above given degrees. We
now prove a similar result for minimal upper bounds, by extending the construc-
tion of minimal degrees. We also need a coding method, and this is provided
by the next notion, implicit in the proof of Spector’s Theorem.

Definition V.5.18 (Sacks [1971]) A recursively pointed tree T is a tree
which is recursive in all of its branches, i.e. T ≤T A whenever A is on T .

Exercises V.5.19 a) If T is recursively pointed, then T has branches of every degree
above the degree of T . (Sacks [1971]) (Hint: given T ≤T A, consider B =

⋃
σ⊆A T (σ).)

b) If T is recursively pointed, Q ⊆ T , and Q ≤T T , then Q is also recursively

pointed, and Q ≡T T . (Sacks [1971]) (Hint: Q is pointed because if A ∈ Q ⊆ T then

Q ≤T T ≤T A. If A is the leftmost branch of Q then T ≤T A by pointedness, and

A ≤T Q by definition, so T ≤T Q.)

Proposition V.5.20 (Sacks [1971]) If T is recursively pointed and T ≤T A,
then there is some recursively pointed tree Q ⊆ T such that Q ≡T A.

Proof. We have to code A in Q, and at every even level 2n we thin the tree
down by just taking the right or left branch, according to whether n is in A or
not. Precisely, we define Q by induction. Given Q(σ) on T , let τ be a string
such that Q(σ) = T (τ), which exists because Q(σ) is on T , by induction. Let

Q(σ ∗ i) = T (τ ∗A(|σ|) ∗ i).

Then Q ≤T T ⊕ A, so Q ≤T A (because T ≤T A). From any path B of Q
and T itself we can recover A, and so A ≤T B (since T ≤T B by pointedness).
To have A ≤T Q it is enough to choose any B ≤T Q, e.g. the leftmost branch.

Finally, Q is pointed: given B ∈ Q we can recover Q itself from B and T ,
by the uniformity of the construction, and again T ≤T B, so Q ≤T B. 2

Proposition V.5.21 (Sacks [1963]) Every countable set of degrees has a
minimal upper bound.

Proof. Let A = {a0, a1, . . . } be a countable set of degrees. We may suppose
that A is a chain, otherwise we can just consider the chain defined as

b0 = a0 bn+1 = bn ∪ an+1,

whose minimal upper bounds are exactly those of A. We can also assume
that the chain has no greatest element, otherwise the result is obtained by
taking any minimal cover of it. This assumption is made only to avoid direct
diagonalization against all the degrees in A.
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Let then An ∈ an. We will build a set A ∈
⋂
n∈ω Tn, where Tn is a

recursively pointed tree of degree an. This automatically implies that A is an
upper bound for A.

To get minimality, we use the following extension of the Minimality Lemma.
Given e and a tree T , there is a tree Q ⊆ T such that one of the following holds:

1. for every A on Q, {e}A total ⇒ {e}A ≤T Q

2. for every A on Q, {e}A total ⇒ A ≤T {e}A ⊕Q.

This is proved by the proof of V.5.10, simply because when the relevant trees
are not recursive then we have to take them into account in our computations.

The construction is as follows. Let T0 be a recursively pointed tree of the
same degree as A0 (which can be obtained by starting from the identity tree,
and applying V.5.20). Given Te recursively pointed of the same degree as Ae,
first get T ⊆ Te recursively pointed of the same degree as Ae+1, by V.5.20,
since Ae ≤T Ae+1. Then let Te+1 be the Q of the Minimality Lemma stated
above, which is still recursively pointed, and of the same degree as Ae+1.

If A ∈
⋂
n∈ω Tn, suppose {e}A is total. By construction, there are two

cases:

• {e}A ≤T Te+1

Then {e}A ≤T Ae+1 (since Te+1 has the same degree as Ae+1), A is below
some element of the chain, and it is not an upper bound to it.

• A ≤T {e}A ⊕ Te+1

If {e}A is itself an upper bound to the chain then Te+1 ≤T {e}A, and
hence A ≤T {e}A.

Thus no upper bound to the chain is strictly below A, and A is a minimal
upper bound. 2

Exercises V.5.22 a) Every countable set of degrees has 2ℵ0 minimal upper bounds.
(Sacks [1963]) (Hint: build a tree of minimal upper bounds.)

b) Every countable ascending chain of hyperim-

mune-free degrees has a hyperimmune-free minimal upper bound (Martin and Miller

[1968]). Note that the result fails for countable sets in place of chains, because the

join of hyperimmune-free degrees in not necessarily hyperimmune-free, see V.6.10.c.

König’s Lemma and Π0
1 classes ?

In this subsection we consider again general trees as in IV.2.14 (i.e. as sets of se-
quence numbers closed under subsequences), and study their infinite branches.
The classical result in this field is the following.



506 V. Turing Degrees

Theorem V.5.23 König’s Lemma (König [1926]) An infinite tree in which
every node has only finitely many immediate successors has an infinite branch.

Proof. Let T be such a tree. We define an infinite branch by induction. We
start with σ0. Given σn with infinitely many extensions on T , let σn+1 be an
immediate successor of σn with infinitely many extensions on T . It exists be-
cause σn has infinitely many extension on T , but only finitely many immediate
successors. Thus at least one of them must have infinitely many extensions on
T . 2

The rest of this subsection is devoted to an analysis of constructive versions
of this result. We first investigate binary trees which, by definiteness, we
define as sets of sequences of 0’s and 1’s.

Definition V.5.24 A class of sets is a Π0
1 class if it is the set of infinite

branches of some infinite recursive binary tree.

The reason for the name is obvious: if T is a recursive tree, then A is an
infinite branch of it if and only if (∀x)(ĉA(x) ∈ T ). More generally, if P is
a recursive predicate then the class of sets A such that (∀x)P (ĉA(x)) is a Π0

1

class, since it is the set of infinite branches of the tree obtained by closing P
under subsequences.

Note that, by König’s Lemma, a Π0
1 class is never empty. As a fundamental

example, the sets separating two disjoint r.e. sets A and B form a Π0
1 class:

C ∈ SA,B ⇔ (∀x)[(x ∈ A→ x ∈ C) ∧ (x ∈ B → x 6∈ C)].

Explicitly, a recursive tree whose branches are exactly the members of SA,B is
the following:

x ∈ TA,B ⇔ Seq(x) ∧ x is correct up to stage ln(x),

where ‘x is correct up to stage s’ means that for every i ≤ ln(x), if i ∈ As then
(x)i = 1, and if i ∈ Bs then (x)i = 0. In other words, we seal off a branch of
TA,B as soon as we discover that it is incorrect.

Note that TA,B has an infinite branch if and only if A and B are disjoint.
Moreover, an infinite branch of TA,B is the characteristic function of a set
separating A and B. We thus immediately have:

Proposition V.5.25 Failure of the recursive version of König’s Lemma
(Kleene [1952]) There is an infinite recursive binary tree without infinite re-
cursive branches.
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Proof. If A and B are recursively inseparable (II.2.5), then TA,B has no infi-
nite recursive branches. 2

It is the existence of finite branches, i.e. the consideration of partial recursive
trees in the sense of this section, that produces the possibility of recursive
trees without infinite recursive branches. If we restricted our attention to total
recursive trees, then the leftmost branch would be recursive. Instead, the
leftmost infinite branch of a partial recursive tree need not even be r.e., although
it always has r.e. degree (see V.5.26 and V.5.33.a).

Exercise V.5.26 There is an infinite recursive binary tree which has no infinite r.e.
branch. (Jockusch and Soare [1972a]) (Hint: let S be Post’s simple set (III.2.11), and
consider a disjoint strong array {Df(x)}x∈ω intersecting S. Let

A ∈ C ⇔ A ⊆ S ∧ (∀x)(Df(x) ∩A 6= ∅).

C is a nonempty Π0
1 class because it contains S, and it has no r.e. member because

its members are immune.)

Infinite binary trees without infinite recursive branches must be quite fat:

Proposition V.5.27 (Jockusch and Soare [1972]) A Π0
1 class without re-

cursive members has cardinality 2ℵ0 .

Proof. It is enough to show that every isolated infinite branch of a recursive
tree is recursive: then if there are no infinite recursive branches every branch
splits, and the number of infinite branches is 2ℵ0 .

Suppose A is the unique branch of T above σ ∈ T . To decide whether
x ∈ A, consider all strings of T above σ and of length greater than x. Generate
T until all of them except one die out. The only surviving one is contained in
A, and is defined on x. Thus σ(x) tells whether x is in A or not. 2

Exercise V.5.28 A Π0
1 class without recursive members is meager . (Jockusch and

Soare [1972]) (Hint: a Π0
1 class is closed, since membership in A is determined by a fi-

nite initial segment, and thus by an open set contained in A. If (∀σ)(∃A ⊇ σ)(A 6∈ A)

then (∀σ)(∃τ ⊇ σ)(∀A ⊇ τ)(A 6∈ A), and by V.3.6 A is comeager. If A is meager,

then (∃σ)(∀A ⊇ σ)(A ∈ A), and one such A is recursive.)

Since the recursive sets do not provide, in general, witnesses for branches
of any infinite binary tree, we introduce the following notion:

Definition V.5.29 A class of sets A is a basis for Π0
1 classes if every Π0

1

class has an element in A. A class of degrees is a basis if so is the class of sets
with degrees in it.
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We now start a search of bases for Π0
1 classes. First we show that it will be

impossible to find a single best answer.

Proposition V.5.30 The intersection of all bases for Π0
1 classes is the class

of recursive sets, which is not a basis. In particular, there is no least basis.

Proof. Every recursive set must be in every basis, because given B recursive
the condition A = B defines a Π0

1 class with B as the only member.
To show that the intersection of all bases is the class of recursive sets, it

is enough to show that given A nonrecursive there is a basis B not containing
A. We build B by putting an element of each Π0

1 class in it. Given a Π0
1 class,

there are two cases: either it has recursive elements, in which case we can put
one in B, or (by the proposition above) it has 2ℵ0 elements, and thus we can
choose one different from A. 2.

A simple analysis of the proof of König’s Lemma provides the first result.

Proposition V.5.31 Kreisel Basis Lemma (Kreisel [1950]) An infinite
recursive binary tree has a ∆0

2 infinite branch.

Proof. Let T be a given infinite recursive binary tree. Given σn ∈ T , we have
to decide whether to choose σn+1 as σn ∗ 〈0〉 or σn ∗ 〈1〉. We see if

(∀m > n)(∃τ ∈ T )(|τ | = m ∧ τ ⊇ σn ∗ 〈0〉).

If yes, we let σn+1 = σn ∗ 〈0〉. Otherwise, σn+1 = σn ∗ 〈1〉. Let A =
⋃
n∈ω σn.

Then A ∈ T .
Since the quantifier on τ is bounded, because there are only finitely many

strings of length m, and T is recursive, the question is Π0
1. It can thus be

answered recursively in K. Then A ≤T K, and A ∈ ∆0
2. 2

Kreisel Basis Lemma has been improved by Shoenfield [1960a], who proved
that there is always a branch of degree less than 0′. The next result is much
stronger.

Theorem V.5.32 Low Basis Theorem (Jockusch and Soare [1972])
The degrees a such that a′ = 0′, called low degrees, form a basis for Π0

1

classes.

Proof. We proceed as in V.2.21, on trees. Let T be a given infinite recursive
binary tree. We want to build A on T such that e ∈ A′ can be decided
recursively in K.

Let T0 = T . Given Te, to decide whether e ∈ A′ we consider the set

Ue = {σ ∈ Te : {e}σ(e)↑}.

There are two cases:
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1. Ue is infinite
Then we can let Te+1 = Ue, and for every A on Te+1 we will have e 6∈ A′.
Note that Ue is indeed a tree, being closed under subsequences (since if a
string does not decide a computation, neither does any substring of it).

2. Ue is finite
Then we can let Te+1 = Te. For every A on Te+1 we will have e ∈ A′,
since {e}σ(e) is undefined for at most finitely many strings on Te+1, and
thus it must converge for any string which is big enough.

Since the case distinction is recursive in K, if A ∈
⋂
e∈ω Te then A′ ≤T K.

And clearly A ∈ T , because T0 = T . 2

Exercises V.5.33 (Jockusch and Soare [1972], [1972a]) a) The r.e. degrees form a
basis for Π0

1 classes. (Hint: given an infinite recursive binary tree T , consider its
leftmost infinite branch A. If

σ ∈ B ⇔ σ ∈ T ∧ σ is on the left of A

then A ≡T B. Moreover, B is r.e. because if σ ∈ T is in B then we discover it by
generating all strings of T of length up to n, for n big enough.)

b) The r.e. degrees strictly below 0′ do not form a basis for Π0
1 classes. (Hint:

the example given in V.5.26 consists only of effectively immune sets. They, by the
proof of III.2.18, cannot have r.e. degree strictly below 0′.)

c) If b ≥ 0′ then 0 and the degrees with jump b form a basis for Π0
1 classes.

(Hint: let T be an infinite recursive binary tree without infinite recursive branches.

Since it has 2ℵ0 branches, it is possible to build a total subtree Q ≤T K all of whose

branches force the jump, as in V.5.32. If B ≤T K then the branch determined by B,

i.e. turning right at level n if n ∈ B and left otherwise, has jump B.)

Proposition V.5.34 (Jockusch and Soare [1972]) The hyperimmune-free
degrees form a basis for Π0

1 classes.

Proof. We proceed as in V.5.6. Let T be a given infinite recursive binary tree.
We want to build A on T such that {e}A, whenever is total, is majorized by a
recursive function.

Let T0 = T . Given Te, consider

Uxe = {σ ∈ Te : {e}σ(x)↑}.

There are two cases:

1. Uxe is infinite for some x
Then we can let Te+1 = Uxe for one such x, and for every A on Te+1 we will
have {e}A not total. Note that Uxe is indeed a tree, being closed under
subsequences (since if a string does not decide a computation, neither
does any substring of it).
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2. Uxe is finite for every x
Then we can let Te+1 = Te. For every A on Te+1 it is enough to find
recursively a level n such that, for all strings σ of length n, {e}σ(x) ↓.
Then

{e}A(x) ≤ max
σ∈T∧|σ|=n

{e}σ(x). 2

The results just proved for binary recursive trees can easily be seen to hold
also for recursively bounded recursive trees, i.e. recursive trees such that
the size (i.e., the greatest component) of nodes on T of length n is bounded by
f(n), for some recursive f . E.g., a binary tree is recursively bounded by 2.

The results for recursively bounded recursive trees can be extended to
finitely branching recursive trees, i.e. recursive trees such that the number
of nodes on T of length n is finite. The reason is that such trees are bounded
by a function recursive in 0′: to know a bound on the size of strings of level
n on T we can ask, for any m, whether the size of every string of level n
on T is bounded by m. This can be answered recursively in K, and we can
inductively determine the smallest m for which such a sentence holds (which
exists, because T is finitely branching). Thus the results of this subsection hold
for finitely branching recursive trees, when relativized to 0′. E.g., V.5.32 shows
that a finitely branching infinite recursive tree has an infinite branch with jump
recursive in 0′′.

If the condition of being finitely branching is dropped, then the situation
changes radically (e.g., V.5.23 fails). The theory of infinite recursive trees
with infinite branches can be developed in a way largely parallel to the one for
binary recursive trees, when the notions of recursive set and Turing degree are
replaced by those of hyperarithmetical set and hyperdegree. See Volume III
for a treatment.

Complete extensions of Peano Arithmetic ?

Since the class of sets separating two disjoint r.e. sets is a nonempty Π0
1 class,

so are:

1. the set of consistent extensions of a given consistent theory

2. the set of complete extensions of a given consistent theory .

Jockusch and Soare [1972] and Hanf [1975] provide converses to these examples
in the spirit of III.10.3, showing that the class of degrees of members of a given
Π0

1 class coincides with the class of degrees of complete extensions of some
(finitely axiomatizable) first-order theory.
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In the following we will restrict our attention to complete extensions of
Peano Arithmetic, because they provide a possible description of the arith-
metical world in accord with the partial but fundamental picture given by PA.
In particular, we will thus be able to take advantage of the power of PA in
proofs, including the Induction Principle.

The basic link with the subject of the last subsection is another basis result.

Theorem V.5.35 Scott Basis Theorem (Scott [1962]) If F is a consistent
extension of PA, the sets recursive in F form a basis for Π0

1 classes.

Proof. Let T be an infinite recursive tree. To be able to choose an infinite
branch recursively in F , we proceed inductively. Let σ0 = ∅. Given σn of
length n, consider all its extensions of length n + 1 on T . Given any two of
them, say τ0 and τ1, we have to decide which one looks better as an initial
segment of an infinite branch of T . The statement

ψ0 ⇔ (∃m)(τ0 has an extension of length m on T , but τ1 does not)

is Σ0
1 (note that the quantifiers on strings are restricted to strings of a given

length). If it is true then, for some m, so is

τ0 has an extension of length m on T , but τ1 does not.

But this is a true recursive sentence, which is then provable in PA, and hence
in F . Then so is ψ0. Similarly for

ψ1 ⇔ (∃m)(τ1 has an extension of length m on T , but τ0 does not).

Now ψ0 and ψ1 cannot both be provable, because F is consistent (otherwise
there would be a number m such that one of τ0 and τ1 has at the same time
an extension of length m, and no extension of length m). Thus τi looks better
if ψi is provable in F , and otherwise τ0 and τ1 look the same.

We can now compare all pairs of strings on T of length n+ 1 extending σn.
Since there is an infinite branch on T , all strings which do not extend to an
infinite branch are eliminated (when compared to a string that does). All the
remaining ones do extend to an infinite branch, and we can choose any of them
as σn+1. 2

The next result provides a converse to Scott Basis Theorem.

Theorem V.5.36 Characterization of the degrees of complete exten-
sions of PA (Solovay) The following conditions are equivalent:

1. a is the degree of a consistent extension of PA
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2. a is the degree of a complete extension of PA

3. D(≤a) is a basis for Π0
1 classes.

Proof. Clearly, 2 implies 1. Scott Basis Theorem shows that 1 implies 3. If 3
holds then there is a complete extension of PA recursive in a (because the set
of complete extensions of PA is a Π0

1 class): that 3 implies 2 thus follows from
the upward closure of the degrees of complete extensions of PA, which we now
prove.

Let F be a complete extension of PA recursive in a set C. It is enough to
build a tree of complete extensions of PA, recursively in F . Then the branch
determined by C has the same degree of C. Let {ϕn}n∈ω be an enumeration
of the sentences in the language of arithmetic. We start with F∅ = PA. Given
Fσ, we proceed in two steps:

1. completeness
Given ϕn, with n = |σ|, we decide how to consistently add to Fσ one of
ϕn and ¬ϕn. As in V.5.35, we let

ψ0 ⇔ (∃m)(m codes a proof of ϕn in Fσ,
but no smaller m′ codes a proof of ¬ϕn)

ψ1 ⇔ (∃m)(m codes a proof of ¬ϕn in Fσ,
but no smaller m′ codes a proof of ϕn).

Since Fσ is a finite extension of PA, it is a formal system, and thus ψ0

and ψ1 are Σ0
1, and hence provable in F if true. Moreover, by consistency

of F , they are not both provable. Recursively in F we can see which of
them, if any, is provable.

If ψ1 is provable in F then we know that ψ0 is not provable in Fσ, and
hence that ¬ϕn is consistent with it. We can thus let

F ′σ = Fσ ∪ {¬ϕn}.

Otherwise, we can let

F ′σ = Fσ ∪ {ϕn}.

2. branching
Since the sets of provable and refutable formulas of PA are an effectively
inseparable pair of r.e. sets (see III.10.11), there is a recursive function
that produces, given a disjoint pair (A,B) of r.e. sets extending them, an
element not in A ∪ B. This applies in particular to the sets of provable
and refutable formulas of F ′σ which is, by construction, a finite extension
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of PA. In other words, there is an effective way to find a sentence ψ
which is neither provable nor refutable from F ′σ. Then we can let

Fσ∗〈0〉 = F ′σ ∪ {ψ}
Fσ∗〈1〉 = F ′σ ∪ {¬ψ}.

If F ≤T C then
⋃
σ⊆C Fσ is a complete extension of PA of the same degree as

C. 2

The theorem shows that the degrees of consistent or complete extensions
of PA describe particularly simple bases for Π0

1 classes. A complete degree-
theoretical characterization of them is not known, but from the basis results
we already have we can easily derive a number of consequences, both positive
and negative. The latter show that a complete extension of PA cannot be
too simple, in various ways. They generalize II.2.17, which stated only that a
consistent extension of PA cannot be recursive.

Proposition V.5.37 (Scott and Tennenbaum [1960], Jockusch and
Soare [1972], [1972a]) A consistent extension of PA can have neither in-
complete r.e. degree, nor minimal degree. But there are complete extensions of
PA of low degree, as well as of degree 0′.

Proof. If there were a consistent extension of PA of r.e. incomplete degree, by
Scott Basis Theorem the r.e. incomplete degrees would be a basis, contradicting
V.5.33.b.

Similarly, if there were a consistent extension of PA of minimal degree
then the minimal degrees together with the recursive sets would be a basis,
contradicting the fact that the members of the following nonempty Π0

1 class
are neither recursive nor of minimal degree:

A⊕B ∈ C ⇔ (∀e)(B(e) 6' {e}(e)) ∧
(∀e)(A(2e) 6' {e}(2e)) ∧
(∀e)(A(2e+ 1) 6' {e}B(2e+ 1)).

The first two conditions imply that both A and B are not recursive, since they
diagonalize against every recursive function (on fixed arguments). The last
condition implies that A 6≤T B. Thus A⊕B cannot be recursive or of minimal
degree. And C is Π0

1 because, e.g.,

B(e) 6' {e}(e) ⇔ {e}(e)↑ ∨ B(e) 6= {e}(e),

and to diverge on a given argument is a Π0
1 condition.
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The existence results follow from V.5.32 and V.5.33.a: the latter implies
the existence of a complete extension of PA of r.e. degree, which must be 0′

because all the r.e. incomplete degrees are ruled out by the first part of the
proof. 2

Jockusch and Soare [1972a] show that the complete extensions of an es-
sentially undecidable formal system can have both incomplete r.e. degree and
minimal degree. Thus the role of PA (through the fact, used in the proof
of V.5.36, that the sets of theorems and of refutable formulas are not only
recursively, but also effectively inseparable) is crucial.

An interesting way to analyze the behavior of consistent extensions of PA
is to see which sets are weakly representable in them. Clearly, in the standard
model exactly the arithmetical sets are. By II.2.16, in every consistent formal
system extending R exactly the r.e. sets are weakly representable. But for
consistent extensions F of R which are not formal systems the following might
happen. If ϕ weakly represents a set A in R, ϕ(x) might become provable in
F for some x ∈ A, and thus ϕ represents only a superset of A in F , possibly a
cofinite (and hence recursive) one. Moreover, since F is not a formal system,
the set represented by ϕ is not necessarily r.e.

Proposition V.5.38 For every consistent extension F of PA, the class of
sets weakly representable in F properly includes the recursive sets.

Proof. Since, by II.2.16, the recursive sets are actually strongly representable
in R, they remain strongly representable in every extension of it, and hence
weakly representable in every consistent extension.

Given a recursive enumeration {ϕn}n∈ω of the sentences in the language of
arithmetic let, as in V.5.35 and V.5.36,

ψ0(n) ⇔ (∃m)(m codes a proof of ϕn in PA,
but no smaller m′ codes a proof of ¬ϕn)

ψ1(n) ⇔ (∃m)(m codes a proof of ¬ϕn in PA,
but no smaller m′ codes a proof of ϕn)

By consistency of F , ψ0 weakly represents a set A. If ϕn is a theorem of PA
then ψ0(n) is a true Σ0

1 formula, which is then provable in F . If ¬ϕn is a
theorem of PA then ψ1(n) is provable in F and hence, by consistency of F ,
ψ0(n) is not provable. Thus A separates theorems and refutable formulas of
PA, and thus it cannot be a recursive set (by III.10.11). 2

We now provide some examples of complete extensions of PA, pathological
from the point of view of weakly representable sets.



V.5 The Tree Method 515

Proposition V.5.39 (Jockusch and Soare [1972])

1. There is a complete extension of PA in which no hypersimple set is weakly
representable.

2. There is a complete extension of PA in which only ∆0
2 sets are weakly

representable.

3. For any n ≥ 2 there is a complete extension of PA in which only ∆0
n+1

sets are weakly representable, but no nonrecursive Σ0
n or Π0

n set is.

4. There is a complete extension of PA in which no arithmetical nonrecur-
sive set is weakly representable.

Proof. By V.5.34 there is a complete extension F of PA of hyperimmune-
free degree. If A is weakly representable in F , it is recursive in it. Thus it has
hyperimmune-free degree, because the hyperimmune-free degrees are downward
closed (V.5.3). Thus A cannot be hyperimmune, and A is not hypersimple.

Similarly, 2 follows from the Low Basis Theorem, which provides a complete
extension of PA recursive in K, in which all weakly representable sets must
then be ∆0

2.
For the remaining results, we first show that given countably many nonre-

cursive sets An and an infinite binary recursive tree, there is A on it in which
no An is recursive. This can be obtained inductively as usual, once we know
how to get, given e, n, and an infinite recursive tree T , an infinite recursive
subtree T ′ of T such that An 6' {e}A, for every A on T . There are three cases:

1. for some x, there are infinitely many σ ∈ T such that {e}σ(x)↑
Then the set

{σ ∈ T : {e}σ(x)↑}

is an infinite subtree of T (being closed under subsequences), and we can
let it be T ′. If A ∈ T ′ then {e}A is not total, and hence is different from
An.

2. for some x, there is σ ∈ T such that {e}σ(x) is defined and different from
An(x), and σ has infinitely many extensions on T
Then we can let T ′ be the full subtree of T above σ. If A ∈ T ′ then {e}A
is different from An.

3. otherwise
Then we let T ′ = T , and show that {e}A is recursive for any A on T , and
hence different from An. Given x, go to a level n of T such that {e}σ(x)↓
for every σ ∈ T of length n: this is possible because we are not in the
first case. If two strings give different values on x, then they cannot both
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have infinitely many extensions on T , otherwise one of them would give
a value different from An, and we would be in the second case. We can
thus generate enough of the tree to discover which of the strings belong
to finite branches, until only strings with the same value remain. This
must be the value of {e}A(x), for any A ∈ T .

By letting {An}n∈ω be a list of the arithmetical nonrecursive sets, we get
part 3. For part 2 we only have to let {An}n∈ω be a ∆0

n+1 list of Σ0
n ∪Π0

n, and
to compute the complexity of the construction. The division in cases is based
on two-quantifier questions, and thus it is recursive in ∅′′, which accounts for
the bound n ≥ 2. 2

Kučera [1986] has shown that part 2 cannot be improved as in part 3: there
is no complete extension of PA in which only ∆0

2 sets are weakly representable,
but no nonrecursive r.e. set is.

For more on Π0
1 classes and their applications to complete extensions of PA,

see Jockusch and Soare [1971], [1972], [1972a], Jockusch [1974], [198?], Kučera
[1985], [1986], [1988], [198?].

V.6 Initial Segments ?

Initial segments more complicated than minimal degrees have been used in the
original proofs of many of the global results of the next section. They are
now obsolete in this respect, since much simpler proofs have been obtained.
Initial segments are still necessary for a complete algebraic characterization
of the algebraic structure of D, as well as for some advanced parts of Degree
Theory (like the results quoted on p. 492). The techniques involved in the
proofs are however mostly not recursion-theoretical, and outside the scope of
our book. The reader is referred to Epstein [1979] and Lerman [1983] for
detailed treatments. We will introduce only techniques which have other uses
as well.

Uniform trees

To obtain initial segments we need trees that have more flexibility than the
simple ones used in the previous section. The following notion introduces some
uniformities in our trees.

Definition V.6.1 T is a uniform tree if, for every i = 0, 1 and σ,

1. |T (σ)| depends only on |σ|

2. there is a unique τi, depending only on |σ|, such that T (σ ∗ i) = T (σ)∗ τi.
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level n

level n+ 1

· · ·

τ0 τ1 τ0 τ1 τ0 τ1

r r r
r r r r r r

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

L
L

L
L

LL

L
L

L
L

LL

L
L

L
L

LL

A uniform tree is nothing more than a tree in which, at each level, the
strings immediately following each node are independent of the node itself, and
have the same length.

A useful way of representing the situation is the following: there are three
functions g (strictly increasing), and fL, fR (left and right functions) such that
fL and fR take values in {0, 1} and are incompatible (i.e. they differ on at least
one argument) in every interval [g(n), g(n+ 1)). Thus the levels of the tree are
determined by g, and a branch of the tree is simply a path which at every node
follows one of fL and fR, up to the next node.

Definition V.6.2 (Spector [1956]) An admissible triple is a triple g, fL,
fR of functions from ω into {0, 1}, such that:

1. (∀n)[g(n) < g(n+ 1)]

2. (∀n)(∃x)[g(n) ≤ x < g(n+ 1) ∧ fL(x) 6= fR(x)].

The triple is recursive if g, fL, fR are.

level n

level n+ 1

g(n)

g(n+ 1)

fRfL

r
r�
�
�
���

��

Our present task is to build minimal degrees by uniform trees. By doing so
we will actually reproduce Spector’s original proof. What we do is to reprove
the lemmas of the last section, this time building uniform trees instead of simple
trees.
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Proposition V.6.3 Diagonalization Lemma for uniform trees. Given e
and a recursive uniform tree T , there is a recursive uniform tree Q ⊆ T such
that, for every A on Q, A 6' {e}.

Proof. The same proof of the Diagonalization Lemma works, because any full
subtree of a uniform tree is still uniform. 2

Proposition V.6.4 Totality Lemma for uniform trees (Martin and
Miller [1968]) Given e and a recursive uniform tree T , there is a recursive
uniform tree Q ⊆ T such that one of the following holds:

1. for every A on Q, {e}A is not total

2. for every A on Q, {e}A is total and

(∀n)(∀σ)(|σ| = n ⇒ {e}Q(σ)(n)↓),

where |σ| is the length of σ.

Proof. See if

(∃σ ∈ T )(∃x)(∀τ ⊇ σ)(τ ∈ T ⇒ {e}τ (x)↑).

If so, choose such a σ: as in the Totality Lemma, we let Q be the full subtree
of T above σ, which is uniform since T was. Then case 1 holds.

Otherwise, we define Q by induction as follows.

Q(∅) = least τ ∈ T such that {e}τ (0)↓ .

Given Q(σi), for 1 ≤ i ≤ 2n and σi string of length n, take:

Q(σ1) ∗ τ1 ∈ T such that {e}Q(σ1)∗τ1(n)↓
Q(σ2) ∗ τ1 ∗ τ2 ∈ T such that {e}Q(σ2)∗τ1∗τ2(n)↓
etc.

Let τ = τ1 ∗ · · · ∗ τ2n : for each i we then have {e}Q(σi)∗τ (n)↓. It is now enough
to take two incomparable extensions µ0 and µ1 of τ with the same length and
such that Q(σi) ∗ µ0 and Q(σi) ∗ µ1 are on T for every i, which is possible
because T is uniform, and let

Q(σi ∗ 0) = Q(σi) ∗ µ0 and Q(σi ∗ 1) = Q(σi) ∗ µ1.

By definition Q is then uniform, since we extend all strings of a given level in
the same way. 2

At this point we know how to build hyperimmune-free degrees by uniform
trees. To obtain the same result for minimal degrees it is enough to show that
we can handle, by uniform trees, the only case of the Minimality Lemma in
which we are not taking full subtrees.
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Proposition V.6.5 (Spector [1956]) Given e and a recursive uniform tree
T , if

1. every σ on T has e-splitting extensions on T

2. (∀σ ∈ T )(∀x)(∃τ ⊇ σ)(τ ∈ T ∧ {e}τ (x)↓)

then T has a recursive e-splitting uniform subtree Q.

Proof. Define Q inductively by the following procedure. Suppose Q(σi) is
given, for any 1 ≤ i ≤ 2n and σi string of length n.

Q(σ1) Q(σ2) Q(σ3)

τ1 τ2 τ1 τ2

τ3 τ4 τ5

· · ·
τ1 τ2

τi τ5
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By 1 there are τ1 and τ2 such that Q(σ1) ∗ τ1 and Q(σ1) ∗ τ2 are on T
and e-split. Reproduce them above Q(σ2): since T is uniform, the new strings
are still on T . By 1 again, there are τ3 and τ4 such that Q(σ2) ∗ τ1 ∗ τ3 and
Q(σ2) ∗ τ1 ∗ τ4 are on T and e-split, say on x. By 2 there is some τ5 such that
{e}Q(σ2)∗τ2∗τ5(x)↓. Thus, for i = 3 or i = 4, Q(σ2) ∗ τ1 ∗ τi and Q(σ2) ∗ τ2 ∗ τ5
e-split on x. Reproduce τ1 ∗ τi and τ2 ∗ τ5 above Q(σ3), and so on. We thus
get, at the end, two big strings τ and τ ′ such that, for each i, Q(σi) ∗ τ and
Q(σi)∗τ ′ are on T and e-split. By possibly extending one of them to a string on
T , we can actually find two such strings of the same length, and they provide
the new level in Q. 2

Theorem V.6.6 (Spector [1956]) It is possible to build minimal degrees by
recursive uniform trees.

Proof. We start with
T0 = identity tree,

which is clearly a recursive uniform tree. Given T2e, we let

T2e+1 = the Q of the Diagonalization Lemma, for T = T2e.

To define T2e+2, let T = T2e+1 and see if the condition 2 of the above proposi-
tion holds. If not, choose a string σ on T for which it fails, and let

T2e+2 = full subtree of T above σ.
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Then {e}A is not total, for any A on it. If condition 2 holds, see if 1 does. If
not, there is a string σ with no e-splitting extensions, and we let

T2e+2 = full subtree of T above σ.

Then {e}A is recursive if total, for any A on it. Otherwise, let

T2e+2 = the Q of the proposition above.

Then A ≤T {e}A if {e}A is total, for any A on it. If A is on all the Tn’s, then
it has minimal degree. 2

One might wonder why we should want to build minimal degrees by uniform
trees, since the proof is more complicated than the one given in V.5.11. There
are two independent answers to this. The first is that this is a first step toward
the construction of minimal degrees by recursive coinfinite conditions. The
second is that the proof just given can be modified and, taking advantage of
the uniformities, turned into a proof of the existence of more complicated initial
segments. These two applications are treated in the next subsections.

Minimal degrees by recursive coinfinite extensions

We close now the circle started in Section 4, by showing how coinfinite condi-
tions are nothing else than particular uniform trees.

Definition V.6.7 (Lachlan [1971]) T is a strongly uniform tree (or a
1-tree) if it is uniform and, for all σ, T (σ ∗ 0) and T (σ ∗ 1) differ only on one
argument (we say they are adjacent).

Equivalently, we could define strongly uniform trees as admissible triples
(V.6.2) satisfying the stronger condition that the functions fL and fR differ,
at each level, on exactly one argument. We can see the arguments on which
the two sides differ as the uncommitted ones, and thus a strongly uniform tree
defines a coinfinite condition

θ(x) '

 0 if fL(x) = fR(x) = 0
1 if fL(x) = fR(x) = 1
undefined if fL(x) 6= fR(x)

Of course the same translation would work for uniform trees as well. What
makes strongly uniform trees special is that any set A extending θ is on the tree
(since in each interval there is only one uncommitted point, the two branches
fL and fR take care of all the possibilities). This is not true if the tree is only
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uniform (if in an interval there are n uncommitted points then there are 2n

possible extensions, but only two of them are on the tree).
Conversely, a coinfinite condition θ defines a strongly uniform tree as follows.

Let g enumerate, in increasing order, the elements on which θ is undefined, and

fL(x) =
{
θ(x) if θ(x)↓
0 otherwise fR(x) =

{
θ(x) if θ(x)↓
1 otherwise.

Moreover, the translations just given preserve recursiveness (recall that a
coinfinite condition always has recursive domain, and so g is always recursive),
and thus recursive strongly uniform trees and recursive coinfinite conditions are
interchangeable.

It is immediate to note that the Totality Lemma proved for uniform trees
also works for strongly uniform ones (since we just split a string at the very end),
and thus it is possible to build hyperimmune-free degrees by recursive coinfinite
extensions. To prove the analogue of the Minimality Lemma requires instead
much more work.

Proposition V.6.8 (Lachlan [1971]) Given e and a strongly uniform tree
T , if

1. every σ ∈ T has e-splitting extensions on T

2. (∀σ ∈ T )(∀x)(∃τ ⊇ σ)(τ ∈ T ∧ {e}τ (x)↓)

3. T does not have strongly uniform subtrees without e-splittings

then T has a strongly uniform e-splitting subtree Q.

Proof. Clearly condition 1 is redundant, and it follows from 3. We make it
explicit only to show where the new hypothesis is used. Since 2 holds, we may
suppose that

(∀n)(∀σ)(|σ| = n ⇒ {e}T (σ)(n)↓),

otherwise we apply V.6.4 first. Again we proceed by induction, showing the
first two steps.

Given σ, by 1 there are τ and τ ′ extending it and e-splitting, say on x.
We may suppose they are of the same length (otherwise extend the shortest),
and that for all strings µ of that length, {e}µ(x) ↓ (otherwise go to a level
high enough, by the initial observation). Since T is strongly uniform, there is
a sequence τ0, . . . , τi of strings on it of the same length, each adjacent to the
following in the list, and such that τ = τ0 and τ ′ = τi. Since {e}τj (x)↓ for all
j ≤ i, and {e}τ0(x) 6' {e}τi(x), two of these adjacent strings e-split on x. So
σ ∈ T has e-splitting adjacent extensions. This shows how to build the first
level of the e-splitting uniform subtree.
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Now let σ1 and σ2 be given. We set up to build the second level.

ν′ λ ν

σ1 σ2
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1. We first build a strongly uniform subtree of T above σ2, as follows. Take
a pair of e-splitting adjacent extensions of σ2, and let it be the first level.
Then consider the leftmost branch, take a pair of e-splitting adjacent
extensions of it, and reproduce them on the rightmost one, and this is
the second level. We go on by considering the leftmost branch at each
level, finding an e-splitting adjacent pair above it, and reproducing it on
every node of the same level.

2. Then we take this subtree and reproduce it, as it is, above σ1. There must
be an e-splitting on this strongly uniform subtree of T , by condition
3. We want to find one such that the two branches only differ on one
element (since we are building a strongly uniform tree), and they also
e-split above σ2. Note that we know only that the leftmost branches
e-split above σ2, and we thus make our search by staying on the leftmost
branch of our subtree above σ1.

By methods we know, we may choose an e-splitting ν and ν′ such that
|ν| = |ν′| and:

• ν′ is on the leftmost branch of the strong uniform subtree (given any
e-splitting, say on x, it is enough to wait until, for a long enough
segment ν′ on the leftmost branch, {e}ν′(x) ↓: one of the original
branches and ν′ must e-split on x.)

• ν goes right on the tree as late as possible (i.e. the common part of
ν and ν′ is maximal)

• if x is the element on which ν and ν′ e-split, and µ ∈ T , then
|µ| = |ν| = |ν′| ⇒ {e}µ(x)↓.
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Now take λ which is like ν, only it goes right one level after ν does: λ and
ν are obviously adjacent, and {e}λ(x) ' {e}ν′(x) by the choice of ν (since
the common part of ν and ν′ is maximal). Then {e}λ(x) 6' {e}ν(x), and
λ and ν are an adjacent e-splitting above σ1. By definition they are also
an (adjacent) e-splitting above σ2 (since ν′ lies on the leftmost branch).

This shows how to build the second level of the e-splitting uniform subtree.
The remaining levels can be built inductively, in the same way. 2

Theorem V.6.9 (Lachlan [1971]) It is possible to build minimal degrees by
recursive coinfinite extensions.

Proof. We use strongly uniform recursive trees, which we know to be inter-
changeable with recursive coinfinite conditions. Let

T0 = identity tree,

which is clearly a strongly uniform recursive tree. Given T2e, let

T2e+1 = the Q of the Diagonalization Lemma, for T = T2e.

To define T2e+2, let T = T2e+1, and see if condition 2 of the above proposition
holds. If not, choose a string σ on T for which it fails, and let

T2e+2 = full subtree of T above σ.

Then {e}A is not total, for any A on it. If condition 2 holds, see if 3 holds. If
not, let

T2e+2 = a strongly uniform subtree of T without e-splittings.

Then {e}A is recursive if total, for any A on it. Otherwise, let

T2e+2 = the Q of the proposition above.

Then A ≤T {e}A if {e}A is total, for any A on it. If A is on all the Tn’s, then
it has minimal degree. 2

Exercises V.6.10 a) The minimal degree built above is below 0′′. (Lachlan [1971])
(Hint: to ask whether there is a strongly uniform subtree without e-splitting is too
complicated. But we can ask if the inductive process of building the e-splitting subtree
in the proposition above does terminate or not. If yes, take the e-splitting subtree. If
not, we know that there is a strongly uniform subtree without e-splitting, and thus
we can search for an index of it.)

b) There is a cone of degrees such that every element in it is the join of two
minimal degrees. (Cooper [1972a]) (Hint: build a strongly uniform tree of minimal
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degrees recursive in ∅′′. Given C such that ∅′′ ≤T C, choose A and B on the tree
as follows. At level n, let x be the unique element on which the branches differ. Let
A follow the branch that on x agrees with C, and B follow the other branch. Then
A,B ≤T C ⊕ ∅′′ ≤T C, so A ⊕ B ≤T C. And C ≤T A ⊕ B, since C(n) can be
recovered as the value of A on the n-th element on which A and B differ.)

c) The hyperimmune-free degrees are not closed under join. (Martin and Miller
[1968]) (Hint: build a strongly uniform tree of hyperimmune-free degrees recursive
in ∅′′. It follows as in part b) that the degrees above 0′′, which are hyperimmune
because comparable with 0′, are joins of two hyperimmune-free degrees.)

d) There is a minimal, not completely autoreducible degree. (Jockusch and Pater-

son [1976]) (Hint: build a set A of minimal degree, by recursive coinfinite extensions.

Insert steps to insure that A is not autoreducible. The two constructions are com-

patible.)

The three-element chain

Recall that an initial segment is simply a set of degrees closed downward. The
set {0,a}, with a minimal degree, is thus the simplest nontrivial initial seg-
ment, the two-element chain. The set of minimal degrees and 0 is a nontrivial
initial segment of power 2ℵ0 .

Since every degree has a minimal cover, there are degrees a and b such that
0 < b < a, and there is no degree strictly between either 0 and b, or b and
a. But there could be some degree c incomparable with b, and still below a.
We now want to build a and b as above, but with the additional property that
{0, b,a} is an initial segment, i.e. the only degrees below a are 0 and b. This
is called a three-element chain.

The idea is to build A such that the odd part of A, defined as

Od(A) = {x : 2x+ 1 ∈ A},

plays the role of the intermediate degree. Since Od(A) ≤T A automatically,
the requirements on A are thus:

1. Od(A) nonrecursive

2. A 6≤T Od(A)

3. {e}A total ⇒ {e}A recursive or {e}A ≡T Od(A) or {e}A ≡T A.

These are just generalizations of the conditions for A being minimal, and in
many respects so is the construction, which employs uniform trees. The most
crucial parts are the idea of forcing Od(A) to be minimal (which allows us to
build just one set A, instead of the separate sets A and B), and V.6.12 (which
allows us to make A not recursive in its odd part, and uses uniformity in a
crucial way, thus forcing us to use uniform trees in the construction of initial
segments).
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Proposition V.6.11 Given e and a recursive uniform tree T , if for some σ

T (σ ∗ 0), T (σ ∗ 1) disagree on their odd parts

then there is a recursive uniform tree Q ⊆ T such that, for every A on Q,
Od(A) 6' {e}.

Proof. Since T (σ ∗ 0), T (σ ∗ 1) disagree on their odd parts, the odd part of
one of them, say T (σ ∗ i), disagrees with {e}. Let Q be the full subtree of T
above T (σ ∗ i). 2

Proposition V.6.12 (Titgemeyer [1962]) Given e and a recursive uniform
tree T , if for some σ

T (σ ∗ 0), T (σ ∗ 1) agree on their odd parts

then there is a recursive uniform tree Q ⊆ T such that, for every A on Q,
A 6' {e}Od(A).

Proof. Let x be such that T (σ ∗ 0)(x) 6= T (σ ∗ 1)(x). Such an x must exist,
because T (σ ∗ 0) and T (σ ∗ 1) are incompatible. By the hypothesis on σ, it is
not on their odd parts. See if

(∃τ ⊇ T (σ ∗ 0))(τ ∈ T ∧ {e}Od(τ)(x)↓).

If not, let Q be the full subtree above T (σ ∗ 0): if A is on Q, {e}Od(A) is
not total (hence it differs from A).

T (σ)

T (σ ∗ 0) T (σ ∗ 1)

τ0 τ1
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r r
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Otherwise, let τ0 be such a string, and let τ1 extend T (σ∗1) in the same way
as τ0 extends T (σ∗0). Since T is uniform, τ1 ∈ T . Now τ0 and τ1 have the same
odd parts, since they extend in the same way T (σ ∗0) and T (σ ∗1), which have
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the same odd parts. Then {e}Od(τ0)(x) ' {e}Od(τ1)(x). But τ0(x) 6= τ1(x), and
for i = 0 or i = 1 we have

τi(x) 6= {e}Od(τi)(x).

Then let Q be the full subtree of T above τi. 2

From the two lemmas we know that we can diagonalize if we use uniform
trees such that T (σ ∗0) and T (σ ∗1) agree on the odds (i.e. on their odd parts)
for infinitely many σ’s, and disagree on the odds for infinitely many σ’s. We will
work, from now on, with trees which alternate agreements and disagreements
on the odds. The lemmas just proved work for them too, since we are just
taking full subtrees in their proofs.

Of course lemma V.5.9 still holds, and we thus have conditions ensuring
that {e}A is recursive (A on a tree T with no e-splitting), or A ≤T {e}A (A
on a e-splitting tree). With a similar proof we get a similar lemma, that takes
care of the remaining case:

Proposition V.6.13 (Titgemeyer [1962], Hugill [1969]) Given e, a re-
cursive uniform tree T , and A on T , if {e}A is total then:

1. if on T there is no e-splitting which agrees on the odd, then

{e}A ≤T Od(A)

2. if whenever T (σ ∗ 0) and T (σ ∗ 1) disagree on the odds they e-split,

Od(A) ≤T {e}A.

Proof. In the first case we compute {e}A. Given x, we know that {e}A(x)↓,
and to get the right value it is enough to search for σ on T such that {e}σ(x)↓
and Od(σ) ⊆ Od(A), and this is recursive in Od(A).

In the second case we compute initial segments of Od(A), by induction.
Suppose T (σ) such that Od(T (σ)) ⊆ Od(A) is given. If T (σ ∗ 0) and T (σ ∗ 1)
agree on the odds, then both work (i.e. their odd parts are contained in the
odd part of A). Otherwise, they disagree on the odds, and then they e-split,
say on x. If {e}T (σ∗i)(x) ' {e}A(x), then T (σ ∗ i) ⊆ Od(A). 2

Now we can prove the analogue of the Minimality Lemma.

Proposition V.6.14 (Hugill [1969]) Given e and a recursive uniform tree
T alternating agreements and disagreements on the odds, there is a recursive
uniform tree Q ⊆ T alternating agreements and disagreements on the odds,
such that one of the following holds:
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1. for every A on Q, {e}A is not total

2. for every A on Q, {e}A is recursive

3. for every A on Q, {e}A ≡T Od(A)

4. for every A on Q, A ≤T {e}A.

Proof. If there are σ on T and x such that (∀τ ⊇ σ)(τ ∈ T ⇒ {e}τ (x)↑), then
let Q be the full subtree above σ. If A is on Q, then {e}A is not total.

Otherwise, see if there is σ with no e-splitting above it. If so, let Q be the
full tree above it. If A is on Q, then {e}A is recursive (by V.5.9).

Otherwise, there are e-splittings above any strings. See however if there is
σ with no e-splitting extensions agreeing on the odds. If so, let Q be a uniform
subtree of T above σ, alternating branches agreeing on the odds and e-splitting
branches. By hypothesis the e-splittings do not agree on the odds, and on Q
there are no e-splittings agreeing on the odds. The conditions of V.6.13 are
satisfied, and if A is on Q then A ≡T {e}A.

Otherwise, we can always find e-splitting agreeing on the odds. We want
Q e-splitting uniform tree, alternating agreements and disagreements on the
odds. The level agreeing on the odds can be made e-splitting by hypothe-
sis. The level disagreeing on the odds can also be done, because we can take
e-splittings, and then extend them to disagree on the odds. Let Q be such an
e-splitting subtree of T , which can be made uniform by the techniques of V.6.5.
If A is on Q then A ≤T {e}A, because Q is e-splitting (V.5.9). 2

Theorem V.6.15 (Titgemeyer [1962]) The three-element chain is embed-
dable as initial segment of D.

Proof. We already have all the ingredients, and the result follows by starting
with

T0 = identity tree,

which is a recursive uniform tree alternating branches agreeing on the odds and
disagreeing on the odds. Then we let:

T3e+1 = the Q of V.6.11, applied to T = T3e

T3e+2 = the Q of V.6.12, applied to T = T3e+1

T3e+3 = the Q of V.6.14, applied to T = T3e+2.

The first two steps make Od(A) not recursive and A not recursive in Od(A),
so that we do have one nontrivial degree below A. The last step makes sure
that this is the only one. 2
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Note that in particular the proof produces a minimal degree with a strong
minimal cover (V.5.16). Actually, with terminology as on p. 495, the set of min-
imal degrees with a strong minimal cover is comeager, for the topology induced
by recursive uniform trees (Simpson [1977]): it is enough to consider, given
such a tree T , a recursive uniform tree T ∗ that alternates branches agreeing on
the odds with branches disagreeing on the odds, and such that the odd parts of
the branches are exactly the branches of T . The proof above shows that the set
of degrees which are top elements of three-element chains is comeager, for the
topology induced by the trees T ∗. The intermediate degrees, which are mini-
mal degrees with a strong minimal cover, are then comeager for the topology
induced by the trees T . It can then be argued, as in Section 3, that minimal
degrees without a strong minimal cover cannot be built by recursive uniform
trees. The existence of such degrees is an open problem, and the construction
of one of them would then require new methods of proof.

Exercises V.6.16 More initial segments. a) The diamond is embeddable as ini-
tial segment of D, i.e. there is a degree with exactly two nontrivial degrees below
it, and they are incomparable. (Sacks [1963]) (Hint: build A such that Ev(A) =
{x : 2x ∈ A} and Od(A) do the job. The only modification in the proof of the
three-element chain is that Od(A) and Ev(A) have to be treated symmetrically and,
whenever we had in V.6.15 branches that simply disagreed on the odds, now we ac-
tually want them to agree on the evens. Note that on trees on which all branches
either agree on the odds or agree on the evens, whenever there are e-splittings then
we may find them agreeing on the odds or on the evens, by going by adjacent paths
as in the first part of V.6.8, where now adjacent means agreeing on the odds or on
the evens.)

b) Every recursive linear ordering is embeddable as initial segment of D. (Hugill
[1969]) (Hint: we may restrict ourselves to infinite orderings � of ω in which 0 is
the least element, and 1 the greatest. Choose a set {Xn}n∈ω of disjoint, uniformly
recursive sets such that

m � n ⇒ Xm ⊆ Xn
m ≺ n ⇒ Xn −Xm infinite,

and X0 = ∅, X1 = ω. We build A such that, if we define

x ∈ Xn(A) ⇔ the x-th element (in order of magnitude) of Xn is in A,

then the degrees of {Xn(A)}n∈ω form an initial segment isomorphic to the partial or-
dering. Note that X0(A) = ∅, X1(A) = A, and Xn(A) ≤T A. E.g., in V.6.15 we took
X2 = odd numbers. The idea is simply to approximate the ordering, by considering
at stage s the subordering induced by it on {0, . . . , s}, and ensure conditions on A
that make the degrees of {Xn(A)}n≤s isomorphic to it. The lemmas above can be
rewritten with reference to any Xn, instead of the odds. To be able to diagonalize
we need to have, whenever m ≺ n, infinitely many branches agreeing on Xm and
disagreeing on Xn. For this we enumerate these pairs 〈m,n〉 with infinitely many
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repetitions, and ask that the i-th level of the tree agrees on Xm and disagrees on
Xn, if 〈m,n〉 is the i-th pair in the enumeration. The reason why dealing with only
finitely many conditions at each stage is sufficient, is that every function recursive in
A has infinitely many indices and, for all but finitely many such, our trees will have
the desired properties.)

c) There is a degree with no minimal predecessor . (Martin [1967], Hugill [1969])
(Hint: embed an ordering with order type 1 + ω∗, i.e. the reverse ordering of the
natural numbers with a least element added to it. For a different proof see V.3.17.)

d) There is an ascending sequence of degrees with an upper bound below which
there is no minimal upper bound . (Yates [1970]) (Hint: embed an ordering with order
type ω + ω∗.)

e) There is a completely autoreducible, not minimal degree. (Jockusch and Pater-

son [1976]) (Hint: use double e-splittings in the proof of V.6.15, as in V.5.15.d. This

makes the top degree completely autoreducible.)

The initial segments of the degrees ?

The ideas involved in the proofs of the embeddings of the three-element chain
and the diamond can be pushed further, to prove that every finite distributive
lattice is embeddable as initial segment of D. This relies on the fact that if a
finite lattice is distributive, then it is isomorphic to a sublattice of the power set
of some finite set. It is then enough, given a finite distributive lattice, to find a
partition of ω into infinite, coinfinite recursive sets whose lattice structure under
inclusion mirrors the given lattice (like ∅, Ev,Od and ω did for the diamond),
and build the top degree of the initial segment. What is needed is some kind
of representation theorem for the lattices, but no new recursion-theoretical
ideas are involved. This theorem is due to Lachlan [1968a], but the approach
just sketched comes from Yates [1972], who did it for Boolean algebras (which
require only the full power set of some set), and Epstein [1979], who got the
representation.

The same approach can be adopted for countable bottomed distributive
lattices, with a new ingredient: if the lattice is not recursive, its representation
via recursive subsets cannot be chosen ahead of time, and has to be built along
the way. This gives the result of Lachlan [1968a], and it is as far as the method
can go: only distributive lattices can be treated this way.

Nondistributive lattices are much more difficult to deal with, and have been
treated by Shoenfield, Lerman [1969], [1971], and Lachlan and Lebeuf [1976].
The final result for countable initial segments is the following: a countable
partial ordering is isomorphic to an initial segment of D if and only if it is
an uppersemilattice with a least element . This completely characterizes the
possible isomorphism types of D(≤a), since any degree has at most countably
many predecessors. Namely, the principal ideals of D realize every possible
countable uppersemilattice with least and greatest element. We will prove
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that D is not distributive without using initial segments, as a corollary of
an embedding result in the r.e. degrees, see Chapter X. Treatments of the
embeddings quoted so far can be found in Epstein [1979] and Lerman [1983].

Uncountable initial segments have been considered by Thomason [1970] and
Rubin. Here it is not possible to assume the existence of a greatest element, and
hence to construct only the top degree. Thus the given uppersemilattice has to
be approximated, and a further obstacle is introduced by the fact that not every
initial segment is extendible (e.g. not every degree has a strong minimal cover),
and thus the approximations cannot simply be end-extensions. The method
of forcing is used to control the amalgamation of the various approximations,
and Abraham and Shore [1986] have proved that a partial ordering with power
at most ℵ1 is isomorphic to an initial segment of D if and only if it is an
uppersemilattice with a least element, and countable predecessor property . This
completely characterizes the possible isomorphism types of linearly ordered
initial segments, because a linear ordering with countable predecessor property
must have power at most ℵ1.

This result settles the initial segments problem if the Continuum Hypothe-
sis holds, and it is the best possible result in ZFC, since Groszek and Slaman
[1983] have shown that it is consistent with ZFC to have an uncountable up-
persemilattice (even of power ℵ2 less than the continuum) with countable (even
finite) predecessor property, which is not embeddable in D as an uppersemilat-
tice (and hence as an initial segment).

The characterization of initial segments is just one step toward a complete
characterization of the algebraic structure of D. The next step would be to
know which initial segments are extendable, but not even the very first step
has been answered: it is still not known if every minimal degree has a strong
minimal cover.

V.7 Global Properties

Until now we have studied first-order or local properties of degrees, mainly
telling that given configurations exist in the degrees, possibly extending given
ones. We now take a different stand, and look at second-order or global prop-
erties of degrees: on the one hand we analyze the difficulty of the first-order
theory of D (proving its undecidability and much more), and on the other hand
we study its global algebraic properties. We will capitalize here on the work
done so far, and a cascade of interesting results will be obtained.
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Definability from parameters

What Spector’s Theorem accomplishes is to define any countable ideal, by using
two parameters. Indeed, if a and b are an exact pair for a countable ideal I,
then

c ∈ I ⇔ c ≤ a ∧ c ≤ b.

As we can see, the formula that defines the ideal is always the same, and only
the parameters change, for different ideals. This uniformity is quite important,
because then we can avoid talking about ideals, replacing them by their exact
pairs (since the dependence of the ideal on the exact pair is fixed). This shows
that the first-order theory of D includes an interpretation of quantification over
countable ideals.

We are now going to extend this result by showing that, in a little more
complicated way, any countable relation is uniformly definable from a fixed
number of parameters, which depends only on the number of arguments of the
relation. We first prove a weaker result, which provides all the technical work.

Proposition V.7.1 (Slaman and Woodin [1986]) Every countable anti-
chain is definable from finitely many parameters in D, in a uniform way.

Proof. Since an antichain C = {cn}n∈ω is made of pairwise incomparable
degrees, the idea to define it is to find a property P for which the given cn’s
are the minimal solutions. We will use an approach symmetric to the one
adopted for Spector’s Theorem, namely we define two degrees a and b and we
look at the degrees x satisfying the property P so defined:

P (x) ⇔ x 6= (x ∪ a) ∩ (x ∪ b).

If we can make sure that the elements of C are the minimal solutions of P , then

x ∈ C ⇔ P (x) ∧ ¬(∃z)(z < x ∧ P (z)).

The trouble with this approach is that we are asking too much, because being
a minimal solution of P is a condition involving all degrees, and only countable
information can be coded into a pair of sets. We thus relax the requirement a
bit, and consider not all degrees, but only the countably many ones below any
given degree c bounding C. Then we only need to have:

x ∈ C ⇔ x ≤ c ∧ P (x) ∧ ¬(∃z ≤ c)(z < x ∧ P (z)).

We will thus define C using three parameters a, b, and c, of which c is simply
any degree bounding every cn.

Given {Cn}n∈ω with Cn ∈ cn, we can simply let C = ⊕n∈ωCn. The
conditions on A and B are the following:
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1. cn is a solution of P
Since x ≤ (x∪a)∩(x∪b) always holds, we ensure (x∪a)∩(x∪b) 6≤ x,
for x in C. This will be achieved by having, for every n, a set Dn such
that

Dn ≤T Cn ⊕A,Cn ⊕B but Dn 6≤T Cn.

2. cn is a minimal solution of P
For this we need, for any x ≤ c,

x 6= (x ∪ a) ∩ (x ∪ b) ⇒ cn ≤ x, for some n.

Hence, for any X ≤T C,

(∃D)(D ≤T X ⊕A,X ⊕B ∧ D 6≤T X) ⇒ Cn ≤T X, for some n.

As in Spector’s Theorem, A and B will be built by coinfinite extensions θs
and ϑs. We will have A =

⋃
s∈ω θs and B =

⋃
s∈ω ϑs. As usual, A and B will

be thought of as made of columns An and Bn, and corresponding columns in
them will differ only finitely (so that their degrees will be the same). This time
however it is Dn, rather than Cn, that gets coded in the n-th columns An and
Bn.

Since Dn has to be recoverable from each of Cn ⊕ A and Cn ⊕ B, we will
use only the elements of Cn to code information in A and B. Precisely,

Dn(x) =
{

0 if x 6∈ Cn
An(x) otherwise.

Then Dn ≤T Cn⊕A by definition, and Dn ≤T Cn⊕B because An and Bn will
differ only finitely, by construction. It remains to ensure, by diagonalization,
that Dn 6≤T Cn, and hence Dn 6≤T {e}Cn , for every e.

Since we use coinfinite conditions, we will be able to take care of all these
requirements, for a fixed n, in just one step. Indeed, we can define

D∗
n(x) =

{
1− {e}Cn(x) if x is the e-th element of Cn, and {e}Cn(x)↓
0 otherwise.

D∗
n obviously is not recursive in Cn, and neither is any set differing only finitely

from it (because each recursive function has infinitely many indices, and thus
D∗
n differs infinitely often from every set recursive in Cn). It will then be enough

to have An, and hence Dn, differ only finitely from D∗
n.

We now consider the minimality requirements. We will work with a fixed
list {Xm}m∈ω of the sets recursive in C. Recall that we want, for each m,

D ≤T Xm ⊕A,Xm ⊕B ∧ D 6≤T Xm ⇒ Cn ≤T Xm, for some n.
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The requirements are:

Re,m : {e}Xm⊕A ' {e}Xm⊕B ' D ∧D 6≤T Xm ⇒ Cn ≤T Xm, for some n.

(note that we use V.2.18.a to simplify the presentation of the requirements).
They will be satisfied as in the proof of Spector’s Theorem.

We start with θ0 = ϑ0 = ∅. At each step s + 1 we are given θs and ϑs,
defined on the first s columns and on finitely many other points, and differing
on each of the first s columns only finitely. We take care of the requirement
Re,m if s = 〈e,m〉, and in any case we will ensure the needed diagonalizations
on Ds. There are three possible cases:

• we can make {e}Xm⊕A not total
In other words, there is a string σ compatible with θs, such that

(∃y)(∀τ ⊇ σ)(τ compatible with θs ⇒ {e}τ (y)↑).

Then take one such string, and let:

θs+1(x) =

 θs(x) if θs(x)↓
σ(x) if σ(x)↓
D∗
s(z) if x = 〈s, z〉, otherwise.

ϑs+1 is obtained similarly, by using ϑs in place of θs.

• otherwise, but we can force a special kind of disagreement
In general we would only look for two strings σ and τ , respectively com-
patible with θs and ϑs, which e-split on some x. For reasons that will
appear clear later, here we also request that they agree on elements of
Cn, on the n-th column, for any n < s. If two such strings exist, take
any of them and define θs+1 and ϑs+1 as above, using σ and θs for the
former, and τ and ϑs for the latter.

• otherwise
Then simply let

θs+1(x) =
{
θs(x) if θs(x)↓
D∗
s(z) if x = 〈s, z〉, otherwise.

ϑs+1 is obtained by using ϑs in place of θs.

It is clear that in the first two cases the requirement Re,m is vacuously
satisfied. We now have to argue that it is so also in the last case. Suppose that
in the end we have

{e}Xm⊕A ' {e}Xm⊕B ' D and D 6≤T Xm.
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We have to prove that
Cn ≤T Xm, for some n.

Suppose there is no e-splitting compatible with θs: then, as usual, we would
have {e}Xm⊕A ' D ≤T Xm, but this is impossible by hypothesis. Thus there
are e-splittings compatible with θs, and actually infinitely many such (because
the same reasoning works above any given string). But we also supposed

{e}Xm⊕A ' {e}Xm⊕B ,

which means that the construction did not succeed in forcing a disagreement.
Certainly the first case of the construction cannot have happened, because
{e}Xm⊕A ' D is a total function. Then it must have been the second step
that failed. Since θs and ϑs disagree only finitely, there are infinitely many
e-splitting pairs, with one side compatible with θs, and the other compatible
with ϑs. Since we did not pick up any of them, it must be because none satisfies
the additional condition of case two, and thus the two sides do not always agree
on the elements of Cn, on the n-th columns, for some n < s.

We now show that Cn ≤T Xm, for some n < s, in three steps:

1. for a fixed n < s, there must be infinitely many pairs of e-splitting strings,
compatible with θs and differing on some element of Cn
This is simply because the same holds for some n < s, and there are only
finitely many such n’s. Thus infinitely many disagreements must hold for
the same n. We now fix this n.

2. there is an infinite subset of Cn which is recursive in Xm

We show how to generate an infinite ascending sequence of elements of Cn.
Suppose we have an initial segment µ of the characteristic function of such
a subset. Simply look for an e-splitting σ, σ′ extending µ, and compatible
with θs. As argued above, σ and σ′ must disagree on some element of
Cn (unless their pair is one of finitely many exceptions, a case that is
effectively testable because the exceptions can be given in advance). But
they can also disagree on some other element, not necessarily in Cn. To
be able to sort out the right element, we only have to interpolate the two
strings, by a sequence of strings σ0, . . . , σi all extending µ, making {e}σj

converge on the element on which σ and σ′ e-split (which is possible,
because we are not in the first case of the construction) and differing,
each from the following one, on just one element. Moreover, σ0 = σ and
σi = σ′. Since σ0 and σi e-split, there must be j < i such that σj and
σj+1 e-split. These strings can effectively be found, and now they differ
only on one element, which must then be in Cn.

3. Cn ≤T Xm

We now have an infinite subset of Cn recursive in Xm. To be able to
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have all of Cn recursive in Xm, we play a trick: we choose, from the very
beginning, sets Cn’s which are introreducible (see II.6.7), i.e. recursive
in each of their infinite subsets. This is possible, because every degree
contains such a set (II.6.13). If Cn is autoreducible, then the previous
part already shows that Cn ≤T Xm. 2

Note that the parameters needed to define {Cn}n∈ω can be obtained arith-
metically in ⊕n∈ωCn.

Theorem V.7.2 Definability from parameters (Slaman and Woodin
[1986]) Every countable relation is definable from finitely many parameters in
D, in a uniform way.

Proof. We start by dealing with sets. Given C = {cn}n∈ω, we would like to
spread it out to get a set of incomparable degrees, since we know how to define
the latter. Choose c above every element of C (which is possible because C is
countable). Define a set A = {an}n∈ω of pairwisely incomparable degrees not
introducing any new relation on degrees below c, i.e. such that, for x ≤ c,

x ∪ am ≤ y ∪ an ⇔ x ≤ y ∧m = n.

A can be constructed by the methods of Section 4 (see V.2.9). We now spread
out C by using any infinite subset A∗ = {af(n)}n∈ω of A, for any one-one
total function f (for this part of the proof the set A itself would be perfectly
sufficient, but the added generality will be useful later on). Clearly A∗ is an
antichain (since so is A), and so is the set

C∗ = {cn ∪ af(n)},

by the choice of A (because cn ∪ af(n) ≤ cm ∪ af(m) only if f(m) = f(n),
and hence if m = n, f being one-one). Then both A∗ and C∗ are definable with
parameters, by the previous proposition. It follows that:

• C is definable
Indeed

x ∈ C ⇔ x ≤ c ∧ (∃a ∈ A∗)(x ∪ a ∈ C∗).
Only the right-to-left implication has to be checked. Suppose that x ≤ c,
and x ∪ af(n) is in C∗: then

x ∪ af(n) = cm ∪ af(m),

for some m. By the properties of A it must be

x ∪ af(n) = cn ∪ af(n).

Then from x ∪ af(n) ≤ cn ∪ af(n) we have x ≤ cn, and similarly
cn ≤ x, from which x = cn. Thus c ∈ C.
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• the map f∗ from C to C∗ induced by f is definable
As for C,

f∗(x) = y ⇔ x ∈ C ∧ x ∪ y ∈ C∗.

We now turn to the definability of countable relations. Given an n-ary
relation R on degrees, we can first of all define the n projections of R, since
the degrees in them are the relevant ones:

x ∈ Ri ⇔ (∃y1)· · ·(∃yn−1)R(y1,. . . ,yi−1,x,yi,. . . ,yn−1).

We can now take as c a degree bounding all the elements of
⋃

1≤i≤nRi, as
above. The new problem that we have to face here is a coding problem: we
would like to reduce R to a set of (incomparable) degrees, but we actually
have n-tuples of degrees, one in each of the projections. What we do is to
define A as above, with the additional requirement that the finite joins of its
elements are uniquely determined by the elements themselves, so that the join
of n elements uniquely codes them. Since we are going to use finite joins of
elements of A, we want all of them to be incomparable. And since we are going
to code the individual projections of R as well, the finite joins will have to not
introduce new relationships among the degrees below c. All these conditions
follow automatically, when A is a set of degrees recursively independent over
the degrees below c: such a set can be constructed by the methods of Section
4 (see V.2.9). Having A, we can first of all pick up n disjoint subsets of it (by
using one-one functions fi) to code the projections Ri. As noted above, not
only the sets Ri, but also the functions f∗i , choosing the elements needed to
spread out Ri, are definable. Now we can simply let

B = {f∗1 (x1) ∪ · · ·∪f∗n(xn) : R(x1,. . . ,xn)}.

B is definable, because the degrees f∗1 (x1)∪ · · ·∪f∗n(xn) are finite joins of mem-
bers of A, and hence pairwise incomparable. And R is recoverable from B,
because the joins of elements of A are uniquely determined by their elements,
and hence

R(x1,. . . ,xn) ⇔ f∗1 (x1) ∪· · ·∪f∗n(xn) ∈ B.

Moreover, R is definable because the maps f∗i are definable, and so is B. 2

Note that in a sense the theorem is the best possible, since the parameters
cannot be eliminated in general : the relations definable in D are only countably
many, but there are uncountably many countable relations. There are however
many relations that can be definable without parameters, as we will see.
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The complexity of the theory of degrees

The definability result of the last subsection allows for a quick proof of the
following theorem, which completely characterizes the complexity of the theory
of degrees.

Theorem V.7.3 Simpson’s Theorem (Simpson [1977]) The first-order
theory of D has the same degree (and actually the same isomorphism type) as
the theory of Second-Order Arithmetic.

Proof. We prove that the two theories have the same m-degree by interpreting
each in the other, thus providing faithful translations that will preserve theo-
rems. Since the translations will actually be one-one, the theories will have the
same 1-degree, and hence will be recursively isomorphic by III.7.13.

One direction is clear, since every formula about the ordering of degrees can
be interpreted, in the natural way, as a formula about sets of integers. Thus
the theory of degrees is interpretable in Second-Order Arithmetic.

For the converse, we want to show that Second-Order Arithmetic is inter-
pretable in D. A model of arithmetic is a structure 〈A,R, f1, f2, f3, a〉 such
that:

1. A is a countable set

2. R is a total ordering on A with first element a, successor given by f1, and
such that every element different from a has a predecessor

3. f2 and f3 satisfy the axioms of Robinson Arithmetic Q (p. 23), when
interpreted as sum and product, with f1 interpreted as successor.

A standard model of arithmetic is a model in which R is a well-ordering.
A standard model exists in the degrees, since any countable partial ordering

is embeddable in boldmath D (by V.2.9). Moreover, given degrees ~a coding a
countable set of degrees (intended to be the universe A of a standard model of
Arithmetic in D), we can say in a first-order statement of D that given degrees
~c code a relation and (the graphs of) three functions on the set coded by ~a,
satisfying the requirements for being a standard model of Arithmetic. This is
because Q has only finitely many axioms, and well-ordering can be expressed
by replacing quantification over subsets of A by quantification over parameters
that define them (since a subset is defined by a fixed number of parameters, in
a uniform way).

Then a sentence ϕ of Second-Order Arithmetic is true if and only if the
sentence ϕ∗ of D is, where ϕ∗ says that there are degrees ~a and ~c coding a
standard model of arithmetic in which the translation of ϕ (obtained, as above,
by replacing quantification over subsets of A by quantification over parameters
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that define them) holds. Since ϕ∗ can be effectively obtained from ϕ, we thus
have an m-reduction of Second-Order Arithmetic to the theory of D. 2

Corollary V.7.4 (Lachlan [1968]) The first-order theory of D is undecid-
able and not axiomatizable.

Proof. So is the theory of (first-order) arithmetic. 2

Corollary V.7.5 (Jockusch and Simpson [1976], Simpson [1977]) The
first-order theory of D is not absolute with respect to models of ZFC containing
all the ordinals.

Proof. There is a sentence about the ordering of degrees which is true in D
if and only if P(ω) ⊆ L, since the latter can be translated into a sentence of
Second-Order Arithmetic by IV.4.22. 2

Lachlan obtained the undecidability of the theory of degrees as a corollary of
the embeddability of every countable distributive lattice as an initial segment
of D (see p. 529), by using the undecidability of the theory of distributive
lattices (and the Löwenheim-Skolem Theorem, to be able to restrict attention
to countable distributive lattices). Subsequently, Thomason [1970] observed
that the result follows from the embeddability of the finite distributive lattices
only, this time using the fact that the set of sentences true in all distributive
lattices and the set of sentences false in some finite distributive lattice are
recursively inseparable.

In the first proofs of Simpson’s Theorem, when only Spector’s Theorem was
available, only ideals (and hence initial segments) could be used to code sets
and relations in D in a definable way, and more ingenuity was required. The
original coding of Arithmetic by Simpson [1977] was very direct, and interpreted
the natural number n as the degree 0(n), m+n as 0(m+n), and m·n as 0(m·n).
To define the set {0(n)}n∈ω Simpson hooked it up to an initial segment with
controlled (double) jump, and the same method was used for sum and product.
This required only simple initial segments (namely chains), but the proof that
the coding worked was not straightforward (in particular, the jump operator
had to be eliminated). An exposition of this method is in Epstein [1979].

A much simpler coding, requiring more initial segments (the countable dis-
tributive lattices) but less direct work, was devised by Nerode and Shore [1980].
They noticed that second-order logic on countable sets could be translated into
the theory of countable distributive lattices with quantification over ideals,
by first coding relations by graphs, and then graphs by ideals of distributive
lattices. The advantages of this method were simplicity, which allowed for im-
proved calculations and sharper consequences, and generality, which permitted
the extension of Simpson’s Theorem to a variety of different degree structures.
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An exposition of this method for the study of Turing degrees is in Lerman
[1983], while the general result is proved in VI.4.7.

The coding method we used is due to Slaman and Woodin [1986]. It is eas-
ier than all of the above, since it codes sets and relations directly, and thus it
makes the translation of Arithmetic straightforward. It also has the advantage
that the only needed result (V.7.2) can be proved directly, and with very little
machinery (only the coinfinite extension method), in particular avoiding initial
segment constructions.

Some additional work provides a substantial generalization of Simpson’s
Theorem.

Theorem V.7.6 (Nerode and Shore [1980], [1980a]) If C is an ideal of D
closed under jump, the first-order theory of C has the same degree (and actually
the same isomorphism type) as the theory of Second-Order Arithmetic with set
quantifiers restricted to sets with degree in C.

Proof. We refine the proof of V.7.3. As there, the translation of the theory
of C into Second-Order Arithmetic with set quantifiers restricted to sets with
degrees in C is immediate.

For the converse, we first need to show that we can pick up a standard
model of arithmetic in C. Certainly the needed configurations exist in the
degrees below 0′ (by V.2.9), and hence in C. Moreover, also parameters ~a and
~c defining a standard model of arithmetic exist in C, because the proof of V.7.2
provides parameters coding a given set arithmetically in its infinite join, and
the methods of V.4.7 allow to choose the needed configurations not only below
0′, but actually with infinite join below it.

A simple translation of the relevant notions shows that there is a first-order
sentence of the theory of C that says that degrees ~a and ~c code a model of
arithmetic in C. But the method used in V.7.3 to show that the same holds
for standard models as well does not work here, since by quantifying over
parameters in C we do not take care of all possible subsets, and hence we do
not define a real well-ordering.

To be able to handle standard models we proceed as follows. Consider the
standard part (corresponding to the set of integers) of a model. If the model
is standard then this part exhausts its universe, and thus every proper initial
segment of the universe is finite and has a least upper bound. Conversely, if
the model is not standard then the standard part is a proper initial segment
with no least upper bound. Thus the model is standard if and only if every
proper initial segment of the universe has least upper bound. This is still a
second-order sentence, but it really needs only the standard part of the model
and the finite subsets of the universe. If we show that these subsets are all
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coded by parameters in C when the universe is, then we can quantify only over
parameters in C and still take care of all the needed subsets.

Finite subsets are easily handled, since C is an ideal closed under jump, and
the parameters coding a finite subset are arithmetical in its join. The standard
part can be enumerated arithmetically in ~a and ~c, because an index relative
to them of the first element (corresponding to 0) can be given for free, while
the procedure to pick up the index of the successor of a given element only
involves a few quantifiers (needed to express the order relation ≤T , and the
successor relation). The parameters coding the standard part are arithmetical
in the enumerating function (which gives the infinite join) and, by transitivity,
arithmetical in ~a and ~c.

This already provides a translation of first-order arithmetic into the theory
of C. To be able to handle set quantifiers as well, we need to know which sets
can be coded by parameters in C, with respect to standard models of arithmetic
in C. We claim they are exactly the sets whose degrees are in C, and this will
finish the proof.

First of all we can identify sets of natural numbers and sets of degrees con-
tained in the standard part of the model, by identifying the number n with the
n-th element of the standard part. This preserves membership of the degree of
the set in C, since the standard part of the model can be recovered arithmeti-
cally from the parameters coding it. Given a set B, parameters ~b coding it can
be obtained arithmetically in it, by the proof of V.7.2. And given parameters
~b, the set B coded by them can be recovered arithmetically from them, from
the definition provided by the proof of V.7.2. Since C is closed under jump, B
has degree in C if and only if there are parameters ~b coding it in C, which is
what we wanted to prove. 2

Note that two ideals can be different but isomorphic, as the case of two
different minimal degrees illustrates. This cannot happen for ideals closed
under jump.

Corollary V.7.7 Two isomorphic ideals closed under jump are identical.

Proof. The proof above shows that an ideal closed under jump consists exactly
of the degrees of sets which are coded by parameters in the ideal. Then two
isomorphic ideals closed under jump code exactly the same sets, and must then
be identical. 2

The corollary shows that two different ideals closed under jump are not
isomorphic. The theorem implies that whenever the quantifications over sets
with degrees in the two ideals have different power, then the two ideals are
also not elementarily equivalent. We provide immediately a first example, and
many others will be given in following chapters.
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Corollary V.7.8 (Jockusch [1973], Nerode and Shore [1980a]) D is not
elementarily equivalent to the degrees of ∆1

n sets, for any n ≥ 0.

Proof. Clearly the degrees of ∆1
n sets are an ideal closed under jump, since

the ∆1
n sets are closed under number quantification. We can thus apply the

theorem. The sets definable in Second-Order Arithmetic with set quantifica-
tion restricted to ∆1

n sets are all arithmetical in any enumeration of the ∆1
n

sets, because set quantifiers can be replaced by number quantifiers over the
indices of the enumeration. Since there is such an enumeration which is ∆1

n+1

such sets are all ∆1
n+1, by IV.2.25. The complete Σ1

n+1 is thus an example of a
set that can be defined in Second-Order Arithmetic, but not by set quantifiers
restricted to ∆1

n sets. 2

This is as far as we can go, since it will be proved in Volume III that the
assertion that D is elementarily equivalent to the degrees of analytical sets is
independent of ZFC.

Absolute definability

We know that every countable set or relation is definable in D from parameters.
We are not completely satisfied with this, because each set or relation needs
different parameters. We may think of uniformly defining sets and relations
which are definable in Arithmetic simply by using their own definitions in
Arithmetic, and interpreting them over a fixed standard model of arithmetic in
D (as in the previous subsection). This uses only the fixed parameters needed
to define the model and it is more satisfactory, in particular the parameters can
be fixed in advance. In this section we show how to get rid of these parameters
too, for a wide class of sets and relations.

The main results of this subsection, and many others proved below and
depending on it, will be stated in a strong form, without any assumption. We
will however use a result from Volume II, whose proof relies on methods and
ideas that do not belong to this chapter (the construction of a minimal degree
below 0′ among them):

Theorem V.7.9 Definability of the arithmetical degrees (Jockusch
and Shore [1984]) The set of arithmetical degrees is definable in D.

The result just quoted is however needed only to get the sharpest formu-
lations of the main theorems of this section: the work done here is fruitful
even without ever getting to the proof of V.7.9, because what we prove can be
reinterpreted in the following ways.
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1. The set of the arithmetical degrees can be used as a parameter. The
results so obtained are then not absolute, but the parameter used is fixed
and natural.

2. The set of the arithmetical degrees can be defined in D′ in a trivial way
(see V.8.1). The results obtained can then be interpreted as results about
D′, and as such they are absolute, although weaker than when stated for
D alone.

The next result is the key to obtain definability and other results.

Proposition V.7.10 (Shore [1982]) For every standard model of arithmetic
in the arithmetical degrees, the map taking a degree x above all the arithmetical
degrees into a set (of natural numbers in the standard model) of degree x is
definable in D, with parameters the degrees coding the standard model.

Proof. Fix arithmetical degrees coding a standard model of arithmetic. We
want to define in D the relation

X is a set (of natural numbers in the standard model) of degree x.

Consider the set of degrees

X = {z : the sets coded by parameters below z are all recursive in X}.

Being definable in Second-Order Arithmetic with the degrees coding the stan-
dard model as parameters, X is definable in D with the same parameters. If
we showed that deg(X) is its least upper bound, then

x = deg(X) ⇔ x is the l.u.b. of X

would be the definition we are looking for.
To be the least upper bound of X , deg(X) must be an upper bound. But if

we take a degree z and parameters below it coding a set, then we can recover
the set recursively not in z, but only in z ∪ a for some arithmetical degree a,
the reason being that we also need to recover the standard part of the model,
and this involves a few quantifiers over the (arithmetical) parameters coding
it, and hence an arithmetical degree. To be sure that z always stays below
deg(X), we then modify the definition of X into:

X = {z : (∀a arithmetical)(the sets coded by
parameters below z ∪ a are recursive in X)}.

Given z, there is a set of degree z coded by parameters below z ∪ a, for some
arithmetical degree a. If z ∈ X then z is recursive in deg(X), and thus deg(X)
is now an upper bound of X .
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To show that it is the least upper bound, it is enough to show that there
are two degrees in X which join to deg(X). Note that there is a fixed n such
that if

(∀a arithmetical)[(z ∪ a)(n)≤ deg(X)]

then z is in X . Indeed, below z ∪ a one can code only sets of degree at most
(z ∪ a)(n), for a fixed n depending only on the coding procedure. Then it is
enough to find two degrees z1 and z2 such that

z
(n)
1 ∪ z

(n)
2 = z1∪ z2 = deg(X).

That such degrees exist follows, by induction on n, from a relativization of
V.2.26, together with the fact that deg(X) is above all the arithmetical degrees,
and in particular above 0(n). 2

Theorem V.7.11 Absolute definability (Harrington and Shore [1981],
Shore [1981], Jockusch and Shore [1984]) A relation on degrees above all
the arithmetical ones is definable in D if and only if it is definable in Second-
Order Arithmetic.

Proof. As usual, a relation can be definable in D only if it is definable in
Second-Order Arithmetic. Let then R be such a relation on degrees x above
all the arithmetical ones. First consider the relation R∗ on sets that says that
R holds for the degrees of its arguments:

R∗(X1, . . . , Xn) ⇔ R(deg(X1), . . . , deg(Xn)).

R∗ is still analytical and hence, given a standard model of arithmetic in D, it
is faithfully translatable into a first-order formula ϕ∗ of D with parameters the
degrees coding the standard model.

Then R(x1, . . . ,xn) holds if and only if for some standard model of arith-
metic coded by arithmetical degrees, ϕ∗ holds for some sets X1, . . . , Xn such
that deg(Xi) = xi. Then R is definable in D because so are the set of the
arithmetical degrees, the property of coding a standard model of arithmetic,
and the map taking a degree x above all the arithmetical ones into a set X
(of natural numbers in the standard model) of degree x. The quantification
over the degrees coding the standard model eliminates the explicit reference to
them. 2

We can actually avoid the restriction on degrees above all the arithmetical
ones, with no additional work.

Corollary V.7.12 Let R be a relation on degrees which is invariant under
join with arithmetical degrees, i.e. such that for every degree xi and every
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arithmetical degree ai

R(x1, . . . ,xn) ⇔ R(x1∪ a1, . . . ,xn∪ an).

Then R is definable in D if and only if it is definable in Second-Order Arith-
metic.

Proof. It is enough to modify the definition of R given above by stating that
Xi is a set of degree xi ∪ ai, for some arithmetical degree ai. 2

We now have a number of interesting examples of definable sets and re-
lations. E.g., the sets of degrees of ∆1

n, analytical, and constructible sets are
all definable in D. By relativization, also the notions of ∆1

n-degrees and con-
structibility degrees are definable in D.

Similarly, individual degrees above all the arithmetical ones and definable
in Second-Order Arithmetic are definable in D. An example is 0(ω). By
relativization, the ω-jump operation is definable in D. Lerman and Shore [198?]
have proved that no degree a > 0 is definable in D by a ∃∀–formula.

Of course the definitions provided by the proof above are not very natural
from a recursion-theoretical point of view, because they simply translate defi-
nitions from Second-Order Arithmetic. In the next section we will start a path
that will be pursued all along the rest of the book, by finding natural recursion
theoretical definitions of particular classes of (and relations on) degrees.

Homogeneity

The fact that every particular result about D seems to relativize above any
given degree, led to the following conjectures:

1. strong homogeneity (Rogers [1967])
For every degree a, the structures D and D(≥a) are isomorphic.

2. homogeneity (Yates [1970])
For every degree a, the structures D and D(≥a) are elementarily equiv-
alent, i.e. they satisfy the same first-order formulas.

The same relativization phenomenon which led to the homogeneity conjec-
tures is the key to their disproval.

Theorem V.7.13 Failure of homogeneity (Shore [1982], Harrington
and Shore [1981], Jockusch and Shore [1984]) If D(≥a) is elementarily
equivalent to D, then a is arithmetical.
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Proof. Consider the formula ϕ(x) defining the arithmetical degrees: when
interpreted in D it defines the set A of the arithmetical degrees, while when
interpreted in D(≥ a) it defines (by relativization of the proof of V.7.9) the
set Aa of the degrees arithmetical in a and above it.

If D and D(≥ a) are elementarily equivalent, then so are A and Aa and
hence, by V.7.6, the theories of Second-Order Arithmetic with set quantifiers
restricted, respectively, to sets arithmetical and arithmetical in a. Then a is
arithmetical, otherwise the sentence saying that there is a nonarithmetical set
would distinguish them (being false in the former and true in the latter). 2

Corollary V.7.14 D and D(≥0(ω)) are not elementarily equivalent.

Since homogeneity fails, relativized versions of results that hold in D are not
automatically true, and require proofs. Also, there are results that simply fail
to relativize. However this very result (saying that not everything relativizes)
does relativize to degrees b which are definable in Second-Order Arithmetic
(because then we can define in Second-Order Arithmetic the formula saying
that all degrees satisfying ϕ are arithmetical in b). The exercises show that it
is consistent, but unlikely, that the relativization holds in general.

Exercises V.7.15 A cone of elementarily equivalent cones is a cone such that,
for any a and b in it, the cones D(≥a) and D(≥b) are elementarily equivalent. The
existence of such a cone would provide a homogeneous substructure of the degrees.

a) If Projective Determinacy holds then there is a cone of elementarily equivalent
cones. (Martin [1968]) (Hint: as in V.7.18, using V.1.16 and cones instead of comeager
sets. Note that the set of degrees a such that D(≥a) satisfies ϕ is an analytical set,
and thus only Projective Determinacy is needed, in place of full Determinacy.)

b) If V = L then there is no cone of elementarily equivalent cones. (Shore [1982])
(Hint: if V = L then the degrees above a and b are elementarily equivalent only if
a and b are arithmetically equivalent. Indeed, with notations as in V.7.13, an exact
pair for the set of degrees satisfying ϕ defines Ac in D(≥ c). The least such exact
pair w.r.t. ≤L, which is definable in Second-Order Arithmetic, defines uniformly the
same set in elementarily equivalent structures.)

c) In a cone of elementarily equivalent cones, no degree can be definable in Second-

Order Arithmetic. (Hint: since V.7.13 relativizes to degrees definable in Second-Order

Arithmetic, in any cone with such a base there is a cone not elementarily equivalent

to it.)

To get a result that fully relativizes we need to look at isomorphism, rather
than elementary equivalence.

Theorem V.7.16 Failure of strong homogeneity (Shore [1979], [1981],
Harrington and Shore [1981], Jockusch and Shore [1984]) If D(≥ a)
is isomorphic to D(≥b), then a and b are arithmetically equivalent.
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Proof. Consider an isomorphism carrying D(≥a) into D(≥b). The image of
a copy of the standard model of Arithmetic defined in the degrees arithmetical
in and above a is carried into a structure isomorphic to it, in the degree arith-
metic in and above b. Indeed, an isomorphism preserves definable properties,
and thus degrees satisfying the formula defining the arithmetical degrees in
D(≥a) are sent into degrees satisfying the same formula in D(≥b). Now the
sets arithmetical in a are coded by degrees arithmetical in a, and their images
in D(≥ b) must code the same set (by the isomorphism), which is now arith-
metical in b. Thus a must be arithmetical in b. The converse holds similarly,
and thus a and b have the same arithmetical degree. 2

A cone of isomorphic cones is a cone such that, for any a and b in it,
the cones D(≥ a) and D(≥ b) are isomorphic. The existence of such a cone
would provide a strongly homogeneous substructure of the degrees.

Corollary V.7.17 There is no cone of isomorphic cones.

Proof. By the previous result, two cones can be isomorphic only if their bases
are arithmetical one in the other. Then there are at most countably many
cones isomorphic to a given one, and there cannot be any cone of isomorphic
cones (because a cone has uncountably many elements). 2

We turn now to positive cases of homogeneity. We do not know whether
there is a cone with nontrivial base which is elementarily equivalent to D, or
whether there are two isomorphic cones, but certainly there are lots of elemen-
tarily equivalent cones.

Proposition V.7.18 (Jockusch [1981]) There is a comeager set of degrees
which are bases of elementarily equivalent cones, i.e. a comeager set such that
if a and b are in it, the cones D(≥a) and D(≥b) are elementarily equivalent.

Proof. Consider the first-order sentences of the language of partial orderings.
For each such sentence ϕ, consider the set of degrees a such that D(≥ a)
satisfies ϕ. It is easy to prove (see V.3.15) that this set is either meager or
comeager. Let Aϕ be this set if it is comeager, and its complement otherwise.
Then Aϕ is always comeager, and ϕ holds either in every D(≥ a) or in none
of them, for a in Aϕ. Since there are only countably many sentences ϕ, the
intersection A of all the Aϕ is still comeager. Moreover, the truth-value of ϕ in
D(≥a) is independent of a in A, for every ϕ. This means that the first-order
theory of D(≥a) is independent of a in A. 2

Exercises V.7.19 a) There is a comeager set of degrees of elementarily equivalent
principal ideals D(≤a). (Jockusch [1981]) (Hint: as for cones.)
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b) There is a cone of elementarily equivalent principal ideals. (Martin [1968])
(Hint: as for cones, with the added fact that the set A of degrees a such that D(≤a)
satisfies a given formula ϕ is an arithmetical set, because set quantifications over sets
recursive in a fixed set A can be replaced by number quantifications over the indices
relative to A. Then only Arithmetical Determinacy, which is provable in ZFC by
Martin [1975], is needed to show that either A or its complement contains a cone.)

c) The same results hold for jump intervals D([a, a′]).

Note that Simpson’s Theorem has not been fully relativized to any degree
a: it is obvious that the first-order theory of D(≥ a) is 1-reducible to the
theory of Second-Order Arithmetic with an added predicate for a, uniformly in
a, but it is not known whether the converse holds (the proof of V.7.3 shows
only that the theory of Second-Order Arithmetic is 1-reducible to the theory of
D(≥a), uniformly in a). If this were provable, and in a uniform way, then it
would follow that D(≥a) and D(≥b) are elementarily equivalent if and only
if a = b, thus giving a final answer to the homogeneity problem.

Automorphisms

The questions of the last subsection, about homogeneity and strong homogene-
ity, can be asked about the relationships of D not only with some cone, but
also with itself. The relevant notions are the following.

Definition V.7.20 A map f : D → D is called:

1. an automorphism if it is an isomorphism that preserves the order, i.e.

x ≤ y ⇔ f(x) ≤ f(y)

2. an elementary map if it is preserves the first-order formulas, i.e. for
any first-order formula ϕ,

D |= ϕ(x1, . . . ,xn) ⇔ D |= ϕ(f(x1), . . . , f(xn)).

The analogues of homogeneity and strong homogeneity then ask about the
existence of nontrivial elementary maps and automorphisms. First of all, the
two questions are equivalent.

Proposition V.7.21 (Slaman and Woodin [1986]) A map from D to D
is elementary if and only if it is an automorphism.

Proof. An automorphism obviously is an elementary map. For the converse,
an elementary map automatically preserves the order, and it is one-one because
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it preserves the equality relation. It remains to prove that any elementary map
f is onto, i.e. that for any y there is x such that y = f(x).

The proof of part 2 of the next theorem will show that f is the identity on
the cone above a degree a (e.g. 0ω). By V.7.2 there are degrees ~c coding a stan-
dard model of arithmetic, and ~d coding the graph of a function g enumerating
(on the natural numbers of the model) the degrees below y∪a. Moreover, there
is a first-order sentence with parameters y and a stating that ~c and ~d have the
desired properties. Since f is elementary, this statement is true of f(y), f(a),
~f(c), and ~f(d). In particular, ~f(c) code a standard model of arithmetic, and
~f(d) code a function that enumerates (on the natural numbers of this model)

the degrees below f(y ∪ a). But f(y ∪ a) = y ∪ a because f is the identity
above a, and hence y is one of the degrees enumerated by the function coded
by ~f(d), say the n-th in the enumeration. Since f is elementary, it preserves
all the relevant properties. In particular, it must be that y is the image via f
of the n-th degree x enumerated by the function coded by ~d. This shows that
y is in the range of f , as wanted. 2

We can formulate the analogue of (strong) homogeneity as follows: the only
automorphism of D is the identity. Algebraic structures without nontrivial
automorphisms are called rigid. Although the rigidity of D has not been
proved, all known results point in that direction, and at least show that the
automorphisms of D are severely restricted .

Theorem V.7.22 Restrictions on automorphisms (Nerode and Shore
[1980a], Harrington and Shore [1981], Shore [1981], Jockusch and
Shore [1984]) Every automorphism of D:

1. sends any degree into a degree which is arithmetically equivalent to it

2. is the identity on every degree above all the arithmetical ones, in particular
on the cone above 0ω.

Proof. Consider an automorphism f : D → D. The first part follows from
V.7.16 and the fact that f induces an isomorphism between the cones above x
and f(x), for any x.

For the second part, note that there is a copy of the standard model of arith-
metic such that the relation ‘the degrees ~b code a set of degree x’ is analytical,
and hence first-order definable for degrees x above all the arithmetical ones,
by V.7.10. Then this relation is preserved by f and hence, for any ~b coding a
set of degree x above all the arithmetical ones, ~f(b) code a set of degree f(x).
But f is an automorphism, and hence the degrees ~b and ~f(b) must actually
code the same set. Then x = f(x). 2
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Actually something better can be achieved, by more direct calculations: any
automorphism of D is the identity on a cone having an arithmetical degree as
a base (Nerode and Shore [1980a], Harrington and Shore [1981], Shore [1981],
Jockusch and Shore [1984]).

We now introduce a useful tool for the study of automorphisms.

Definition V.7.23 An automorphism basis for D is any set of degrees A
such that the behavior of any automorphism is completely determined by its
behavior on elements of A.

Producing many automorphism bases is one way to show that there are few
automorphisms. Another one is to show that there are small bases. We will
exhibit results in both directions.

The first way to obtain automorphism bases is to consider sets of degrees
that generate D under ∪ and ∩.

Definition V.7.24 Given a set of degrees A, the set generated by A in D
is the smallest set:

1. containing A

2. closed under joins

3. closed under g.l.b.’s, whenever they exist.

Any automorphism of a partially ordered structure must preserve l.u.b.’s
and g.l.b.’s, whenever they exist, and thus the behavior of an automorphism
on a set A completely determines its behavior on the set generated by it. In
particular, if A generates D then A is an automorphism basis.

Proposition V.7.25 (Jockusch and Posner [1981]) If A is a comeager set
of degrees, then A generates D under ∪ and ∩. More precisely, any degree can
be represented in the form

(a1 ∪ a2) ∩ (a3 ∪ a4),

with ai ∈ A.

Proof. Let a be a given degree: by relativization of the minimal pair con-
struction (V.2.16), given b we can get c such that

(a ∪ b) ∩ (a ∪ c) = a.

Fix b ∈ A: then the set of such degrees c is comeager, and hence so is the
intersection of this set with A. Thus we have b and c in A such that the above
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equation holds. We only have to represent any degree of the form a ∪ d, with
d in A, as the join of two degrees in A. Note that, in general,

A⊕D ≡T D ⊕ (A4D)

for any A and D, where A4D is the symmetric difference (A−D) ∪ (D −A).
Moreover, if A is comeager then so is the set

A4 = {A4D : D has degree in A}.

We may then suppose that the degrees b and c above are not only in A, but
also in A4, and then the result follows. 2

Clearly a countable set cannot generate D, which is uncountable. But there
are uncountable meager sets of degrees that do generate D, as the next exercise
shows.

Exercise V.7.26 The minimal degrees generate D. (Jockusch and Posner [1981])
(Hint: given two sets A and B such that A ≤T B, we show that there are sets of
minimal degree M1 and M2 such that B and M1⊕M2 have A as g.l.b. We then apply
this to any B above A and ∅′′, which by V.6.10.b is the join of two minimal degrees,
and have that any degree is generated by four minimal degrees. We extend the proof
of V.6.10.b and build M1 and M2 by recursive coinfinite conditions. There are two
additional requirements:

A ≤T M1 ⊕M2

C ≤T B,M1 ⊕M2 ⇒ C ≤T A.

The first one is satisfied by building a strongly uniform tree of minimal degrees, and

letting M1 be the branch that, at level n, agrees with A(n) on the unique element

on which the two branches disagree, while M2 follows the other branch. The tree

is built by stages, and infinitely many times a new level will be added. The second

condition is satisfied by the usual minimal pair construction, with coinfinite condi-

tions that satisfy the coding requirement: this accounts for the fact that, in absence

of e-splittings, not outright recursiveness, but only recursiveness in A is obtained.)

A proper cone cannot generate the degrees, being closed under l.u.b.’s and
g.l.b’s, but can nevertheless be an automorphism basis.

Proposition V.7.27 (Jockusch and Posner [1981]) There is a comeager
set of degrees which are bases of cones that are automorphism bases.

Proof. It is enough to find a comeager set A such that, for any a in it,
D(≥a) ∪D(≥0(ω)) generates D. Since every automorphism is the identity
above 0(ω), then D(≥a) must be an automorphism basis.
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First note that, for any b, the set

{a : (b ∪ a) ∩ (b ∪ 0(ω)) = b}

is comeager (by relativization of the fact that the set of degrees which form a
minimal pair together with 0(ω) is comeager, see V.2.16). Then the set of pairs
a and b such that (b ∪ a) ∩ (b ∪ 0(ω)) = b is comeager, and so is the set of
degrees a such that D(≥a)∪D(≥0(ω)) generates a comeager set (and hence
D itself, by V.7.25). 2

V.8 Degree Theory with Jump ?

The jump operator is not known to be definable in D, and here we briefly
discuss what happens when we add it to D, thus obtaining the structure D′.
Some of the results are simply implied by results on the structure without jump,
e.g. D′ is obviously still undecidable, and recursively equivalent to Second-
Order Arithmetic. Other results exploit the extra power provided by the jump
operator, and produce both easier proofs and sharper definability results. For
example, the definability of the arithmetical degrees, which we had to postpone
to Volume II when working in D alone, is easily obtained with the jump.

Proposition V.8.1 (Jockusch and Soare [1970]) The set A of the arith-
metical degrees is definable in D′.

Proof. The natural definition of A is:

A = the smallest jump-ideal.

This is easily expressed in D′, as:

x ∈ A ⇔ (∀a)(∀b)[(∀z)(z ≤ a, b ⇒ z′ ≤ a, b) ⇒ x ≤ a, b]. 2

As we have already noted on p. 541, this result can be used to turn the proofs
of the results (about definability, homogeneity and automorphisms) given for
D under the assumption of the definability of the arithmetical degrees in D, to
proofs of the same results for D′, with the advantage of avoiding the proof of
V.7.9. This use of the jump operator is conservative: the advantage of having
easier proofs is paid by obtaining weaker results (since the same results are
proved in a stronger structure).

A more genuine use of the jump operator would be to take full advantage
of the added strength, and prove stronger results for the stronger structure.
These require new methods and ideas, some of which we will introduce later
on, and thus here we just quote the statements of the improved results:
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1. definability
Every relation on degrees above 0(3) which is definable in Second-Order
Arithmetic is definable in D′ (Simpson [1977], Nerode and Shore [1980a],
Shore [1982]).

2. homogeneity
Two cones can be isomorphic with jump preserved only if their bases
have the same triple jump (Feiner [1970], Yates [1972], Nerode and Shore
[1980a], Shore [1981]).

A cone can be elementarily equivalent to D′ only if its base has triple
jump 0(3) (Simpson [1977], Nerode and Shore [1980a], Shore [1981]).

3. automorphisms
Every automorphism preserving the jump is the identity on the cone above
0(3) (Jockusch and Solovay [1977], Richter [1979], Epstein [1979]).

Some of the results are actually stronger than we stated, and do not require
the full power of the jump operator, but only a small fraction of it. For example,
every automorphism fixing 0′ is the identity on the cone above 0(3) (Nerode
and Shore [1980a]).

A word is perhaps in order, to explain why there is a factor of three jumps in
the results quoted above. The reason is that the current methods of proofs use
embeddings of partial orderings into the degrees, and three jumps are already
needed to express the relation ≤T , and hence the order relation. These results
thus seem to be the best possible obtainable by current methods.

Improving bounds is only one way to improve results. Another way is
to improve the explicit definitions of degrees or relations, making them more
intelligible or more natural. As an example, we provide a simple and natural
definition in D′ of the ω-jump operator, which we already know to be definable
in D by V.7.11. We first extend the notion of least upper bound.

Definition V.8.2 (Sacks [1971]) A degree a is an n-least upper bound
for a set of degrees C if it is the last element of

{x(n) : (∀c ∈ C)(c ≤ x)}.

Note that 0-l.u.b.’s are the usual l.u.b.’s. We now consider the chain
{0(n)}n∈ω which, being an increasing chain, has no l.u.b. (by V.4.10).

Exercises V.8.3 a) 0(ω) is not a minimal upper bound for {0(n)}n∈ω. (Kleene and
Post [1954]) (Hint: the proof of Spector’s Theorem produces an exact pair for the
chain, below 0(ω).)

b) There is a minimal upper bound for {0(n)}n∈ω below 0(ω). (Sacks [1963])

(Hint: analyze the proof of V.5.21.)
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Theorem V.8.4 (Enderton and Putnam [1970], Sacks [1971]) 0(ω) is
the 2-least upper bound of {0(n)}n∈ω.

Proof. There are two things to prove:

1. if a is an upper bound of {0(n)}n∈ω, then 0(ω) ≤ a(2)

The hypothesis is that 0(n) ≤ a, for every n. The problem is that we
do not have a uniform reduction in general, and thus we cannot conclude
anything about the relationship between 0(ω) and a. We however show
that 0(n) ≤ a(2) does hold uniformly in n, so that 0(ω) ≤ a(2). To do
this, we have to show how to effectively get an index of ∅(n), relative to
A(2), for a fixed A ∈ a. This can be done inductively, because ∅(n+1) =
(∅(n))′, and thus there is an e such that

(∀x)(x ∈ ∅(n+1) ⇔ {e}∅
(n)

(x)↓)

Since, by induction hypothesis, we can express ∅(n) recursively in A, both
sides are recursive in A′, and the quantifier adds one more jump. Thus
we can obtain such an e recursively in A(2).

2. there is an upper bound a of {0(n)}n∈ω such that 0(ω) = a(2)

To get an upper bound A of {∅(n)}n∈ω, we let A ∈
⋂
n∈ω Tn, where Tn is

a recursively pointed tree of degree 0(n). We use the following extension
of the Totality Lemma V.5.5. Given e and a tree T , there is a tree Q ⊆ T
such that one of the following holds:

• for every A on Q, {e}A is not total

• for every A on Q, {e}A is total.

This is proved by the proof of V.5.5, simply because when the relevant
trees are not recursive, then we have to take them into account in our
computations.

The construction is as follows. Let T0 be the identity tree (which is
recursively pointed). Given Te recursively pointed of the same degree as
∅(e), first get T ⊆ Te recursively pointed of the same degree as ∅(e+1), by
V.5.20, which is possible because ∅(e) ≤T ∅(e+1). Then let Te+1 be the
Q of the Totality Lemma stated above, which is still recursively pointed,
and of the same degree as ∅(e+1). The construction is recursive in ∅(ω)

and we can, recursively in it, decide whether {e}A is total or not. Then
A(2) ≤T ∅(ω). 2

Corollary V.8.5 The ω-jump is definable in D′.
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Proof. By relativization, a(ω) is the 2-least upper bound of {a(n)}n∈ω.
Clearly, since {a(n)}n∈ω is an increasing chain, a(ω) is the 2-l.u.b. of the ideal
generated by it, which is the smallest ideal containing a and closed under jump.
Since the ideals are first-order definable in D′ (by Spector’s Theorem), so is
then the ω-jump. 2

Exercises V.8.6 a) 0(ω) is the least element of the set of double jumps of degrees
which are minimal upper bounds of {0(n)}n∈ω. (Sacks [1971]) (Hint: in the second
part of the previous proof, make A also a minimal upper bound of {0(n)}n∈ω, using
the methods of V.5.21.)

b) {0(n)}n∈ω has no 1-l.u.b. (Sacks [1971]) (Hint: given any upper bound B of

it, build another one A such that B′ 6≤T A′, so that B is not the 1-l.u.b. To make A

upper bound, use recursively pointed trees. To satisfy the requirements B′ 6' {e}A
′
,

we have to control two-quantifier sentences over A. Start from a tree of sets such that

the two-quantifier sentences over them are all decided by finite strings: such sets can

be obtained by extending the proof of V.2.21, and the tree can be made recursive in

∅′′. Thus all the trees of the construction will be arithmetical. Given one such tree

T , to satisfy B′ 6' {e}A
′

see if there are two strings on T that would decide, on the

same element, {e}A
′

in two different way. If so, choose the full tree above the one

that makes {e}A
′

different from B′. If not, {e}A
′

will be recursive in the tree, hence

arithmetical and different from B′, since B is not arithmetical.)

One trend of next chapters will be to prove a number of results with a similar
flavor, producing nice definitions for interesting sets of degrees and operations
on them.

æ



Chapter VI

Many-One and
Other Degrees

In this chapter we study the structure of m-degrees, with an approach similar
to the one used for T -degrees in Chapter V. The main difference between the
two cases is the fact, proved in Section 1, that the structure of m-degrees is
distributive. This is a major regularity, and the main reason allowing for a nice
structure theory. This time the material is organized structurally, toward a
characterization theorem that will be given in Section 4. We begin in Section 2
by an observation of Lachlan, a simple grain of sand that inserted in the oyster
of distributivity will produce the final pearl. Having these two ingredients
everything really becomes natural: layer after layer we build all the countable
initial segments in Section 2, and the uncountable ones in Section 3. We disclose
the oyster in Section 4, by giving Ershov’s characterization of the structure of
m-degrees up to isomorphism, as a strongly universal uppersemilattice. From
it a number of other global results will follow, after which we will have a fairly
complete understanding of the algebraic structure of m-degrees, a unique case
in Recursion Theory.

We conclude with some additional topics, among them a comparison of the
structures of 1-degrees, tt-degrees, and wtt-degrees in Section 5, and the
structure inside degrees of a given kind with respect to stronger reducibil-
ities in Section 6.

VI.1 Distributivity

Our subject is the structure Dm introduced in Section III.2. Recall that there
are three m-degrees containing recursive sets, namely 0m, {∅}, and {ω}. Since
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556 VI. Many-One and Other Degrees

the last two are incomparable and smaller than 0m, but all other m-degrees are
greater than or equal to 0m, by convention we will always consider nontrivial
sets, and thus 0m may be considered as the least m-degree. We also borrow
conventions and notations from Chapter V, e.g. the notations for degrees (as
boldface letters) and cones.

Proposition VI.1.1 As a partially ordered structure, Dm is an uppersemi-
lattice of cardinality 2ℵ0 with a least but no maximal element. Moreover, each
element has 2ℵ0 successors and at most countably many predecessors.

Proof. See V.1.12, and note that 0m is the least m-degree, A ≤m A′, and
A⊕B is actually the least upper bound of A and B w.r.t. m-reducibility. 2

Exercises VI.1.2 The jump operator. a) The jump operator is well-defined on
m-degrees, and preserves the ordering. In particular, 0m ≤ a′ for any m-degree a.
(Hint: if A ≤T B then A′ ≤m B′.)

b) The only m-degree with jump 0′
m is 0m. (Hint: if A′ ≤m K, from A ≤m A′

we have that A is r.e. Since A ≡T A we have A′ ≡m A
′
, and thus also A is also r.e.)

c) The jump operator is not one-one on m-degrees. (Hint: K and K are m-incom-
parable but, being T -equivalent, their jumps have the same m-degree.)

d) There are m-degrees above 0′
m which are not jumps of any m-degree. Thus

the analogue of the Jump Inversion Theorem fails. (Hint: the m-degree of K ⊕ K is

above the m-degree of K, but it cannot be a jump because it is in the same m-degree

of its complement while A′, being a complete Σ0
1 set relative to A, cannot have this

property.)

Distributive uppersemilattices

The next concept is going to be crucial for the study of m-degrees.

Definition VI.1.3 (P,v,t) is a distributive uppersemilattice if it is an
uppersemilattice such that if a v b t c there are b0 v b and c0 v c such that
a = b0 t c0.

b0

b

c0

c

a

b t c

r
r r
r
r
r��
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PPPPPP

����
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The notion of distributive uppersemilattice is consistent with the usual no-
tion of distributivity. Recall that a lattice (P,v,t,u) is distributive if the
distributive laws hold in it, i.e.

a u (b t c) = (a u b) t (a u c)
a t (b u c) = (a t b) u (a t c).

By duality, each of the two laws implies the other.

Proposition VI.1.4 A lattice is distributive as a lattice if and only if it is
distributive as an uppersemilattice.

Proof. If the lattice is distributive and a v b t c then

a = a u (b t c) = (a u b) t (a u c).

Then it is enough to let b0 = a u b and c0 = a u c to have distributivity as an
uppersemilattice.

If the lattice is distributive as an uppersemilattice, since

(a u b) t (a u c) v a u (b t c)

always holds, it is enough to show that the converse holds too. Since

a u (b t c) v b t c

holds, for some b0 v b and c0 v c is a u (b t c) = b0 t c0. But then b0, c0 v a,
and hence

a u (b t c) = b0 t c0 v (a u b) t (a u c). 2

Definition VI.1.5 An element of an uppersemilattice is indecomposable,
or an atom, if whenever a = b t c then a = b or a = c.

Proposition VI.1.6 In a distributive uppersemilattice the indecomposable el-
ements below b t c are exactly the indecomposable elements below b or c.

Proof. One direction is trivial. Conversely, if a v bt c then, by distributivity,
a = b0 t c0 for some b0 v b and c0 v c. If a is indecomposable then a = b0 or
a = c0, and hence a v b or a v c. 2

Exercises VI.1.7 a) In a Boolean algebra the indecomposable elements are exactly
the atoms.

b) In a linear ordering every element is indecomposable.

c) In a finite uppersemilattice every element is the l.u.b. of the indecomposable

elements below it .

Our reason to introduce distributive uppersemilattices is the following.
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Proposition VI.1.8 (Lachlan [1970]) Dm is a distributive uppersemilat-
tice.

Proof. Given A ≤m B ⊕ C we want B0 ≤m B and C0 ≤m C such that
A ≡m B0 ⊕ C0. Given f recursive such that x ∈ A⇔ f(x) ∈ B ⊕ C, we let

x ∈ B0 ⇔ f(x) even and
f(x)

2
∈ B

x ∈ C0 ⇔ f(x) odd and
f(x)− 1

2
∈ C.

Then, e.g., B0 ≤m B via

g(x) =
{
b if f(x) not even
f(x)

2 otherwise,

where b is a fixed element of B. Similarly for C0 ≤m C. Moreover, it is easily
checked that A ≡m B0 ⊕ C0. 2

Ideals of distributive uppersemilattices

The special properties of distributive uppersemilattices severely limit the pos-
sible ideals, and thus produce necessary conditions for the ideals of Dm.

Proposition VI.1.9 A finite distributive uppersemilattice with least element
is a distributive lattice.

Proof. By VI.1.4 it is enough to show that a finite uppersemilattice with least
element is a lattice. But the greatest lower bound of two elements a and b is
the least upper bound of the set of elements below them, which exists because
the latter is a nonempty finite set. 2

Corollary VI.1.10 (Lachlan [1970]) Every finite ideal of Dm is a distribu-
tive lattice.

To get conditions for any topped ideal we must develop some of the theory
of distributive uppersemilattices.

Proposition VI.1.11 (Lachlan [1972a]) Given a distributive uppersemilat-
tice with least element, its ideals ordered by inclusion form a distributive lattice.

Proof. We denote by 0 the least element of (P,v,t), and by I the set of its
ideals. The g.l.b. of two ideals is their set-theoretical intersection. The l.u.b. is
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the least ideal containing their union. Since P is distributive, given I1, I2 ∈ I
their l.u.b. is actually the set

I1 ⊕ I2 = {b t c : b ∈ I1 ∧ c ∈ I2}.

Indeed, I1, I2 ⊆ I1 ⊕ I2, because 0 is in every ideal. Every ideal containing I1
and I2 must clearly contain I1 ⊕ I2. I1 ⊕ I2 is closed under l.u.b. because I1
and I2 are. It is closed downward because if a v b t c then a = b0 t c0, with
b0 v b and c0 v c: if b t c ∈ I1 ⊕ I2 then we may suppose b ∈ I1 and c ∈ I2,
and thus b0 ∈ I1 and c0 ∈ I2, because I1 and I2 are closed downward. Then
a ∈ I1 ⊕ I2. Thus I1 ⊕ I2 is an ideal.

Finally, I is distributive as an uppersemilattice: if I ⊆ I1 ⊕ I2 then
I = I∗1 ⊕ I∗2 , where I∗i = Ii ∩ I. Indeed, I∗1 , I

∗
2 ⊆ I and thus I∗1 ⊕ I∗2 ⊆ I

because ⊕ is the l.u.b. operation. Conversely, if a ∈ I then a ∈ I1 ⊕ I2, so
a = b t c with b ∈ I1 and c ∈ I2: but b, c v a and a ∈ I, hence b ∈ I∗1 and
c ∈ I∗2 , from which a ∈ I∗1 ⊕ I∗2 . 2

Proposition VI.1.12 (Ershov [1975]) In a distributive uppersemilattice P
every finite subset closed under l.u.b. is embedded as an uppersemilattice (i.e.
with l.u.b. preserved) in a finite distributive sublattice of P .

Proof. There is a natural embedding from P to I, given by

a 7−→ â = the principal ideal generated by a = {b : b v a}.

Given a finite uppersemilattice F ⊆ P , consider F ⊆ I so defined:

F = {â : a ∈ F}.

Let L be the finite distributive lattice generated by F in I (see VI.1.11). We
want to pull back L in P , but the obvious trouble is that not every element of
L is a principal ideal. Thus we need a one-one homomorphism of uppersemi-
lattices ϕ : L → P such that F ⊆ ϕ(L). The obvious approach would be to
take, for I ∈ L,

ϕ(I) = l.u.b. of I,

but not every ideal needs to have a l.u.b. (unless it is finite). So we define

GI = a finite subset of I
ϕ(I) = l.u.b. of GI .

In particular this gives ϕ(I) ∈ I, since an ideal is closed under l.u.b.
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To have ϕ one-one, we pick up one element in each nonempty I1 − I2, for
every I1, I2 ∈ L. Let H be the set containing these elements, as well as the
elements of F . For any a ∈ H, let Ia be the smallest element of L containing
a. Then Ia is the l.u.b. of indecomposable elements Iia ∈ L, and by VI.1.11
it must be Ia = I1

a ⊕ · · · ⊕ Ina . Then there are elements ai ∈ Iia such that
a = a1 t · · · t an. Let

Ga = {a1, . . . , an}
G =

⋃
a∈H Ga

GI =
⋃
{G ∩ J : J ⊆ I indecomposable element of L}.

We now show that the function defined as

ϕ(I) = the l.u.b. of GI

has the needed properties:

1. ϕ is a homomorphism
This follows from the fact that the indecomposable elements contained
in I1⊕ I2 are exactly those contained in I1 or I2. So GI1⊕I2 = GI1 ∪GI2 ,
and

ϕ(I1 ⊕ I2) = ϕ(I1) t ϕ(I2).

2. ϕ is one-one
If I1 and I2 are different suppose, e.g., I1−I2 6= ∅, and let a ∈ H∩(I1−I2),
which exists by definition. Then ϕ(I1) 6= ϕ(I2), because ϕ(I2) ∈ I2 (al-
ways), but ϕ(I1) 6∈ I2. Indeed, Ia ⊆ I1 because Ia is the smallest element
of L containing a, and thus ϕ(Ia) v ϕ(I1), because ϕ is a homomorphism.
Ga ⊆ GIa by definition, and hence

a = ( l.u.b. of Ga) v ( l.u.b. of GIa) = ϕ(Ia).

Thus a v ϕ(I1), and if ϕ(I1) ∈ I2 then a ∈ I2 by downward closure.
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3. F ⊆ ϕ(L)
It is enough to show that ϕ(â) = a, for a ∈ F . Indeed, Ia = â if a ∈ F :
so a v ϕ(Ia) = ϕ(â), by the previous part of the proof. Conversely,
ϕ(â) v a because ϕ(â) ∈ â always holds. 2

Corollary VI.1.13 (Lachlan [1970]) Every topped ideal of Dm is the di-
rect limit (in the sense of uppersemilattices) of an ascending sequence of finite
distributive lattices.

Proof. Consider an enumeration {a0,a1, . . .} of a topped ideal I = Dm(≤a).
Start with D0 = {0m,a}. Given Dn ⊆ I consider the finite uppersemilattice
generated by Dn∪{an}, which has a as greatest element, and let Dn+1 be the
finite distributive lattice obtained as in the proof above. Since the former is
embedded in the latter as an uppersemilattice, a is also the greatest element
of Dn+1, and thus Dn+1 ⊆ I. 2

We now have a necessary condition for topped ideals of Dm. In the next
section we will show that this condition is also sufficient, thus completely char-
acterizing the countable initial segments of Dm.

VI.2 Countable Initial Segments

The following observation is going to be crucial for our later development.

Proposition VI.2.1 (Lachlan [1970]) Let A be a set, and a its m-degree.
For any r.e. set We and any recursive function f with range We, let:

x ∈ Φ(We) ⇔ f(x) ∈ A.

Then the map Φ induces a homomorphism of uppersemilattices between the r.e.
sets modulo the finite sets (ordered by inclusion) and Dm(≤a).

Proof. We have to check the following:

1. the m-degree of Φ(We) does not depend on f
Let g be another recursive function with range We. If

h(x) = µz[g(z) = f(x)] and t(x) = µz[g(x) = f(z)]

then

f(x) ∈ A⇔ gh(x) ∈ A and g(x) ∈ A⇔ ft(x).
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2. Φ(We) ≤m A
By definition.

3. if B and C are r.e. sets and B ⊆ C then Φ(B) ≤m Φ(C)
Let B and C be the ranges of f and g, and h(x) = µz[g(z) = f(x)]. Then
h is total because B ⊆ C, and

x ∈ Φ(B) ⇔ f(x) ∈ A⇔ gh(x) ∈ A⇔ h(x) ∈ Φ(C).

4. if B and C are r.e. sets which differ finitely then Φ(B) ≡m Φ(C)
Let B and C be the ranges of f and g. Fix a ∈ Φ(C) and b 6∈ Φ(C), and
let

h(x) =

 a if f(x) ∈ A ∩ C
b if f(x) ∈ A ∩ C
µz[g(z) = f(x)] if f(x) ∈ C.

h is recursive because f(x) ∈ B by definition, and B ∩ C is finite (and
hence so are B ∩ A ∩ C and B ∩ A ∩ C). Then Φ(B) ≤m Φ(C) via h.
Symmetrically, Φ(C) ≤m Φ(B).

5. if C ≤m A then there is an r.e. set B such that Φ(B) ≡m C
Let x ∈ C ⇔ f(x) ∈ A: if B is the range of f , Φ(B) = C. 2

The result shows that instead of controlling directly the m-degrees below
A we can control the m-degrees of Φ(We), for every e. This is the technique
that we are going to use to build initial segments.

Finite initial segments

Our goal is VI.3.6, which completely characterizes the initial segments of Dm.
But its proof is quite complicated and it involves a number of separate ideas,
taking care of different problems. We thus actually prove a sequence of results,
solving one problem at the time. We keep the same notations throughout, and
indicate how to adapt previous proofs to the new needs.

To illustrate the technique of construction of initial segments of m-degrees
we start with the simplest case.

Proposition VI.2.2 (Lachlan [1970]) Every finite ordinal is isomorphic to
an initial segment of Dm.

Proof. We want to build a set A such that the m-degrees below its m-degree
are isomorphic to {0, 1, . . . , n}. We use the homomorphism of VI.2.1 to control
the m-degrees below the m-degree of A, and thus we only have to control each
Φ(We).
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We build n+ 1 infinite recursive sets Pi, for i ≤ n, as follows:

Pi = {{(n+ 1)x+ i} : x ∈ ω}.

Note that Pi is a set of singletons. In the construction we will build equivalence
classes as boxes, and these singletons are our initial equivalence classes.

P0

P1

· · ·

Pn

R0

R1

...
Rn

Consider the r.e. sets Rx =
⋃
i≤x Pi, for x ≤ n. Since R0 ⊆ R1 ⊆ · · · ⊆ Rn,

we automatically have

Φ(R0) ≤m Φ(R1) ≤m · · · ≤m Φ(Rn).

Thus Φ already gives a homomorphism between {R0, . . . , Rn} and {0, . . . , n},
for any set A. We set up to build A in such a way that the homomorphism
is onto and one-one. We simultaneously build, by stages, two disjoint sets A
and B, with the intention that B is contained in A (i.e. it contains elements
we want to leave out of A). At stage s + 1 we have finite approximations As
and Bs of A and B, and sets Rx,s such that Φ(Rx,s) ≡m Φ(Rx). As above,
Rx,s =

⋃
i≤x Pi,s, and Pi,s is going to be a strong array: we look at the elements

of the strong array as equivalence classes (boxes), with the intention that at
following stages we put into A or B not single elements, but equivalence classes.

At stage s+1 we will do (according to the order decided by an exhaustive list
of requirements) one of the following two types of action, respectively intended
to make Φ onto and one-one:

1. to ensure that for each e there is x such that Φ(We) ≡m Φ(Rx)
Since Φ(Rx,s) ≡m Φ(Rx), it is enough to ensure that Φ(We) ≡m Φ(Rx,s),
for some x. We may suppose We infinite, otherwise Φ(We) is automat-
ically recursive. We look at the greatest x ≤ n such that We ∩ Px,s is
infinite and define, for each i ≤ x, a new Pi,s+1 with the property that
each equivalence class of it intersects We. We do this by moving boxes
intersecting We from Px,s to Pi,s+1, when needed. For i > x we let
Pi,s+1 = Pi,s.
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• Φ(We) ≡m Φ(Rx,s+1)
Note that Rn,s ∪ As ∪ Bs = ω, and As ∪ Bs is finite. Then, by
construction and the choice of x, We is contained in Rx,s, except
for at most finitely many elements. Since Φ is invariant under finite
differences, we may actually suppose that We ⊆ Rx,s = Rx,s+1.
Thus Φ(We) ≤m Φ(Rx,s+1) automatically, by the properties of Φ.
Conversely, every box of Rx,s+1 contains an element of We by con-
struction. If We and Rx,s+1 are respectively the ranges of f and g,
let

h(z) = µy[f(y) and g(z) are in the same box of Rx,s+1].

Then

z ∈ Φ(Rx,s+1) ⇔ g(z) ∈ A
⇔ fh(z) ∈ A (being in the same box)
⇔ h(z) ∈ Φ(We),

and Φ(Rx,s+1) ≤m Φ(We). Note that it is crucial here that in the
following we put boxes into A, and not only single elements.

• Φ(Ri,s+1) ≡m Φ(Ri,s)
We only have to prove this for i ≤ x, since for i > x we have
Ri,s = Ri,s+1. If i ≤ x then Ri,s ⊆ Ri,s+1, since we only enlarge
boxes, so Φ(Ri,s) ≤m Φ(Ri,s+1).
Since every new box of Ri,s+1 contains an old box of Ri,s, by associ-
ating to every element of Ri,s+1 an element of Ri,s in the same box
(as above) we get Φ(Ri,s+1) ≤m Φ(Ri,s).

2. to ensure that Φ(Rx) 6≡m Φ(Ry) if x 6= y
Since x, y ≤ n we may suppose, e.g., x < y. Then Rx ⊆ Ry, and
automatically Φ(Rx) ≤m Φ(Ry). To ensure Φ(Ry) 6≤m Φ(Rx), suppose
that for some recursive function h

z ∈ Φ(Ry) ⇔ h(z) ∈ Φ(Rx).

Let Ry and Rx be the ranges of f and g: then

f(z) ∈ A ⇔ gh(z) ∈ A.

Note that there is a partial recursive function ϕ with domain Ry and
range contained in Rx, and such that w ∈ A ⇔ ϕ(w) ∈ A for each w on
which ϕ is defined. For example,

ϕ(w) ' gh(z) for the smallest z such that f(z) = w.
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To ensure Φ(Ry) 6≤m Φ(Rx) is thus enough to look at the partial recursive
functions ϕ with domain containing Ry and range contained in Rx. Since
Rx ⊆ Ry, there is a such that Pa is not contained in Rx, but it is contained
in Ry. Consider Pa,s: the construction is such that every box of Pa,s
contains a box of from Pa. Choose w ∈ Pa ∩ Pa,s: then ϕ(w) ∈ Rx. We
ensure that w ∈ A if and only if ϕ(w) 6∈ A, thus diagonalizing against ϕ:

• if ϕ(w) ∈ As then put the box of w into Bs+1

• if ϕ(w) ∈ Bs then put the box of w into As+1

• if ϕ(w) 6∈ As ∪ Bs then, e.g., put the box of w into As+1, and the
box of ϕ(w) into Bs+1.

In this case Φ(Ri,s) ≡m Φ(Ri,s+1) is automatic, since we just produce a
finite modification, moving the box of w and, possibly, the box of ϕ(w)
too. 2

The construction just given is the basis for all the embeddings to be ob-
tained. In the following we will limit ourselves to indicate the modifications
needed to take care of the increasingly more complicated situations.

Proposition VI.2.3 (Lachlan [1970]) The topped finite initial segments of
Dm are exactly the finite distributive lattices.

Proof. The condition is necessary by VI.1.10. For the converse, let D be a
finite distributive lattice. We have to define Rx for x ∈ D in such a way that
{Φ(Rx) : x ∈ D} is isomorphic to D. This could appear to be complicated,
since we have to preserve the relationships among the members of D, but a
small trick makes everything trivial. Let H be the set {a0, . . . , an} of the
indecomposable elements of D (in the case of linear orderings we had D = H).
Since H generates D (VI.1.7.a), we only have to define:

Pai = {{(n+ 1)x+ i} : x ∈ ω}
Rx =

⋃
{Pa : a ≤ x ∧ a ∈ H}.
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The map Φ is a homomorphism from D to Dm(≤ a), where a is the
m-degree of the set A we build, because D is distributive: if x = y t z then
the indecomposable elements below x are exactly the indecomposable elements
below y or z (VI.1.6), hence Rx = Ry ∪Rz and Φ(Rx) ≡m Φ(Ry)⊕Φ(Rz), by
the properties of Φ.

As before we have to ensure that Φ is onto and one-one, and this is obtained
in the same way as in the previous result, with the following modifications.

1. ontoness
Given We infinite, consider all the i’s such that We∩Pai,s is infinite, and
make all the classes of Paj ,s+1 intersect We, for every j such that aj v ai
for some such i. If i0, . . . , im is a list of all such i’s, we have as before
Φ(We) ≡m Φ(Rx,s+1), where x = ai0 t · · · t aim .

And Φ(Rx) ≡m Φ(Rx,s+1) for all x, since this holds for indecomposable
elements as before, and for the other elements because Φ is a homomor-
phism.

2. one-oneness
If x 6v y we want Φ(Rx) 6≤m Φ(Ry). This is obtained as before, because
if x 6v y then there is an indecomposable element a such that a v x and
a 6v y (otherwise all the indecomposable elements below x are also below
y, and hence so is their l.u.b. x). But then we can choose an element of
Pa,s ∩ Pa to diagonalize. 2

Countable initial segments

The proofs given above may be easily extended to handle infinite initial seg-
ments whose representations can be chosen ahead of time (like recursive dis-
tributive lattices), but some new ideas are needed to treat the general case.
Again we start with the linear orderings.

Proposition VI.2.4 (Lachlan [1970]) Every countable linear ordering with
least element is isomorphic to an initial segment of Dm.

Proof. When we consider a countable linear ordering L we cannot define Rx
ahead of time for all x ∈ L, unless L is recursive. Then we approximate L
by finite pieces. We may suppose that L has a greatest element, otherwise we
can add one to it, and we call 0 and 1 the least and greatest elements. Let
L =

⋃
n∈ω Ln, where L0 = {0, 1}, and each Ln is finite and contained in Ln+1.

Let Ln = {a0 < · · · < am}, with a0 = 0 and am = 1. At stage s + 1 we have
Pai,s. If b is a new element of Ln+1, i.e. b is not one of the ai’s, we have to
create a new row Pb for it. Since 0 and 1 are already in L0, there must be i
such that ai < b < ai+1. Then we can simply let Paj ,s+1 = Paj ,s if j 6= i + 1,
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and we create Pb by taking its boxes from Pai+1,s. It is clear that for x ∈ Ln it
is still Rx,s+1 = Rx,s, and thus Φ(Rx,s+1) ≡m Φ(Rx,s). 2

Proposition VI.2.5 (Lachlan [1970]) The topped initial segments of Dm

are exactly the direct limits of ascending sequences of finite distributive lattices.

Proof. The condition is necessary by VI.1.10. For the converse, let D be
the limit of {Dn}n∈ω, with Dn a finite distributive lattice, and Dn ⊆ Dn+1.
Suppose also that D0 already contains the least and greatest elements 0 and 1
of D, otherwise start from the first Dn that does. As in VI.2.3 we just have
to consider the indecomposable elements, but now D is only approximated by
Dn, and hence at a given stage we only have

Hn = {a0, . . . , am} = set of the indecomposable elements of Dn.

When we step from Dn to Dn+1 two new things might happen:

1. a new atom b appears
As in VI.2.4 we have to create a new Pb for it, and this time the atoms
are not linearly ordered. We may simply build Pb as a sequence of boxes,
each one being the union of one box from Pai,s for each i such that b < ai
(some such i must exist, because the greatest element of D is already in
D0). This allows us to get Φ(Rx,s+1) ≡m Φ(Rx,s) as follows.

If b 6< x then there is nothing to prove, since Rx,s+1 = Rx,s. If b < x we
may suppose that x is an atom of Dn, since we only have to prove the
property for atoms (the rest follows automatically from the fact that Φ
is a homomorphism). But then:

• Φ(Rx,s) ≤m Φ(Rx,s+1)
This follows from Rx,s ⊆ Rx,s+1 (note that Pa may be in Rx,s+1

now).

• Φ(Rx,s+1) ≤m Φ(Rx,s)
As usual it is enough to get effectively from every element of Rx,s+1

an element of Rx,s in the same box. The only nontrivial case is when
we consider elements in boxes of Pb, but each such box contains a
box of Px,s by construction.

2. an atom a ∈ Hn becomes decomposable in Dn+1

In this case we do not want to consider Pa,s anymore, and we simply throw
it into Bs+1, which then becomes an infinite recursive set (as opposed to
the finite set of the previous propositions). To check

Φ(Rx,s+1) ≡m Φ(Rx,s)
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we simply note that for a < x is Rx,s+1 = Rx,s − Pa, which is still
r.e. since Pa is recursive. But then Rx,s = Rx,s+1 ∪ Pa,s and, by the
properties of Φ, Φ(Rx,s) ≡m Φ(Rx,s+1) ⊕ Φ(Pa,s). Since Pa,s ⊆ A by
construction, because we threw it into Bs+1, Φ(Pa) has m-degree 0m and
thus Φ(Rx,s) ≡m Φ(Rx,s+1).

Case 2 introduces the need of small adjustments in the proof.

1. We have to suppose that the top element of D is indecomposable in every
Dn, so that we always have a top line to use when a new atom appears,
and a new line has to be created. For this it is enough to add, if necessary,
an element on top of the greatest one, and suppose it is already in D0.

2. To show that Φ is onto we prove as before that Φ(We) ≡m Φ(Rx) for
some x, noting that for an appropriate x we have We ⊆ As ∪ Bs ∪ Rx,s,
so that

Φ(We) ≡m Φ(We ∩As)⊕ Φ(We ∩Bs)⊕ Φ(We ∩Rx,s).

But

• Φ(We ∩As) has m-degree 0m because We ∩As is finite

• Φ(We ∩Bs) has m-degree 0m because Bs ⊆ A

• Φ(We ∩Rx,s) ≡m Φ(Rx,s) as usual. 2

Corollary VI.2.6 Every countable distributive lattice is isomorphic to an ini-
tial segment of Dm.

Proof. If D is a countable distributive lattice, let D0 = {0, 1}. Given Dn take
a ∈ D−Dn, if it exists, and consider the finite distributive sublattice Dn+1 of
D generated by Dn ∪ {a}. Then D is the direct limit of {Dn}n∈ω. 2

Exercise VI.2.7 Dm is not a lattice. (Hint: let Dn be the finite distributive lattice

consisting of an ascending sequence of n elements, with a diamond on top: the direct

limit of the Dn’s is an infinite chain with two incomparable elements and their join

above it. These two elements have no l.u.b.)

A different method of proving VI.2.5 has been given by Lachlan [1971],
and consists of building the same initial segments for T -degrees using strongly
uniform trees (V.6.7). This produces common initial segments of Turing and
m-degrees.

Exercise VI.2.8 If A is a set of minimal Turing degree constructed by using strongly

uniform trees, then A has minimal m-degree. (Lachlan [1971]) (Hint: it is enough
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to prove that if fL, fR, g are an e-splitting strongly uniform tree, A is on it, and

{e}A is an m-reduction, then A ≤m {e}A. But if B = {e}A is an m-reduction,

there is h recursive such that x ∈ B ⇔ h(x) ∈ A. To define f recursive such that

x ∈ A⇔ f(x) ∈ B, see if fL and fR agree on x. If so, then let f(x) be a fixed element

of B if the common value is 1, and a fixed element of B otherwise. If not, x is in the

range of h, because the tree is e-splitting. Then let f(x) = h−1(x).)

VI.3 Uncountable Initial Segments

The obvious trouble with uncountable initial segments is that we cannot ap-
proximate them by finite pieces in countably many steps. We are able to
overcome this difficulty by extending given countable pieces.

Strong minimal covers

Recall (V.5.16) that a is a strong minimal cover of b when, for every c, if c < a
then c ≤ b.

Proposition VI.3.1 (Lachlan [1972]) Every m-degree has a strong minimal
cover.

Proof. The construction is an extension of the one for minimal m-degrees,
which is the special case of VI.2.2 for n = 1. We build two sets

Pa = {{2x} : x ∈ ω}
Pb = {{2x+ 1} : x ∈ ω},

and let Ra = Pa ∪ Pb and Rb = Pb. Since Rb ⊆ Ra, we automatically have
Φ(Rb) ≤m Φ(Ra). We want to ensure that:

1. Φ(Rb) ≡m B, for a given set B ∈ b.

2. Φ(We) ≡m Φ(Ra) or Φ(We) ≤m Φ(Rb), for every e

3. Φ(Ra) 6≤m Φ(Rb).

We indicate the modifications to make in the construction of a minimal degree
to ensure these conditions.

1. Let B ∈ b: we ensure Φ(Rb) ≡m B by putting the x-th box of Pb into A
if and only if x ∈ B. This is the main new idea, to be fully exploited in
this subsection. Let Rb = Pb be the range of f . Then Φ(Rb) ≤m B via
g(z) = µx[f(z) = 2x+ 1], since

z ∈ Φ(Rb) ⇔ f(z) ∈ A⇔ g(z) ∈ B,
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and B ≤m Φ(Rb) via h(x) = µz[f(z) = 2x+ 1], since

x ∈ B ⇔ 2x+ 1 ∈ A⇔ fh(x) ∈ A⇔ h(x) ∈ Φ(Rb).

This part of the construction makes the approximation of A at a given
stage infinite. But we can still think of A at stage s as the union of a finite
part As on a side (obtained by the other two parts of the construction, as
in VI.2.2) and of the infinite part of A contained in Pb,s. It is understood
that anything falling into the x-th box of Pb during the construction goes
into A, if x ∈ B.

2. This is ensured as before. If We ∩Pa,s is infinite then we use appropriate
boxes from Pa,s to force all boxes of Ra,s+1 to intersectWe, thus obtaining
Φ(We) ≡m Φ(Ra,s+1). If We∩Pa,s is finite then, except for finitely many
elements, We ⊆ Pb,s: then, automatically, Φ(We) ≤m Φ(Rb,s).

3. This is also ensured as before, since we can use elements of Pa ∩ Pa,s to
diagonalize against ϕ : Ra → Rb. 2

Recall (V.5.17) that there is a cone of minimal covers in the Turing degrees.
A similar proof shows here that there is a cone of strong minimal covers in
Dm. This stronger result fails for Turing degrees, and actually (in accord with
V.1.16) there is a cone without strong minimal covers in D, since by V.2.26 no
degree above 0′ can be a strong minimal cover.

Uncountable linear orderings

Linearly ordered initial segments are especially simple because of the countable
predecessor property, which implies that any such linear ordering can be ob-
tained by a (possibly uncountable) sequence of countable extensions. We thus
have only to learn how to do countable extensions.

Proposition VI.3.2 (Ershov [1975]) Every countable linearly ordered initial
segment I of Dm can be extended to an initial segment L isomorphic to L, for
any countable linear ordering L having an initial segment I isomorphic to I.

Proof. The proof combines the ideas of VI.2.4 and VI.3.1. The only step to
be added to VI.2.4 is the case when a new atom b appearing in Ln+1 is in I.
Then we build the corresponding Pb by using the row Pa,s, for the smallest
a ∈ Ln − I (which is automatically above b): we may always suppose it exists,
by possibly topping L and putting the greatest element in L0. We then order
the classes of Pb, e.g. by ordering in the natural way their least elements, and
put the x-th class into A if and only if x ∈ B, for some fixed B in the m-degree
b of I corresponding to b ∈ I.
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• Φ(Rb) ≡m B
Φ(Pb) ≡m B as in VI.3.1, and Rb =

⋃
cvb Pc, so Φ(Rb) ≡m ⊕cvbΦ(Pc).

But b ∈ I and I is downward closed, so if c v b is c ∈ I and Pc was
introduced in the same way as Pb, in particular Φ(Pc) hasm-degree c ≤ b.
Thus Φ(Rb) has m-degree b.

• Φ(Rx,s+1) ≡m Φ(Rx,s)
For x ∈ Ln − I, which is the only interesting case, Rx,s+1 = Rx,s.

• ontoness
This is obtained as in VI.3.1, by considering the greatest a ∈ Ln − I, if
it exists, such that We ∩ Pa,s is infinite.

• one-oneness
This is obtained as in VI.3.1 and VI.2.4, by ensuring Φ(Ry) 6≤m Φ(Rx)
whenever x < y and either (x ∈ I ∧ y 6∈ I) or (x 6∈ I ∧ y 6∈ I). Indeed, for
x, y ∈ I this is automatically achieved by the previous strategy. 2

At this point we can already give some final results.

Corollary VI.3.3 The order-types of the linearly ordered initial segments of
Dm are exactly the linear orderings with least element and countable predeces-
sor property.

Proof. The conditions are obviously necessary. Given a linear ordering L
with least element 0 and countable predecessor property, let I0 = {0} and
I0 = {0m}. For any ordinal α < ω1 let Iα and Iα be isomorphic countable
initial segments of L and Dm. Take a ∈ L− Iα, if it exists, and let Iα+1 be the
downward closure of if Iα∪{a} in L: Iα+1 is countable because L has countable
predecessor property, and Iα ⊆ Iα+1 since Iα is closed downward. By VI.3.2
there is an initial segment Iα+1 of Dm isomorphic to Iα+1 and extending Iα.
At limit stages take unions. This procedure gives an initial segment isomorphic
to L in at most ω1 steps, since L has countable predecessor property. 2

In particular, the ordinals of the well-ordered initial segments of Dm are
exactly the ordinals ≤ ω1.

Abraham and Shore [1986] have shown that the linearly ordered initial
segments of D are the same as those of Dm.

Uncountable initial segments

We are finally at the last step of our long journey. In the next result all the
ingredients so far introduced, and some new ones, will be employed to produce
all possible countable extensions of given initial segments. We will then show
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how the result can be modified and used to characterize the initial segments of
Dm.

Proposition VI.3.4 (Ershov [1975]) Every countable ideal I of Dm can be
extended to an initial segment L isomorphic to L, for any countable distributive
uppersemilattice L having an ideal I isomorphic to I.

Proof. First note that, by possibly doing countably many successive exten-
sions, we may simply restrict our attention to topped countable distributive
uppersemilattices L. As in VI.1.13 we can see that L is a direct limit of an
ascending sequence of finite distributive lattices. The proof then extends the
one of VI.2.5.

When new atoms appear, we treat them as in VI.2.5 and VI.3.2. Namely,
we create Pb as a sequence of boxes, each one being the union of one box from
Pa,s for each atom a not in I and above b. Two new things might happen here:

1. an atom a ∈ I becomes indecomposable
As in VI.2.5 we throw Pa,s away, i.e. we put it into Bs+1. This now
causes a little trouble, since Pa,s contains boxes which were in A and
that go now into A, and A is not built monotonically. We still want to
have Φ(Rx,s+1) ≡m Φ(Rx,s). Suppose a v x: since Rx,s+1 = Rx,s − Pa,s
we have, as in VI.2.5, Φ(Rx,s) ≡m Φ(Rx,s+1)⊕Φ(Pa,s). It is thus enough
to show that Φ(Pa,s) ≤m Φ(Rx,s+1). We may suppose we already have
in Rx,s+1 the Pb’s for the atoms that make a decomposable. Now b v x
for all these b’s, so Pb,s ⊆ Rx,s+1 and Φ(Pb,s) ≤m Φ(Rx,s+1). But b ∈ I,
since a ∈ I and I is closed downward: by construction then Φ(Pb,s)
has the m-degree b in I corresponding to b in I, and Φ(Pa,s) has the
m-degree a corresponding to a. But a is the l.u.b. of these b’s, and so
Φ(Pa,s) ≤m Φ(Rx,s+1).

2. one-oneness
We want Φ(Ry) 6≤m Φ(Rx) whenever y 6v x. This is automatic if x and
y are in I.

If x ∈ I but y 6∈ I then we have no trouble: there is an atom a v y such
that a 6∈ I, otherwise y ∈ I because I is an ideal, hence closed under
l.u.b., and y is the l.u.b. of the atoms below it. But a 6v x since x ∈ I
and I is closed downward, so we can use Pa to diagonalize.

Let us thus suppose that x 6∈ I, y ∈ I, and y 6v x. If we simply consider
ϕ : Ry → Rx then we might not be able to diagonalize, since ϕ might
have range contained in Rz, where z v x is the l.u.b. of the atoms of I
below x (z ∈ I because I is an ideal): thus ϕ sends rows corresponding
to atoms of I to similar rows, and we do not want to touch them because
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they code information. But we now show that if Φ(Ry) ≤m Φ(Rx) then
there is a partial recursive function ϕ such that:

• ϕ has domain Ry and range contained in Rx

• w ∈ A if and only ϕ(w) ∈ A, whenever ϕ(w) is defined

• the range of ϕ intersects Pa, for some Pa ⊆ Rx and a 6∈ I.

Consider indeed the usual ϕ (VI.2.2), and let W be its range. If ϕ does
not have the required properties then W ⊆ Rz, for the z ∈ I considered
above. So Φ(W) ≤m Φ(Rz). Since w ∈ A ⇔ ϕ(w) ∈ A and Ry is the
domain of ϕ, Φ(Ry) ≡m Φ(W) and hence Φ(Ry) ≤m Φ(Rz). But y and
z are in I, and Φ is by definition an isomorphism on I, hence y v z v x,
contradiction. We can then always consider ϕ with the stated properties,
and use a row Pa for some a 6∈ I to diagonalize. 2

The result already has a number of important consequences, e.g. every
countable ideal of Dm has a strong minimal cover, and it is the intersection
of two principal ideals. To derive the most important consequence of all we
however need a strengthening of it, stated in the exercise.

Exercise VI.3.5 For every countable ideal I of Dm, and any countable distributive

uppersemilattice L having an ideal I isomorphic to I, there is a continuum of initial

segments of Dm isomorphic to L, and such that their parts isomorphic to L− I are

pairwisely disjoint . (Paliutin [1975]) (Hint: the properties of the construction above

are not affected if countably many times we take a box from the line relative to the

top element, and put it into As or Bs. We can thus build a tree of sets whose degrees

are top degrees of extension of I as wanted.)

We can now give the promised characterization of the initial segments of
Dm. Note that the exercise allows us to avoid any use of the Continuum
Hypothesis, and thus the result is final.

Theorem VI.3.6 Characterization of the ideals of Dm (Ershov [1975],
Paliutin [1975]) The ideals of Dm are exactly, up to isomorphism, the dis-
tributive uppersemilattices with least element, countable predecessor property,
and power at most that of the continuum.

Proof. The conditions are clearly necessary. Conversely, given an uppersemi-
lattice L with the stated conditions, we want to define an ideal L of Dm

isomorphic to L. Let 0 be the smallest element of L, and define I0 = {0},
I0 = {0m}, and ϕ0(0) = 0m.

For α < 2ℵ0 let Iα and Iα be ideals of L and Dm isomorphic via ϕα, and of
power less than the continuum. Take a ∈ L− Iα, if it exists: â (the set of the
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predecessors of a in L) is a countable distributive uppersemilattice (because L
has countable predecessor property) with â∩Iα as a countable ideal (since both
â and Iα are ideals). By VI.3.4 we can extend the isomorphism ϕα of domain
Iα to an isomorphism ϕ of domain â ∪ Iα. Let Iα+1 be the ideal generated
by â ∪ Iα: we want to show that ϕ is extendable to an isomorphism ϕα+1 of
domain Iα+1. By VI.1.11 the elements of Iα+1 are of the form x t y, for x ∈ â
and y ∈ Iα. We then let

ϕα+1(x t y) = ϕ(x) ∪ ϕ(y).

To check that ϕα+1 is well-defined, consider x′ t y′ = x t y. Since x′ v x t y,
there are x′0 v x and y′0 v y such that x′ = x′0 t y′0. But ϕ is an isomorphism
on â ∪ Iα, and thus ϕ(x′0) ≤ ϕ(x) and ϕ(y′0) ≤ ϕ(y). Then

ϕα+1(x′) = ϕα+1(x′0 t y′0) = ϕ(x′0) ∪ ϕ(y′0) ≤ ϕ(x) ∪ ϕ(y) = ϕα+1(x t y).

Similarly, ϕα+1(y′) ≤ ϕα+1(x t y), and hence

ϕα+1(x′ t y′) = ϕα+1(x′) ∪ ϕα+1(y′) ≤ ϕα+1(x t y).

The converse holds similarly, and then ϕα+1 is well-defined.
But if we only use VI.3.4 as stated then there is no reason to believe that

ϕα+1 is also one-one. This is where the strengthening VI.3.5 comes into play:
it provides enough choices to make the degrees below ϕ(a) but not in ϕα(â∩Iα)
disjoint from ϕα(Iα), and thus ϕα+1 one-one.

At limit stages we take unions. The procedure gives an initial segment
isomorphic to L in at most 2ℵ0 steps, since L has at most the power of the
continuum. 2

Refinements of the results of this section have been found by Malc’ev [1981],
[1984], respectively on localization of initial segments and relativization to the
uppersemilattice of immune sets.

VI.4 Global Properties

We now turn to the study of global properties of Dm, following the path set up
in Section V.7 for Turing degrees, with two major differences. First of all, we
will be completely successful in characterizing the algebraic structure of Dm,
while an analogous characterization is not known for Turing degrees, and might
even be independent of ZFC (see the results of Grozsek and Slaman quoted
on pp. 467 and 530). Secondly, the properties of definability, homogeneity, and
automorphisms for m-degrees are exactly the opposite of those for Turing de-
grees: no nontrivial countable set of m-degrees is definable, strong homogeneity
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holds, and there are lots of automorphisms. However, the complexity of the
theories of Turing and m-degrees is the same.

Characterization of the structure of many-one degrees

We now characterize Dm as an algebraic structure. This result is the only
known example of an absolute characterization of a degree theory, and it pro-
vides an alternative, recursion-theoretical description of the continuum.

The results proved in this chapter, which culminated in VI.3.6, already pro-
vide the tools needed to characterize Dm with a two-line proof.

Aguzza qui, lettor, ben li occhi al vero,
ché ’l velo è ora ben tanto sottile,
certo che ’l trapassar dentro è leggero.1

(Dante, Purgatorio, VIII)

Theorem VI.4.1 Characterization of Dm (Ershov [1975], Paliutin
[1975]) Up to isomorphism, Dm is the only structure with the following prop-
erties:

1. it is a distributive uppersemilattice with least element

2. every element has at most countably many predecessors

3. it has the power of the continuum

4. every ideal I with power less than the continuum can be extended to
an ideal L isomorphic to L, for any distributive uppersemilattice L with
power less than the continuum having an ideal isomorphic to I.

Proof. A back-and-forth argument in the style of VI.3.6 easily gives an iso-
morphism between any two structures with the given properties. 2

Note that no use is made of extra set-theoretical assumptions, like the
Continuum Hypothesis, and thus the result is absolute.

Definability, homogeneity, and automorphisms

The algebraic characterization of Dm contains all the information about the
structure, and it is thus not surprising that we can easily derive from it solutions
to a number of algebraic problems. They should be contrasted with the opposite
ones obtained for Turing degrees in Section V.7.

1Sharpen thy sight now, reader, to regard
the truth, for so transparent grows the veil,
to pass within will surely not be hard.
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Theorem VI.4.2 Strong homogeneity. Any two cones of m-degrees are
isomorphic.

Proof. Given a, it is enough to show that Dm(≥a) satisfies the properties of
VI.4.1. It then follows that any cone is isomorphic to Dm, and hence any two
cones are isomorphic.

The only nontrivial property is the fourth one. Let I be an ideal of Dm(≥
a) of power less than the continuum, and L be a distributive uppersemilattice
of power less than the continuum and with an ideal I isomorphic to I. Let
Î be the downward closure of I in Dm: we can extend I to a distributive
uppersemilattice Î isomorphic to Î. If we show that Î∪L is an uppersemilattice
with Î as an ideal, then we can apply the methods of VI.3.6 to extend Î to an
ideal isomorphic to Î ∪L in Dm, thus extending I to an ideal isomorphic to L
in Dm(≥a).

Since I is an ideal, so is Î by its definition. To show that Î ∪ L is an
uppersemilattice it is enough, by VI.1.11, to define xty when x ∈ Î and y ∈ L.
There are two cases:

• if x ∈ L then define x t y as the l.u.b. of x and y in L

• if x 6∈ L then first consider the l.u.b. of x and a (the element of Î corre-
sponding to a) in Î: this is now an element of L, being above a. Then
take the l.u.b. of it and y in L. 2

The next proposition allow us to derive information about definability and
automorphisms.

Proposition VI.4.3 Dm(≤ a) and Dm(≤ b) are isomorphic if and only if
there is an automorphism of Dm carrying a into b.

Proof. One direction is trivial, since any automorphism carrying a into b
induces an isomorphism of Dm(≤ a) and Dm(≤ b). Conversely, given an
isomorphism of Dm(≤a) and Dm(≤b) we can extend it to an automorphism
of Dm by a back-and-forth argument as in VI.4.1. 2

Corollary VI.4.4 0m is the only m-degree fixed under every automorphism,
as well as the only definable m-degree.

Proof. Given a > 0m, Dm(≤ a) is isomorphic to a countable distributive
uppersemilattice I. L = I × I is still a countable distributive uppersemilattice,
containing two distinct copies of I as ideals. Extend Dm(≤ a) to an ideal
isomorphic to L, by VI.3.4, and let b 6= a be the top m-degree corresponding
to the second copy of I in L. Then Dm(≤ a) and Dm(≤ b) are isomorphic,
and there is an automorphism of Dm carrying a into b. Then a is not fixed
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under every automorphism of Dm, and in particular it cannot be definable.
Thus 0m is the only m-degree fixed under every automorphism, and the only
definable m-degree. 2

Corollary VI.4.5 Every definable set of m-degrees different from {0m} has
power of the continuum.

Proof. Given a set S 6= {0m} of m-degrees of power less than the continuum,
choose a ∈ S−{0m}. The m-degree b obtained as in the previous corollary can
be taken to be not in S, because S has power less than the continuum, while
there are (by VI.3.5) 2ℵ0 possible choices for b. Since there is an automorphism
of Dm carrying a into b, S is not closed under automorphisms and hence it
cannot be definable. 2

It follows that many natural classes of m-degrees are not definable, e.g. the
r.e. and the arithmetical m-degrees. On the other hand, there are nontrivial
definable sets of m-degrees, e.g. the minimal m-degrees, and thus the result is
the best possible.

From VI.4.3 it easily follows that there are 2ℵ0 automorphisms of Dm: given
a minimal m-degree a, for any other minimal m-degree b there is an automor-
phism carrying a into b (because Dm(≤ a) and Dm(≤ b) are isomorphic),
and there are 2ℵ0 minimal m-degrees. This is not the best possible result, since
there are 22ℵ0 possible maps from Dm to Dm. We now show that this bound
is attained.

Proposition VI.4.6 (Shore) There are 22ℵ0 automorphisms of Dm.

Proof. Note that VI.4.2 produces an automorphism of Dm, if both cones are
Dm itself. Moreover, the back-and-forth argument of VI.4.1, on which the proof
of VI.4.2 relies, takes 2ℵ0 steps (we have to ensure that each m-degree is in both
the domain and the range). The only new step here is to actually build a tree of
height 2ℵ0 of automorphisms of Dm, by extending every partial automorphism
in two different ways (by using VI.3.5) at successor stages, and taking unions
at limit stages. Each branch of the tree is now an automorphism of Dm,
and different branches produce different automorphisms by construction. Thus
there are 22ℵ0 automorphisms. 2

The complexity of the theory of many-one degrees

We have characterized the complexity of the first-order theory of D in V.7.3.
If we try to adapt the proof used there to Dm we run into trouble. The main
point is that we are unable to prove the analogue of V.7.1, because its proof uses
in an essential way the fact that every Turing degree contains an introreducible
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Figure VI.1: Coding by graphs



VI.4 Global Properties 579

set (II.6.7), and this is false for m-degrees: a nonrecursive, not immune set is
not recursive in each of its infinite subsets (since some of them are recursive),
and there are m-degrees containing only nonrecursive, not immune sets (e.g.
any m-degree above the m-degree of K, see III.6.10.b).

The next result comes to the rescue and provides a different, slightly less
direct way of coding arithmetic. We state it in more generality than needed
because of its interest.

Theorem VI.4.7 (Nerode and Shore [1980]) Let (P,v,t) be an upper-
semilattice with least element such that:

1. every countable ideal is the intersection of two principal ideals

2. every countable distributive lattice is isomorphic to an initial segment of
P .

Then the theory of Second-Order Arithmetic is 1-reducible to the first-order
theory of P .

Proof. There are many steps toward the result:

1. translate Second-Order Arithmetic into second-order logic on countable
sets
This is a standard and well-known procedure, based on the fact that
Peano Axioms actually define ω up to isomorphism, in second-order logic
(see p. 23).

2. translate second-order logic on countable sets into the theory of countable
distributive lattices with quantification over ideals
This is the crucial step, which we split into two parts. We refer to the
various parts of Figure 1.

• code relations by graphs (Lavrov [1963], Rabin and Scott)
We start with a binary relation R. Recall that a graph is a sym-
metric, irreflexive, binary relation, which we may picture as a set of
points related by lines. First of all we have to put down the elements
of the domain. A simple way is the following: for each element u add
two points au1 and au2 , and relate them as in part a) of the picture.
Thus in the graph the elements of the domain of the given relation
are the points in which two lines coming from end points arrive.
We now have to relate points u and v when R(u, v) holds. A simple-
minded solution as in part b) of the picture is not enough, since R
might be in general not symmetric, while the proposal is. So we add
two elements, and relate them as in part c) to show that R(u, v),
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as opposed to R(v, u), holds. This is still not enough since if, e.g.,
R(u, u) holds then we would have the situation of part d). But this
is ambiguous, because we might then think that R(u, u) holds when-
ever we see a triangle with a vertex in u, while the triangle might
come from the coding of R(u, v) for some v 6= u. Our final choice
is then the following: given u and v we add three new elements,
and relate them as in part e), to show that R(u, v) holds. If R(u, u)
holds then we get the unambiguous situation of part f).
This technique codes binary relations. But n-ary relations are easily
reduced to binary ones, and thus to graphs as above. For example,
if R is ternary we can introduce a nonsymmetric binary relation as
follows. When R(x, y, z) holds introduce four new elements, and
relate them as in part g). An arrow u → v shows that the new
binary relation holds for (u, v). The old elements are those from
which no arrow comes out.
If there is more than one relation, we simply have to arrange for
their domains to coincide.

• code graphs by ideals of a distributive lattice
Given graphs on a countable domain we build a countable distribu-
tive lattice as follows. The atoms of the lattice correspond to the
elements of the domain. Add l.u.b.’s x t y for every pair of atoms
x and y, and on top of x t y add an element c(x, y) as a code for
{x, y}, see part h) of the picture (the reason why we do not simply
take c(x, y) = x t y is that we want the codes to be indecompos-
able elements, for reason to be explained shortly). Then add the
necessary elements to get a distributive lattice.
A graph on the elements is simply a set of unordered pairs, and
can be translated as a set of codes. There is thus a natural corre-
spondence between ideals of the lattice and graphs on the atoms, as
follows: an ideal I defines a graph R as

R(x, y) ⇔ c(x, y) ∈ I,

and a graph R defines the ideal generated by the codes c(x, y), for
every x and y such that R(x, y) holds.
The crucial fact is that the correspondence is one-one: if R1 and R2

are different graphs, they generate different ideals. Indeed, the only
obstacle to this could be that, given a graph R, the ideal generated
by R as above also contains codes c(x, y) for x and y such that
R(x, y) does not hold, so that decoding the ideal would not produce
the original graph. That this is impossible follows from VI.1.6 and
the fact that the codes are indecomposable elements.
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3. translate the theory of countable distributive lattices with quantification
over ideals into the first-order theory of P
A formula ϕ with quantification over elements and ideals can be trans-
lated into a formula ϕ∗ by replacing the ideals by exact pairs coding them,
and quantification over ideals by quantification over exact pairs.

By the initial segment assumption on P , ϕ is satisfiable in the theory of
countable distributive lattices if and only if there is an element a ∈ P
such that the initial segment determined by a in P is a distributive lattice,
and ϕ∗ holds in it. 2

Corollary VI.4.8 (Nerode and Shore [1980]) The first-order theory of
Dm is recursively isomorphic to the theory of Second-Order Arithmetic.

Proof. We prove that the two theories have the same m-degree by interpreting
each in the other, thus providing faithful translations that will preserve theo-
rems. Since the translations will actually be one-one, the theories will have the
same 1-degree, and hence will be recursively isomorphic by III.7.13.

One direction is clear, since every formula about the ordering of m-degrees
can be interpreted, in the natural way, as a formula about sets of integers.
Thus the theory of m-degrees is interpretable in Second-Order Arithmetic.

For the converse, we want to show that Second-Order Arithmetic is inter-
pretable in Dm. It is enough to show that Dm satisfies the conditions of the
theorem, which it does: the required initial segments exist by VI.2.6, while
the existence of exact pairs follows from VI.3.4, although it is also essentially
implied by the proof of Spector’s Theorem for Turing degrees (since m-degrees
are closed under finite differences). 2

Corollary VI.4.9 (Lachlan [1970) The first-order theory of Dm is unde-
cidable and not axiomatizable.

For what concerns the extent of decidability, as for Turing degrees (see
p. 490) we have that the two-quantifier theory of Dm is decidable (Degtev
[1979]), but we do not know whether the three-quantifier theory of Dm is
undecidable. The methods that provide a positive answer to the same problem
for Turing degrees are highly nondistributive (see Lerman [1983]), and thus not
relevant for Dm.

The next result can now be proved as in Section V.7 (using the present
coding for arithmetic), and has the same consequences as there.

Theorem VI.4.10 (Nerode and Shore [1980a]) If C is an ideal of Dm

closed under jump, the first-order theory of C has the same degree (and actually
the same isomorphism type) as the theory of Second-Order Arithmetic with set
quantifiers restricted to sets with degree in C.
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VI.5 Comparison of Degree Theories ?

In this section we consider other notions of degree introduced in Chapter III,
namely 1-degrees, tt-degrees, and wtt-degrees. We will mostly quote re-
sults about them, and will content ourselves to develop their theories only to the
point needed to show that they are not elementarily equivalent among them-
selves and with Turing and m-degrees (with the only exception of tt-degrees
and wtt-degrees, for which it is not known whether this holds).

1-degrees

We have already seen in Section III.7 that D1 is a special case among all
the degree structures we have introduced, because we cannot talk of a least
1-degree in any natural way (III.7.4). The next result shows that the differences
are even deeper.

Proposition VI.5.1 (Young [1964]) D1 is neither an upper nor a lower
semilattice, i.e. l.u.b. and g.l.b. do not always exist.

Proof. By III.2.14 every nonrecursive r.e. T -degree contains a simple set. We
will show in Chapter X that there are incomparable r.e. T -degrees, and thus
there are two incomparable simple sets A and B. Suppose they have a l.u.b.
D w.r.t. 1-reducibility:

1. for some z ∈ D, A ≤1 D ∪ {z} and B ≤1 D ∪ {z}
Since D is an upper bound for A and B, there are recursive one-one
functions f and g such that

x ∈ A⇔ f(x) ∈ D and x ∈ B ⇔ g(x) ∈ D.

We show that D ∩ range of f 6= ∅ and D ∩ range of g 6= ∅. Suppose, e.g.,
that D ∩ range of f = ∅: we show D ≤1 A and thus B ≤1 D ≤1 A,
contradicting the fact that A and B are incomparable. Simultaneously
enumerate D and the range of f , and define h by induction as follows:

• if x shows up first in D, let h(x) be the smallest element of A not
yet in {h(0), . . . , h(x− 1)}, so that h(x) ∈ A.

• if x shows up first in the range of f , let y be the unique element
such that f(y) = x. If y 6∈ {h(0), . . . , h(x− 1)} let h(x) = y, so that

x ∈ D ⇔ f(y) ∈ D ⇔ y ∈ A ⇔ h(x) ∈ A.

Otherwise, y must have been defined by the first clause, so let h(x)
be the smallest element of A not yet in {h(0), . . . , h(x− 1)}.
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Thus D∩ range of f 6= ∅, and D∩ range of g 6= ∅ can be shown similarly.
Let then z ∈ D ∩ range of f and z∗ ∈ D ∩ range of g. A ≤1 D ∪ {z} via
f itself (since z is not in the range of f), and B ≤1 D ∪ {z} via g∗ so
defined:

g∗(x) =
{
g(x) if g(x) 6= z
z∗ otherwise.

Note that g∗ is still one-one, because z∗ is not in the range of g.

2. D ∪ {z} <1 D, and hence D is not the l.u.b. of A and B
First note that A,B ≤1 A ⊕ B, so if D is the l.u.b. of A and B then
D ≤1 A⊕B. But A⊕B is simple because so are A and B, and then so
is D. Suppose D ≤1 D ∪ {z}. There is f recursive such that

x ∈ D ⇔ f(x) ∈ D ∪ {z}.

Then (since z ∈ D) D has an infinite r.e. subset {z, f(z), f (2)(z), . . .},
contradiction. Thus D ∪ {z} <1 D, since D ∪ {z} ≤1 D clearly holds.

By a symmetrical argument (using z ∈ D and D − {z}) one can show that A
and B have no g.l.b. 2

Even if there is no least 1-degree, one can consider segments above 01.
Lachlan [1969] proves that every distributive uppersemilattice which is the direct
limit of an ascending sequence of finite distributive lattices is isomorphic to a
segment of D1 above 01. The proof consists in forcing all the m-degrees of the
initial segment of Dm built in VI.2.5 to contain only cylinders (see VI.6.1), so
that they are actually 1-degrees.

Exercise VI.5.2 If A is a set of minimal Turing degree constructed by using strongly

uniform trees which is neither immune nor coimmune, then A has minimal 1-degree.

(Hint: as in VI.2.8, using recursive subsets of A and A to make the m-reductions

one-one.)

A complete characterization of the segments of 1-degrees above 01 is not
known, even for the finite ones, and the following results of Lachlan [1969] show
that it might be complicated:

1. every finite segment of D1 is a lattice (this is not as trivial as VI.1.10,
since D1 is not an uppersemilattice)

2. some finite segment of D1 is nondistributive

3. not all finite lattices are isomorphic to a finite segment of D1.
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What is known is however enough for the analogue of Simpson’s Theorem,
proved by Nerode and Shore [1980]: the first-order theory of D1 is recursively
isomorphic to the theory of Second-Order Arithmetic. The proof uses VI.4.7,
once some problems are solved.

The first problem is that D1 is not an uppersemilattice, and thus VI.4.7
has to be rephrased for directed sets, in which every pair of elements has an
upper bound.

The second problem is that the segments we have for D1 are only above
01. This does not introduce complications, because 01 is definable in D1: {∅}
and {ω} are the only minimal 1-degrees (in the sense of being degrees with no
smaller degree), and 01 is the smallest degree above both of them. Thus we
can work only above 01.

The final problem is the existence of exact pairs. The same proof of Spec-
tor’s Theorem V.4.3 shows that for any countable set of 1-degrees in which
every pair of elements is bounded there is a pair such that every set 1-reducible
to it is also 1-reducible to the disjoint union of finitely many finite modifications
of representatives of the given 1-degrees. By the restriction above we only work
with 1-degrees above 01, which are closed under finite modifications because a
set A whose 1-degree is above 01 is neither immune nor coimmune, and thus
infinite recursive subsets of A and A can be used to patch up finite modifica-
tions. Closure under disjoint union is needed only for the ideals generated by
subsets of the codes of the distributive lattices used for VI.4.7, and it is proved
in Nerode and Shore [1980].

Truth-table degrees and weak truth-table degrees

We will treat the two structures Dtt and Dwtt simultaneously, in the sense
that we will state our results for tt-degrees only, but note here that they all
hold for wtt-degrees as well , either by the same proofs or by minor changes
that we will indicate when needed.

To get an elementary difference between D and Dtt we must develop some
theory of the latter. We use for it the usual notation for the jump operator,
which is well-defined on tt-degrees by V.1.6. The next result provides the
analogue of the Jump Inversion Theorem V.2.24.

Theorem VI.5.3 Jump Inversion Theorem for Dtt (Mohrherr [1984])
The range of the jump operator on Dtt is the cone Dtt(≥0′

tt).

Proof. By V.1.6, for any tt-degree a we have a′ ≥ 0′
tt. To get the converse,

let C be a set such that K ≤tt C: we want to get A such that A′ ≡tt C.
Consider the construction of V.2.24, with the understanding that ‘the least
string σ ⊇ σs such that {e}σ(e) ↓’ means ‘the least string σ ⊇ σs such that
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the search of a pair (σ, t) (in an exhaustive recursive list of them) for which
{e}σt (e)↓ succeeds’. Then to be such a σ is an r.e. predicate.

1. A′ ≤tt C
By induction on e we want to determine a truth-table which is satisfied
by C if and only if e ∈ A′. Recall that e ∈ A′ is decided at stage 2e + 1
of the construction, since

e ∈ A′ ⇔ {e}σ2e+1(e)↓ ⇔ (∃σ ⊇ σ2e)({e}σ(e)↓),

where σs+1 is inductively defined as follows:

σs+1 =

 σs if s = 2i ∧ i 6∈ A′
µσ(σ ⊇ σs ∧ {i}σ(i)↓) if s = 2i ∧ i ∈ A′
σs ∗ 〈C(i)〉 if s = 2i+ 1.

Since we only need to determine σ2e, we only have to use i < e. We can
thus fix two initial segments τ0 and τ1 of A′ and C of length e.

Recalling the initial observation, the following is an r.e. predicate:

there is a string σ2e that satisfies the above inductive definition
with τ0 and τ1 in place of A′ and C, and a string σ ⊇ σ2e such
that {e}σ(e)↓.

It can thus be reduced to a question on K and hence, using the fact
that K ≤tt C, to a tt-condition which is satisfied by C if and only if the
predicate is true.

We still have to express the fact that τ0 and τ1 really are, respectively,
initial segments of A′ and C. By induction hypothesis, for each i < e we
already have a tt-condition which is satisfied by C if and only if i ∈ A′.
Thus there is a tt-condition that is satisfied by C if and only if τ0 of
length e is an initial segment of A′. And it is trivial to find a tt-condition
satisfied by C if and only if τ1 of length e is an initial segment of C itself.

Thus we find a tt-condition, depending on τ0 and τ1 of length e, which is
satisfied by C if and only if e ∈ A′. We still have to eliminate the reference
to τ0 and τ1, which is easily done by considering all possible pairs of strings
τ0 and τ1 of length e, and the disjunction of the tt-conditions relative to
them.

2. C ≤tt A′
By induction on e we want to determine a truth-table which is satisfied
by A′ if and only if e ∈ C. Recall that e ∈ C is decided at stage 2e + 2
of the construction, since

e ∈ C ⇔ σ2e+2(|σ2e+1|) = 1 ⇔ |σ2e+1| ∈ A.
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We thus have to find |σ2e+1|, which can be explicitly defined as

|σ2e+1| = e+
∑
i≤e

use (i, A),

where

use (i, A) =
{
|µσ(σ ⊇ σ2i ∧ {i}σ(i)↓)| if i ∈ A′
0 otherwise.

Indeed, at stage 2i + 1 we see if we can make {i}A(i) converge, and if
so we take a string that does it, otherwise we leave σ2i+1 = σ2i. Thus
use (i, A) determines the length increase due to forcing the jump, while
coding C always produces a one-point extension, and this accounts for
the factor e in the expression for |σ2e+1|.
Unraveling the definition of |σ2e+1| (and using the first e values of C,
which we suppose to know by induction hypothesis) we can write down
|σ2e+1|, and thus a tt-condition on A′ whose truth-value is equivalent to
e ∈ C. The trouble is that we have used A′ explicitly, while tt-reducibility
allows only recursive procedures.

The first step is to consider, as above, approximations τ0 and τ1 of A′

and C, respectively of length e + 1 and e. This however might cause a
problem when computing use (i, A), since we might look for a string σ
such that {i}σ(i)↓ because the approximation to A′ tells us that i ∈ A′,
and we thus believe that such a string exists, while this might not be the
case. But we only need to look for a string σ of length bounded by the
true use (i, A), since we may ask whether (∃σ ⊆ A)({i}σ(i) ↓): this is a
question r.e. in A, which can be translated into a tt-condition on A′.

The fact that τ0 and τ1 are, respectively, initial segments of A′ and C
can be dealt with as above, this time using the induction hypothesis on
C. And reference to τ0 and τ1 can also be eliminated as above. 2

The Jump Inversion Theorem actually holds for any reducibility ≤r between
≤tt and ≤T , because if K ≤r C then K ≤tt K⊕C ≡r C. By the theorem there
is A such that A′ ≡tt K ⊕ C, and hence A′ ≡r C.

Kallibekov [1973] showed that 0′
tt is not a minimal cover in the r.e.

tt-degrees, and a simple modification of his proof actually shows that 0′
tt is

not a minimal cover in the tt-degrees. This result relativizes, and shows that
no tt-degree which contains a jump is a minimal cover. By the Jump Inversion
Theorem we then get the next result, which provides an elementary difference
between D and Dtt. The proof uses methods and notations typical of the
study of r.e. degrees (priority, coding, and Sacks agreement strategy), and will
be best understood with some knowledge of Chapter X.
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Theorem VI.5.4 (Mohrherr [1984]) Dtt(≥0′
tt) is dense.

Proof. By the Jump Inversion Theorem for Dtt, it is enough to show that
given sets A and C such that A <tt C

′ there is a set B such that A <tt B <tt C
′.

We build B by columns, as in Section V.4. First of all, we let

〈0, x〉 ∈ B ⇔ x ∈ A.

This codes A into B, and produces A ≤tt B. The other columns of B will be
globally built as a set r.e. in C, hence tt-reducible to C ′. Being B the join of
its columns, B ≤tt C ′ follows from A ≤tt C ′.

The requirements for the construction of B are:

Pe : B 6≤tt A via ϕe
Ne : C ′ 6≤tt B via ϕe.

Fix an enumeration {C ′s}s∈ω of C ′ recursive in C (since C ′ is r.e. in C), and
an approximation {As}s∈ω of A recursive in C and correct in the limit (by the
Limit Lemma IV.1.17). Let

lp(e, s) = max{z : (∀y < z)(ϕe,s(y)↓ ∧ y ∈ Bs ⇔ As |= σϕe(y))}
ln(e, s) = max{z : (∀y < z)(ϕe,s(y)↓ ∧ y ∈ C ′s ⇔ Bs |= σϕe(y))}.

The construction is the following. At stage s+ 1, for each e ≤ s,

〈e+ 1, x〉 ∈ Bs+1 if x ∈ C ′s ∧ x < lp(e, s)
〈i+ 1, x〉 ∈ Bs+1 if e < i ≤ s ∧ x ≤ s ∧ x ≤ ln(e, s).

Thus Pe takes action only in the e-th column, while Ne takes action on the
i+ 1 column, for every i > e.

We show that Pe and Ne are satisfied, by induction on e. Suppose Pi and
Ni are satisfied for every i < e. Then, for i < e,

lim
s→∞

lp(i, s) <∞ and lim
s→∞

ln(i, s) <∞.

Thus Pi puts only finitely many elements on the (i + 1)-th column for i < e,
and so does Ni for i ≤ e. Then:

• Pe is satisfied
Suppose B ≤tt A via ϕe. Then lims→∞ lp(e, s) = ∞ and, by construction,

〈e+ 1, x〉 ∈ B ⇔ x ∈ C ′

except for at most finitely many elements, and C ′ ≤tt B ≤tt A, contra-
dicting the hypothesis A <tt C

′. It is important to note that the strategy
succeeds in this case because no negative condition, except Ni for i < e,
can interfere with the e+ 1 column.
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• Ne is satisfied
Suppose C ′ ≤tt B via ϕe. Then lims→∞ ln(e, s) = ∞, and each (i+ 1)-th
column with i > e is contained in B. But then B ≡tt A, since the 0-th
column codes A, the (i + 1)-th column for i ≤ e is finite, and the other
columns are contained in B. Then C ′ ≤tt B ≤tt A, again contradicting
the hypothesis A <tt C

′. 2

The proof actually shows that for any reducibility caught in between ≤1 and
≤wtt no degree containing a jump is a minimal cover . The crucial property
is that if a computation converges at infinitely many stages then it converges.
The property and the result both fail for Turing reducibility (every Turing
degree has a minimal cover, and every degree above 0′ is a jump).

For reducibilities (like ≤tt and ≤wtt) for which the Jump Inversion Theo-
rem holds it follows that no degree above 0′ is a minimal cover. This fails for
m-degrees, and we thus have a different proof of the fact that the Jump Inver-
sion Theorem fails for m-degrees (VI.1.2.d).

The next result is a typical example of a transfer method that allows us to
carry embedding results from Turing degrees to tt-degrees.

Proposition VI.5.5 (Martin) Any hyperimmune-free minimal Turing de-
gree is also a minimal tt-degree. In particular, there is a minimal tt-degree.

Proof. Let a be a hyperimmune-free Turing degree, and A ∈ a. We show that
if B ≤T A then B ≤tt A. If B ' {e}A then the function

f(x) = µs({e}As (x)↓)

is recursive in A and, being a hyperimmune-free, it is majorized by a recursive
function g. Then B ≤tt A by III.3.2, since if

{e}C '
{
{e}C(x) if it converges in less than g(x) steps
0 otherwise

then {e}C is total for every C, and {e}A ' B.
If also B ∈ a, by symmetry B ≡tt A if B ≡T A. It follows that, if A has

minimal Turing degree,

B ≤T A ⇒ B recursive or B ≡T A ⇒ B recursive or B ≡tt A.

Thus A has minimal tt-degree as well. 2

For future reference, note that the method just used is not useful below
0′, because no nonzero Turing degree comparable with 0′ is hyperimmune-
free (V.5.3.d). The method however gives the stronger result that the Turing
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degrees below a hyperimmune-free Turing degree are all tt-degrees (recall that
the hyperimmune-free degrees are downward closed).

The proof of VI.5.5 can be relativized, and shows that for any set A there is
a set B which is a minimal cover of it with respect to tt-reductions via functions
recursive in A. This falls short of being a minimal cover with respect to tt-
reductions via recursive functions. In particular, it is not even true in general
that A ≤tt B, although x ∈ A⇔ B |= σf(x) for some function f ≤T A.

Since every hyperimmune-free Turing degree has a hyperimmune-free mini-
mal cover, many tt-degrees have minimal covers. But we cannot improve much
on this, by VI.5.4.

Corollary VI.5.6 Failure of homogeneity. Dtt and Dtt(≥ 0′
tt) are not

elementarily equivalent.

Proof. The sentence asserting the existence of a minimal degree is true in Dtt,
but false in Dtt(≥0′

tt). 2

Dtt is obviously an uppersemilattice with least element 0tt, and the proof
of Spector’s theorem V.4.3 shows that any countable ideal of Dtt is the in-
tersection of two principal ideals (because tt-degrees are closed under finite
modifications). Thus VI.4.7 allows one to prove that the first-order theories of
Dtt and Dwtt are recursively isomorphic to the theory of Second-Order Arith-
metic (Nerode and Shore [1980]), provided one has enough initial segments.
The proofs of the initial segment results for Turing degrees can easily be mod-
ified to get the same results for hyperimmune-free degrees (for topped initial
segments it is enough to ensure this for the top degree, since the hyperimmune-
free Turing degrees are downward closed), and hence for tt-degrees, as in VI.5.5.
Then any uppersemilattice with a least element, countable predecessor property,
and power at most ℵ1 is isomorphic to an initial segment of Dtt (Abraham
and Shore [1986]). In particular, this holds for countable distributive lattices,
and thus VI.4.7 applies.

Other global results about Dtt and Dwtt have been obtained by Nerode and
Shore [1980a] and Mohrherr [1984], although the full analogues of the results on
absolute definability and automorphisms proved for Turing degrees in Section
V.7 are not known to hold.

Elementary inequivalences

What we have proved until now allows us to state the main result of this section,
on the comparison of degree theories.
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Theorem VI.5.7 (Young [1964], Lachlan [1970], Shore [1982a]) The
theories of D1, Dm, Dtt, Dwtt, and D are pairwisely not elementarily equiv-
alent, with the only possible exception of Dtt and Dwtt.

Proof. D1 differs from all the remaining structures because it is not an up-
persemilattice, by VI.5.1, while all the other ones are.

Dm differs from all the remaining structures because every m-degree has a
strong minimal cover, by V.5.16, while this fails in the other cases, by VI.5.4
and V.2.26 (the latter implies that no Turing degree above 0′ has a strong
minimal cover).

Dtt and Dwtt differ from D because not every tt-degree or wtt-degree has
a minimal cover, by VI.5.4, while every Turing degree does, by relativization
of V.5.11. 2

We do not know whether Dtt and Dwtt are elementarily equivalent. In any
case, the following result shows that their relationship is a special one.

Proposition VI.5.8 (Shore [1982a]) Dtt and Dwtt have isomorphic cones.
Precisely, Dtt(≥0′

tt) and Dwtt(≥0′
wtt) are isomorphic.

Proof. Consider the natural map Φ : Dtt → Dwtt defined as follows, for any
tt-degree a:

Φ(a) = the wtt-degree of any A ∈ a.

In particular, Φ(0′
tt) = 0′

wtt.
Since tt-reducibility is stronger than wtt-reducibility, we have

a ≤ b in Dtt ⇒ Φ(a) ≤ Φ(a) in Dwtt.

In particular, 0′
tt ≤ b ⇒ 0′

wtt ≤ Φ(b), and hence Φ is a homomorphism from
Dtt(≥0′

tt) to Dwtt(≥0′
wtt).

To show that Φ is onto let Φ(a) ≤ b, and choose A in the tt-degree a, and
B in the wtt-degree b. Then A ≤wtt B and A ≤tt A⊕B ≡wtt B, and thus b is
the image of the tt-degree of A⊕B under Φ.

To show that Φ is one-one we prove that if b is a tt-degree above 0′
tt, then

Φ(a) ≤ Φ(a) in Dwtt ⇒ a ≤ b in Dtt.

It is enough to show that if K ≤tt B and A ≤wtt B then A ≤tt B. Let A ' ϕBe ,
with recursive bound f . Given x there are 2f(x)+1 sets X ⊆ {0, . . . , f(x)},
each of them recursive. Then recursively in K we may know if ϕXe (x)↓. Since
K ≤tt B, we can then build a truth-table reduction of A to B. 2
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Note that no other pair of structures among Dm, Dtt, Dwtt, and D admits
isomorphic cones, because the properties used in VI.5.7 to show elementary
inequivalence actually hold on a cone. Thus, even if Dtt and Dwtt were ele-
mentarily inequivalent, they would resemble each other more than any other
of these pairs.

Bulitko [1980] and Selivanov [1982] have shown that the only possible truth-
table-like reducibilities are: ≤m, ≤btt(1), ≤l, ≤d, ≤c, ≤p, and ≤tt (see pp. 268
and 331 for definitions). Among them, the structures induced by ≤c and ≤d
are isomorphic, since

A ≤c B ⇔ A ≤d B,
and so are the structures induced ≤m and ≤btt(1) (Malc’ev [1985]). The re-
maining ones are pairwisely elementarily inequivalent (Degtev [1979], [1985]),
with the only possible exception of the structures induced by ≤p and ≤tt.

VI.6 Structure Inside Degrees ?

In the last section we have compared various notions of degree from the point of
view of the structures they induce. Despite the elementary differences proved
in VI.5.7, we have noted a resemblance of methods of proofs in the study of
1-degrees and m-degrees on one side, and tt-degrees, wtt-degrees, and Turing
degrees on the other.

In the present section we take a different perspective, and analyze the pos-
sible structure of degrees of one type inside degrees of another. We will again
discover that 1-degrees and m-degrees are close, in the sense that they coincide
in a large number of cases, and the same will hold for tt-degrees and Tur-
ing degrees (and hence for wtt-degrees). On the other hand, m-degrees and
tt-degrees never coincide, and this shows where the real demarcation among
degree notions lies.

Cylinders

Recall that the jump operator provides a homomorphism from D to D1, since

A ≤T B ⇔ A′ ≤1 B
′.

We now define canonical homomorphisms from Dm and Dtt to D1.

Definition VI.6.1 (Myhill [1959], Rogers [1967]) The cylindrification of
a set A is the set

A ·N = {〈x, n〉 : x ∈ A}.
A is a cylinder if A ≡ A ·N , i.e. A and A ·N are recursively equivalent.
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Proposition VI.6.2 (Rogers [1967]) A ≡m A ·N . Moreover,

A ≤m B ⇔ A ·N ≤1 B ·N.

Proof. A ≤1 A ·N via f(x) = 〈x, x〉, and A ·N ≤m A via g(x) = (x)1. Thus
A ≡m A ·N .

Let A ≤m B: since A · N ≤m A, then A · N ≤m B via some recursive
function f , and A · N ≤1 B · N via g(x) = 〈f(x), x〉, which is one-one. Con-
versely, let A·N ≤1 B·N : since A ≤m A·N and B·N ≤m B, then A ≤m B. 2

We now give some conditions for a set to be a cylinder.

Proposition VI.6.3 (Young [1966a], Rogers [1967]) The following con-
ditions are equivalent:

1. A is a cylinder

2. for every set B, B ≤m A⇒ B ≤1 A

3. there is a recursive function f such that, for every x,

• Wf(x) is infinite

• x ∈ A⇒Wf(x) ⊆ A

• x ∈ A⇒Wf(x) ⊆ A.

Proof. 1 implies 3 because if A ≡ A · N then there is a one-one recursive
function g reducing A ·N to A, and thus it is enough to let

Wf(x) = {g(〈x, n〉) : n ∈ ω}.

3 implies 2 because we can use Wf(x) to turn a many-one reduction g of B to
A into a one-one reduction, as follows. Let h(0) = g(0). Given h(x), let h(x+1)
be the first element generated in Wf(g(x+1)) and not in {h(0), . . . , h(x)}.

2 implies 1 because A ≤1 A ·N and A ·N ≤m A always hold, and by 2 the
latter implies A ·N ≤1 A. Thus A ≡1 A ·N , and A ≡ A ·N by III.7.13. 2

Exercises VI.6.4 a) A set A is a cylinder if and only if, for some recursive function
g and every Dx 6= ∅,

Dx ⊆ A⇒ g(x) ∈ A−Dx and Dx ⊆ A⇒ g(x) ∈ A−Dx.

(Rogers [1967]) (Hint: the condition is equivalent to VI.6.3.)
b) Logical theories are cylinders. (Hint: show that condition VI.6.3.3 is satisfied,

using the fact that ϕ and ¬¬ϕ are equivalent.)
c) Every cylinder is a splinter . (Myhill [1959]) (Hint: see the proof of III.7.10.c.)
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d) A cylinder is either recursive or pseudocreative. (Hint: by c) and III.7.10.a.)
e) The only recursive sets which are cylinders are ∅, ω, and the infinite coinfinite

sets. (Hint: by VI.6.3.3.) It follows that not every splinter is a cylinder. Young [1966]
has shown that there are infinite coinfinite splinters which are not cylinders.

f) Every creative set is a cylinder . (Myhill [1959])

g) Not every pseudocreative set is a cylinder . (Young [1964a]) (Hint: let B be a

simple set. Then B · B is pseudocreative, since if x ∈ B then {x} · B is an infinite

r.e. subset of B ·B. Choose B such that B · B 6≤m B, see III.8.5. Then B · B is not

a cylinder, otherwise there is f like in VI.6.3.3, and since Wf(x) is infinite and B is

simple there is 〈a, b〉 ∈ Wf(x) such that one of a and b is in B. Let g(x) be the other.

Then x ∈ B ·B ⇔ g(x) ∈ B, contradiction.)

We now turn to the analogue of the notion of cylinder for tt-reducibility.

Definition VI.6.5 (Rogers [1967]) The tt-cylindrification of a set A is the
set

Att = {x : A |= σx}.

A is a tt-cylinder if A ≡ Att.

Proposition VI.6.6 (Rogers [1967]) A ≡tt Att. Moreover,

A ≤tt B ⇔ Att ≤1 B
tt.

Proof. A ≤1 Att via f such that σf(x) is the tt-condition ‘x ∈ X’, and
Att ≤tt A via the identity function, since x ∈ Att ⇔ A |= σx by definition.

Let A ≤tt B: since Att ≤tt A then Att ≤tt B, and for some recursive f

x ∈ Att ⇔ B |= σf(x) ⇔ f(x) ∈ Btt.

Thus Att ≤m Btt. But f can be made one-one by induction, by substituting
tt-conditions with equivalent ones if necessary (obtained by adding redundant
clauses, like n ∈ X ∨ n 6∈ X). Thus Att ≤1 B

tt. Conversely, if Att ≤1 B
tt then

A ≤tt B, since A ≤tt Att and Btt ≤tt B. 2

Proposition VI.6.7 (Rogers [1967]) The following conditions are equiva-
lent:

1. A is a tt-cylinder

2. for every set B, B ≤tt A⇒ B ≤1 A

Proof. 1 implies 2 because if B ≤tt A then B ≤m Att by definition, and hence
B ≤1 A

tt as in the proof of VI.6.6. If A is a tt-cylinder then Att ≤1 A, and
hence B ≤1 A.
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2 implies 1 because A ≤1 A
tt and Att ≤tt A always hold, and by 2 the latter

implies Att ≤1 A. Thus A ≡1 A
tt, and A ≡ Att by III.7.13. 2

In particular, a tt-cylinder is a cylinder .

Inside many-one degrees

Since ≤1 is stronger than ≤m, an m-degree can be thought of as consisting of
1-degrees.

Definition VI.6.8 An m-degree is irreducible if it consists of only one
1-degree.

Obviously, an m-degree is irreducible if and only if it contains only cylin-
ders, since A ≡m A ·N always holds.

Trivial examples of irreducible m-degrees are {∅} and {ω}. The first exam-
ple of a nontrivial irreducible m-degree was given by Myhill [1955], who showed
that the m-degree of K is such a degree (see III.6.6 and III.7.5). By relativiza-
tion, the m-degree of a jump set A′ is irreducible, and thus every Turing degree
above 0′ contains an irreducible m-degree.

Proposition VI.6.9 (Kobzev [1975]) If A is r.e. and nonrecursive, the
m-degree of Att is irreducible.

Proof. Consider B ≡m Att. Since Att is a cylinder, from B ≤m Att we have
B ≤1 A

tt. For the converse, let Att ≤m B via f : we want to show that we have
infinitely many equivalent choices for each value of f , so that f can be turned
into a one-one reduction, and Att ≤1 B. Consider

σz = (σx ∧ ¬σy) ∨ (¬σx ∧ σy),

for a given y:

• if x ∈ Att then A |= σx, and thus

z ∈ Att ⇔ A |= σz ⇔ A |= ¬σy ⇔ y 6∈ Att

• if x 6∈ Att then A |= ¬σx, and thus

z ∈ Att ⇔ A |= σz ⇔ A |= σy ⇔ y ∈ Att.

These are still only equivalences, but if we choose y 6∈ Att we explicitly have:

• if x ∈ Att then z ∈ Att and f(z) ∈ B
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• if x 6∈ Att then z 6∈ Att and f(z) 6∈ B.

Fix then an r.e. subset C of Att. There is a recursive function g such that

f(z) ∈ Wg(x) ⇔ (∃y ∈ C)[σz = (σx ∧ ¬σy) ∨ (¬σx ∧ σy)].

Moreover, Wg(x) is an r.e. subset of B if x ∈ Att, and of B otherwise.
It remains to choose C in such a way that Wg(x) is always infinite. Note

that it is enough to have C and Att recursively inseparable, because then if
Wg(x) were finite the set

y ∈ R ⇔ f(z) ∈ Wg(x)

(with σz as above) would be a recursive set separating C and Att. Indeed,
C ⊆ R by definition. Moreover, once x is fixed the only thing that matters for
z, and hence for f(z), is whether y is in Att or not. Since for y ∈ C we have
y ∈ R, and C ⊆ Att, it cannot be that y ∈ Att ∩R, and hence R ⊆ Att.

To find C as wanted, note that A ≤1 A
tt and Att ≤1 Att (the latter because

Att ≤tt Att, and Att is a tt-cylinder). Thus A ≤1 Att. Let C be the image of A
under this 1-reduction: it is an r.e. set because A is, and it cannot be separable
from Att by a recursive set, otherwise A would be the inverse image of this set,
and it would then be recursive. 2

Corollary VI.6.10 Every nonrecursive r.e. tt-degree contains an irreducible
m-degree.

Proof. A ≡tt Att. 2

Degtev [1979] shows that there are nonrecursive tt-degrees not containing
irreducible m-degrees. We do not know whether every nonrecursive Turing de-
gree contains an irreducible m-degree, but the possible exceptions are severely
restricted, as we now prove.

Proposition VI.6.11 (Degtev [1979]) Every Turing degree not below 0′

contains an irreducible m-degree.

Proof. We modify the proof of the previous result to show that if A is non-
recursive and the m-degree of Att is not irreducible, then A ∈ ∆0

2. The result
follows from the Limit Lemma IV.1.17, and the fact that A ≡T Att.

Since Att ≤1 Att (because Att ≤tt Att, and Att is a tt-cylinder), it is enough
to show that Att ∈ Σ0

2. Since Att is a cylinder, if its m-degree is not irreducible
then it must contain a set B which is not a cylinder, and thus such that
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Att ≤m B but Att 6≤1 B (by VI.6.3.2). Let f be a recursive function such that
x ∈ Att ⇔ f(x) ∈ B. Given n, let

f(z) ∈ Wg(n,x) ⇔ (∃y)[σz = σx ∧ ( σn ∨ σy)] ∨
(∃y)[σz = σx ∨ (¬σn ∧ σy)].

We show that
n ∈ Att ⇔ (∃x)(Wg(n,x) finite).

Then Att ∈ Σ0
2, because finiteness of an r.e. set is a Σ0

2 condition, since it can
be expressed as saying that there is a number such that all greater ones are not
in the set.

1. If n ∈ Att then A |= σn, and hence

A |= σx ∧ (σn ∨ σy) ⇔ A |= σx ∨ (¬σn ∧ σy) ⇔ A |= σx.

If Wg(n,x) is infinite for every x then we can easily get Att ≤1 B, contra-
dicting the hypothesis.

2. If n 6∈ Att then A |= ¬σn, and hence

x ∈ Att ⇒ A |= σx ∧ ( σn ∨ σy) iff A |= σy
⇒ {f(z) : σz = σx ∧ ( σn ∨ σy)} is infinite

x 6∈ Att ⇒ A |= σx ∨ (¬σn ∧ σy) iff A |= σy
⇒ {f(z) : σz = σx ∨ (¬σn ∧ σy)} is infinite,

otherwise A is recursive (because A ≤m Att ≤m B). 2

Exercises VI.6.12 A set A is perfect if it is η-closed, for some nontrivial r.e. equiv-
alence relation η whose only recursive η-closed sets are ∅ and ω. Note that every
equivalence class of η is infinite and r.e.

a) If A is perfect then its m-degree is irreducible. (Ershov [1971]) (Hint: if B ≤m A
via f , define g one-one reducing B to A by letting f(x) and g(x) be in the same
equivalence class: this works because A is η-closed. If A ≤m B via f , consider the
new equivalence xη∗y ⇔ xηy ∨ f(x) = f(y). A is still closed and perfect w.r.t. η∗.
f m-reduces [x]η∗ to f([x]η∗), and thus the latter is still infinite. Define g one-one
reducing B to A by letting g(x) ∈ f([x]η∗).)

b) Not every irreducible m-degree contains a perfect set . (Denisov [1974]) (Hint:

modify III.6.23.c to prove that if B ≤tt A and B is perfect then A is not hypersimple.

Then use VI.6.10.)

We have now examples of irreducible m-degrees, as well as of m-degrees
containing infinitely many 1-degrees (like 0m). These are the only possible
cases.
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Proposition VI.6.13 (Young [1966a]) An m-degree contains either only
one or infinitely many 1-degrees.

Proof. If there is more than one 1-degree in a given m-degree, there is a set
A which is not a cylinder. Note that

A⊕A (A⊕A)⊕ (A⊕A) · · ·

are all in the same m-degree, since ⊕ induces the l.u.b. for m-degrees. Since
B ≤1 B ⊕ B always holds, the two following facts produce, by induction, an
infinite ascending chain of 1-degrees in the given m-degree:

1. B ⊕B ≤1 B ⇒ B ⊕B cylinder
Given f one-one such that

z ∈ B ⊕B ⇔ f(z) ∈ B ⇔ 2f(z) ∈ B ⊕B,

the set
Wg(z) = {z, 2f(z), 2f(2f(z)), . . .}

satisfies condition VI.6.3.3.

2. B ⊕B cylinder ⇒ B cylinder
If g satisfies VI.6.3.3 then

x ∈ B ⇒ 2x ∈ B ⊕B ⇒ Wg(2x) ⊆ B ⊕B
x 6∈ B ⇒ 2x 6∈ B ⊕B ⇒ Wg(2x) ⊆ B ⊕B.

It is thus enough to let

Wh(x) = {z : 2z ∈ Wg(2x) ∨ 2z + 1 ∈ Wg(2x)}. 2

The proof shows that if an m-degree contains infinitely many 1-degrees then
it contains an infinite chain. Young [1966a] shows that actually every countable
linear ordering is embeddable in the 1-degrees of such an m-degree. It is not
known whether there must always be an infinite antichain as well.

Exercises VI.6.14 a) Every m-degree contains a greatest 1-degree (consisting ex-
actly of the cylinders in the given m- degree). (Rogers [1967]) (Hint: given A consider
A ·N .)

b) There are m-degrees without least 1-degree. (Dekker and Myhill [1960]) (Hint:

if A is simple and z ∈ A then A − {z} ≡m A but A − {z} <1 A, by the proof of

VI.5.1.)
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Inside truth-table degrees

We now look at m-degrees inside tt-degrees.

Proposition VI.6.15 (Jockusch [1969]) Every nonrecursive tt-degree con-
tains infinitely many m-degrees.

Proof. Let C be a nonrecursive set. Consider the tree of binary sequence
numbers, and the branch A defined by C:

x ∈ A ⇔ Seq(x) ∧ (∀n)1≤n≤ln(x)[(x)n = C(n− 1)].

By definition A ≡tt C (since there are only finitely many binary sequence
numbers of a given length). Moreover, A is retraceable via

f(〈x1, . . . , xn, xn+1〉) = 〈x1, . . . , xn〉.

Being nonrecursive and retraceable, A is immune (by II.6.5). It is also not
hyperimmune, because the strong array whose elements are the sets of binary
sequence numbers of a given length intersects A.

For n ≥ 1, let (A)n be the recursive product of A with itself n times:

〈x1, . . . , xn〉 ∈ (A)n ⇔ (∀i)1≤i≤n(xi ∈ A).

Clearly, (A)n ≡tt A, and (A)n ≤m (A)n+1. We now prove (A)n+1 6≤m (A)n,
so that the tt-degree of A (and hence that of B) contains infinitely many
m-degrees.

The plan of the proof is the following. Suppose (A)n+1≤m (A)n. We want
to find an r.e. subset B of A so big that at most 2n elements at any level of
the tree are in B. We then get a contradiction as follows. From the fact that
A is not hyperimmune we have a recursive function g such that g(x) majorizes
the x-th element (i.e. the one of level x) ax of A. Then we can define Sx such
that |Sx| ≤ 2n as follows: take all elements less than g(x) which are on level
x of the tree, and eliminate those that are generated in B, until at most 2n
remain. Clearly, ax is not eliminated, because B ⊆ A. We thus get a strong
array of bounded cardinality intersecting A, contradicting the fact that A is
immune (II.6.10.b).

It remains to find B. Note that

(A)n ≡m {y : |Dy| ≤ n ∧Dy ∩A 6= ∅},

so that the hypothesis (A)n+1≤m (A)n can be reformulated as:

{y : |Dy| ≤ n+ 1 ∧Dy ∩A 6= ∅} ≤m {y : |Dy| ≤ n ∧Dy ∩A 6= ∅}.
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Thus there is a recursive function h such that

|Dy| ≤ n+ 1 ⇒ |Dh(y)| ≤ n ∧ (Dy ∩A = ∅ ↔ Dh(y) ∩A = ∅).

Let

x ∈ B1 ⇔ (∃y)(|Dy| ≤ n+ 1 ∧ x ∈ Dy ∧ x|Dh(y))
x ∈ B2 ⇔ (∃y)(|Dy| ≤ n+ 1 ∧ x|Dy ∧ x 7→ Dh(y)),

where x|Dz means that x and any element of Dz are not sent by iterations of f
on a same element, and x 7→ Dz that x is sent by iterations of f on an element
of Dz.

Clearly, B1 ∪B2 is r.e. Moreover:

1. B ⊆ A
Suppose x ∈ B1 ∩ A. For some y, x ∈ Dy ∩ A and x|Dh(y), so that
Dy ∩A 6= ∅ and hence Dh(y) ∩A 6= ∅. But the latter contradicts x|Dh(y),
because the elements of A are all sent by iteration of f on a same element
(e.g., a0).

Suppose x ∈ B2∩A. For some y, x|Dy and x 7→ Dh(y), so that Dy∩A = ∅
(because x ∈ A and x|Dy) and hence Dh(y) ∩ A = ∅. But the latter
contradicts x 7→ Dh(y), because x ∈ A and it is thus sent only on elements
of A by iterations of f .

2. B has at most 2n elements at any level of the tree
For the sake of contradiction, suppose there is {x1, . . . , x2n+1} ⊆ B,
whose elements we may suppose to be ordered from the left on the tree.
Consider

Dy = {x1, x3, x5, . . . , x2n+1},

which has n + 1 elements. By hypothesis Dy ⊆ B, and in particular
Dy ⊆ B1. Since |Dy| ≤ n + 1 and x2i+1 ∈ Dy, then it cannot be
x2i+1|Dh(y). Since |Dh(y)| ≤ n and |Dy| = n + 1, there must be i < j
such that x2i+1 and x2j+1 are sent on a same element of Dh(y). Since
x2i+1 and x2j+1 are on the same level of the tree, also x2i+2 (which is
between them and on the same level) must be sent on the same element,
by the definition of f . But this is impossible, since then x2i+2|Dy but
x2i+2 7→ Dh(y), and hence x2i+2 ∈ B2, contradicting the hypothesis that
x2i+2 ∈ B. 2

The proof shows that every nonrecursive tt-degree contains an infinite chain
of m-degrees. It is not known whether it also contains an infinite antichain.
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Exercises VI.6.16 a) Every tt-degree contains a greatest m-degree and a greatest
1-degree. (Rogers [1967]) (Hint: consider Att.)

b) No nonrecursive tt-degree contains a least m-degree. (Jockusch) (Hint: let A
be an immune retraceable set in the given tt-degree, by II.6.13. Then A and A form
a minimal pair of m-degrees. Indeed, let x ∈ C ⇔ f(x) ∈ A⇔ g(x) ∈ A. If f(x) and
g(x) are sent by the retracing function into the same element, this is in A. The set
of such elements is finite, being r.e. Let a ∈ A be greater than its maximum. If C
is not recursive the ranges of f and g are unbounded, and A− {0, . . . , a− 1} is r.e.,
contradicting immunity: if z ≥ a choose x such that f(x), g(x) > z. See if one is sent
into z by the retracing function. At most one of them can be, by the choice of a, and
if z ∈ A one does.)

c) Every nonrecursive tt-degree contains incomparable m-degrees. (Jockusch

[1968a]) (Hint: let A be a semirecursive set in the given tt-degree, by III.5.5. Then

A and A are m-incomparable.)

Inside Turing degrees

We now look at tt-degrees inside Turing degrees.

Definition VI.6.17 A Turing degree is irreducible if it consists of only one
tt-degree.

The irreducible Turing degrees are old friends.

Proposition VI.6.18 (Jockusch [1969], Martin) A Turing degree is irre-
ducible if and only if it is hyperimmune-free.

Proof. We have already proved in VI.5.5 that if A has hyperimmune-free
degree and B ≡T A then B ≡tt A. Thus a hyperimmune-free degree contains
only one tt-degree.

Suppose now that the Turing degree of A contains only one tt-degree. We
may suppose that A has the greatest m-degree in it (otherwise we can consider
Att). Suppose f ≤T A is not recursively majorized. With no loss of generality
we may suppose f increasing. Let

e ∈ B ⇔ {e}(e) converges in less than f(e) steps, and {e}(e) 6∈ A.

Then B ≤T A, and A ≡T A⊕B. We now show that B 6≤m A: thus A <m A⊕B,
contradicting the fact that A has the greatest m-degree.

Suppose B ≤m A via g. Let e0, e1, . . . be indices of g, with ex > x. Then

ex ∈ B ⇔ g(ex) ∈ A ⇔ {ex}(ex) ∈ A.

Thus {ex}(ex) must converge in more than f(ex) > f(x) steps (recall that f
is increasing), and the number of steps needed to compute {ex}(ex) is thus a
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recursive function majorizing f , contradiction. 2

As in the case of m-degrees, there are only two possibilities.

Corollary VI.6.19 A Turing degree contains either only one or infinitely
many tt-degrees.

Proof. The proof given above works also in the case that a Turing degree
has a greatest tt-degree, by choosing A in the greatest m-degree of the greatest
tt-degree. Since A⊕B ≡T A, A⊕B ≤tt A because A is in the greatest tt-degree,
and hence actually A ≡tt A⊕B. Thus A <m A⊕B produces a contradiction,
because A has greatest m-degree in its tt-degree.

But if there are finitely many tt-degrees, there is a greatest one (their l.u.b.).
Thus the Turing degrees consisting of finitely many tt-degrees are still the
hyperimmune-free ones, i.e. the irreducible ones. 2

Exercises VI.6.20 a) A Turing degree has greatest tt-degree if and only if it is ir-
reducible. (Hint: by the proof of the corollary.)

b) Non-irreducible Turing degrees contain an infinite chain of tt-degrees. (Hint:
by part a.)

c) Non-irreducible Turing degrees contain an infinite antichain of tt-degrees. (Deg-

tev [1972]) (Hint: this uses the priority method. Let A = {a0 < a1 < · · · }, A
hyperimmune. We build Az in the Turing degree of A so that, for m 6= n, Am 6≤tt An.

Code A into Az by letting x ∈ A⇔ 2x+1 ∈ Az: thus A ≤T Az. To ensure Am 6≤tt An
via ϕe, we want some x such that x ∈ Am ⇔ An 6|= σϕe(x). Wait until a fresh witness

x appears, such that ϕe(x) converges in less than ax steps. Then see if An,s |= σϕe(x).

If so, restrain x out of Am. Otherwise, put x into Am. In both cases, restrain out of

An the elements used in the computation and not yet in it. Note that if ϕe is total

there are infinitely many x such that ϕe(x) converges in less than ax steps, otherwise

A would be majorized by the least number of steps needed to compute ϕe(x). The

construction is recursive in A, and thus Az ≡T A.)

æ
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[1930] Die Vollständigkeit der Axiome des logischen Funktionenkalküls, Monash. Math.
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β Gödel’s β-function 28
n numeral for n 32
E(f1, . . . , fn; ~z) system of equations 32
R Tarski, Mostowski and Robinson arithmetic 44
qi state of a Turing machine 48
si symbol of a Turing machine 48
Ii instruction of a Turing machine 48

643



644 Notation Index

:= assignment 62
λ abstraction operator 76
Y fixed-point paradoxical combinator 79
S, K, I combinators 83
〈x1, . . . , xn〉 sequence number coding x1, . . . , xn 88
(x)n n-th component of x 88
ln(x) length of x 88
Seq(x) x is a sequence number 88
x ∗ y concatenation of x and y 89
v, < subsequence predicates 89
f̂ history function (course-of-values) of f 89
Tn normal form predicate 90
U normal form function 90

Chapter II

' equality for partial functions 127
ϕ(x)↓ ϕ is defined (converges) at x 127
ϕ(x)↑ ϕ is undefined (diverges) at x 127
α ⊆ β β extends α as a partial function 127
ϕne , ϕne,s n-ary partial recursive function of index e 130
{e}n, {e}ns n-ary partial recursive function of index e 130
Smn parametrization function 131
Wn
e , Wn

e,s n-ary r.e. relation of index e 134
Tot set of indices of total recursive functions 146
K diagonal r.e. set 147
K0 master r.e. set 150
θA index set of A 150
K(x) Kolmogorov complexity of x 151
≤T , ≡T Turing reducibility 176
D structure of Turing degrees 176
F (α, x) functional 177
Tm,n normal form predicate for functionals 179, 180
ϕAe , ϕAe,s partial recursive function with oracle A of index e 181

{e}A, {e}As partial recursive function with oracle A of index e 181
P set of partial functions from ω to ω 186
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